E. Dummit’s Math 4571 ~ Advanced Linear Algebra, Spring 2025 ~ Homework 7 Solutions

1. Let (-,-) be an inner product on V with scalar field F with v,w € V, and let W be a subspace of V. Identify
each of the following statements as true or false:

(a)

(b)

An orthogonal set of vectors is linearly independent.

. : the set {(0,0,0),(1,0,0)} is orthogonal but not linearly independent.

An orthonormal set of vectors is linearly independent.

o : we showed any set of nonzero orthogonal vectors is linearly independent, and an orthonormal
set is orthogonal and cannot include the zero vector (since its norm is 0).

Every finite-dimensional inner product space has an orthonormal basis.
° : we can construct an orthonormal basis via Gram-Schmidt.

If V is finite-dimensional and W is any subspace of V, then dim(W) = dim(W=).
e [False|: the correct formula is dim(W) + dim(W=) = dim(V)).

If w is a vector in W+, then the orthogonal projection of w onto W is w itself.
. : the orthogonal projection of a vector w* in W+ onto W is zero.

If 5 = {wy,...,w,} is an orthonormal basis of W, then w = (v,wi)w; + -+ + (v,w,) w, is the
orthogonal projection of v into W.

° : this is the orthogonal projection formula we proved.

If V is finite-dimensional, v € V, and W is any subspace of V', the vector w € W minimizing ||v — w]|
is the orthogonal projection of v into W.

° : this is the best-approximation property of the orthogonal projection.
If T:V — V is linear, then the adjoint of T exists and is unique.

o : the adjoint does not always necessarily exist over an arbitrary vector space. (If it does exist,
then it is unique.)

If T:V — V is linear and V is finite-dimensional, then the adjoint of T" exists and is unique.
. : we proved that the adjoint always exists over finite-dimensional vector spaces.

If T:V — F is linear and V is finite-dimensional, then there exists w € V' such that T'(v) = (v, w) for
allveV.

. : this is the version of the Riesz representation theorem we established.
For any S,T : V — V such that S* and T* exist, we have (S +iT)* = S* 4 iT*.

. : the correct formula is (S +iT)* = S* — iT™*.
For any S,T : V — V such that S* and T* exist, we have (ST)* = S*T™*.

. : the correct formula is (ST)* = T*S*.

If Ax = cis an inconsistent system of linear equations, then the best approximation of a solution is given
by the solutions x of A*x = A*Ac.

. : the correct equation to solve is the normal equation (A*A)x = A*c.




2. Calculate the following things:

(a) The result of applying Gram-Schmidt to the vectors vi = (1,2,0, —2), vo = (1, —1,4,4), v3 = (6,6,0, —9)
in R* under the dot product.

e First, wy =v; =((1,2,0,-2) |
Vo - Wi (17 _1a4a4) ) (17270a _2) -9

Next, = vy — , wh = = = —~ = —1. Thus,
L] ext, wo Vo a1wWi, where aj R (1,2707 _2) - (1,2707 _2) 9 us

wo = (1,-1,4,4) + (1,2,0,-2) =[(2,1,4,2) |
V3 - W1 (6,6,0,—-9)-(1,2,0,—2)

e Finally, ws = v3 — bywy — bows where by = — = (1,2,0,-2)-(1,2,0,-2) =4, and by =
V3 W2 (67 6,0, 79) i (27 1,4, 2)

= = 0. Th = —9) —4(1,2,0,-2) — 0(2,1,4,2) =
Wo - Wy (2’174,2)(2,174’2) 0 us, wg (676707 9) ( ) 703 ) 0( 5 Ly Fy )

(27 _27 Oa _1) .

(b) A basis for W, if W = span[(1,1,1,1),(2,3,4,1)] inside R* under the dot product.

e The orthogonal complement corresponds to the nullspace of the matrix whose rows are the given
vectors.

2 3 41 o1 2 -1

e From the reduced row-echelon form, we see that ’{(72,1,0, 1), (1772,1,0)}‘ is a basis for the

nullspace and hence of W=,

e Row-reducing { Ll ] yields the reduced row-echelon form [ Lo —1 2 }

(¢) The orthogonal decomposition v = w + w= of v = (2,0,11) into W = span[(1,2,2), (2, —2,1)] inside
R3 under the dot product. Also, verify the relation ||v||* = ||w]||* + HWJ'||2.

e Notice that the vectors e; = 1(1,2,2) and e; = £(2,—2,1) form an orthonormal basis for W.

e Thus, the orthogonal projection is w = projy,(v) = (v,e1)e1 + (v,e2) ea = 8e1 + 5es = (6,2,7) |

e We see that wb = v — w = (—4, —2,4) is orthogonal to both e; and e; so it is indeed in W+.

e Furthermore, ||v||* = 125, while ||w||” = 89 and ||WJ‘||2 = 36, so indeed ||v||* = ||w]|* + HWJ‘HQ.
(d) An orthogonal basis for W = span[z, 22, 23] with inner product (f,g) = f_ll f(x)g(z) dx.

e We start with w; = p; =[z].

13
z° dx
e Next, wo = ps — a1 wy, where a; = <<‘i2’vv‘;1>> = §11 24 = 0. Thus, wy = .
1, W1 x i
-1

(p3, W1) fi1334 dr 3 (p3, wa)
e Finally, w3 = p3 — byw; — bowy where b; = ’ = =3 = —,and by = L =
(w1, wr) [ a%dz D (w2, w2)
1 5
z° dx 3
%17:0. Thus, wy = |2 — ~x|.
o xtdx 5

(e) The orthogonal projection of v = 1+2x? into span[z, 22, 23], with inner product (f, g) = fil f(x)g(x) da.

11 11
(v,e1) o (v,e3) o (v,e3) s — Oe1—§e2+0e3 _ (11 -

e Using the basis from (d) we see w =
& @ <e1761> <62762> <e3,e3> 3

(f) The quadratic polynomial p(z) € P»(R) that minimizes the expression fol[p(x) —Vz)* dx.

e The desired polynomial is the orthogonal projection of f(x) = y/z into W = P,(R). Using Gram-
Schmidt we can find an orthogonal basis for W, which yields e; = 1, e; = —1+2z, e3 = 1 — 62+ 622,

e Using the orthogonal basis, we get the projection
(v,er) (v,e2) (v,es3) 2 2 2 6 48 4,

A <e1,e1>e1 " <e2aez>62+ <93a93>83 - 361 * 562 - ﬁeg BEE i gx— ?x




(g) The least-squares solution to the inconsistent system = +3y =9, 3z +y =5, z +y = 2.

1 3 9
e Wehave A= | 3 1 | andc= | 5 |. Since A clearly has rank 2, AT A will be invertible and
11 2

there will be a unique least-squares solution.

L. 17 N . sy 111 -7
e We compute A*A = { 7 11 ],Whlch is indeed invertible and has inverse (A*A)~! = =) [ v ]

e The least-squares solution is therefore x = (A4*A)~1A*c = [ ;?2 } .

(h) The least-squares line y = a + bx approximating the points {(4,7), (11,21), (15,29), (19, 35), (30,49)}.
(Give three decimal places.)

1 4] 7

1 11 21
o We seek the least-squares solution for Ax = ¢, where A= | 1 15 |, x= [ Z } ,and c= | 29

1 19 35

1 30 | 49
e We compute A*A = [ 759 1;33 }, so the least-squares solution is X = (A4*A)"!A*c ~ [ ?2(5)461 }

e Thus, to three decimal places, the desired line is y = | 1.604x + 2.856 |.

(i) The least-squares quadratic y = a+bx+cx? approximating the points {(—2,22), (—1,11), (0,4), (1,3), (2,13)}.
(Give three decimal places.)

1 -2 4 22
1 -1 1 c 11
e We seek the least-squares solution for Ax =c,with A= 1 0 0 |,x=]| b |,c=| 4
1 1 1 a 3
1 2 4 13
5 0 10 3.743
e Wecompute A*A= | 0 10 0 |[,sotheleast-squares solutionisx = (4*A)"'A*c~ | —2.6
10 0 34 3.429

e Thus, the desired quadratic polynomial is y =| 3.743 — 2.6z + 3.4292> ‘

3. Let V be an inner product space with scalar field F. The goal of this problem is to prove the so-called
“polarization identities”.

(a) If F =R, prove that (v,w) =1 v+ wl|* — 1lv— w]|>.
e We just expand the norms on the right-hand side: ||v+wl||*> — |[[v—w|*> = (v+w,v+w) —
(v—w,v—w)=[(v,v)+2(v,w) + (w,w)|—[(v,v) — 2(v,w) + (w,w)| = 4 (v,w) so dividing by
4 yields the claimed result.
(b) If F = C, prove that (v,w) = 1 [[v+w|*> + & ||v +iw|[> = 1 [[v - w|]* = I ||v —iw]]".
e Asin part (a) we just expand the norms on the right-hand side:
4
> it Hv+ikw|y2 = [v+w|>+i|v+iw|]® = |lv—wl|®—i|lv—iw|
k=1
= (V+w,v+wW)+i(V+iw,v+iw) —(V—w,v— W) — i (V—iW,V — iW)
= [v;v) + (v, W) + (W, v) + (W, W)] +i[(v,v) =i (v, W) + i (W, V) + (w, w)]
- [<V7V> - <V7W> - <W7V> + <W7W>] —1 [<V7V> +1i <V,W> —1 <W,V> + <W7W>]
= 4(v,w)

and so dividing by 4 yields the claimed result.




4. Let V be a finite-dimensional inner product space and W be a subspace of V.

(a) Prove that W N W+ = {0} and deduce that V =W @ W+. [Hint: Use dim(W) + dim(W+) = dim(V).]

e Suppose w € W N W+, Then (w,w) = 0 since the inner product of any vector in W with any

vector in W+ is 0. But then property [I3] of the inner product immediately implies w = 0, so
Wnwt = {0}.

e For the second statement, per the hint, since dim(W) 4+ dim(W+) = dim(V) and WNW+ = {0} we

must have W + W+ =V (in fact we already proved this by showing that the union of a basis of W

and a basis of W+ gives a basis for V). Hence by the definition of direct sum, we have V. =W oW+,

(b) Let T : V. — W be the function defined by setting T'(v) = w where v = w + w' for w € W and
wL € W+, Prove that T is linear, that 72 = T, that im(7') = W, and that ker(T) = W=. Conclude
that T is projection onto the subspace W with kernel W=.

e Suppose vi = wp + wf- and vo = wg + wj- where the w; € W and the wf- ewt.

e Then for any scalar ¢, we see vi + cvy = (Wq + cwa) + (Wi + cwy ) where wi + cwy € W and
wi +cwsy € W since these are both subspaces. Thus, by uniqueness of orthogonal decomposition,
this is the orthogonal decomposition of vi + cvs.

e Then T(vy 4 cva) = wy + ewy = T'(v1) + ¢I'(ve) so T is linear.

e Also, T?(v) = T(T(v)) = T(w) = w since we can clearly write w = w + 0 so T'(w) = w again by
uniqueness. Hence T?(v) = T(v) for every v € V, so T is a projection map.

5. Suppose V is an inner product space (not necessarily finite-dimensional) and 7' : V' — V' is a linear transforma-
tion possessing an adjoint T*. We say T is Hermitian (or self-adjoint) if T = T™*, and that T is skew-Hermitian
if T =-—T".

(a) Show that T is Hermitian if and only if ¢T" is skew-Hermitian.
e Note (47)* = —iT* so T = T* if and only if (:T)* = —iT.

(b) Show that T+ T*, T*T, and TT* are all Hermitian, while T'— T™* is skew-Hermitian.
e Note (T+T*)*=T*"+T*=T+T*, (T*"T)* =TT =T*T, and (TT*)* =TT*=TT".
o Also, (T —-T*)*=T*-T**=T*-T.

(c) Show that T' can be written as T' = S; + iS5 for unique Hermitian transformations S; and Ss.

e In such a case we would necessarily have T* = (S + iS2)* = ST — iS5 = S1 — iSs.
1 1
e Solving for S; and S; in terms of T and T* then yields S; = §(T +T*) and Sy = Z(T —T7*), so
these are the only possible choices.
e On the other hand, by (a) and (b), we see that these S; and Sy are in fact Hermitian, so these are

the unique choices.
(d) Suppose T is Hermitian. Prove that (T'(v),v) is a real number for any vector v.

o If T* =T then (Tv,v) = (v,T*v) = (v,Tv) = (Tv,v), so (Tv,v) equals its conjugate hence is
real.

6. Suppose V' is an inner product space over the field F' (where F =R or C) and T': V — V is linear. We say
T is a “distance-preserving map” on V if ||Tv|| = ||v]| for all v in V, and we say T is a “pairing-preserving
map” on V if (v,w) = (Tv,Tw) for all v and w in V.

(a) Prove that T is distance-preserving if and only if it is pairing-preserving. [Hint: Use problem 3.]

e Clearly if (v,w) = (I'v,Tv) then ||v||* = (v,v) = (T'v,Tv) = ||Tv||>.
e The converse follows by using the polarization identities from problem 4 to recover the inner product
from the norm.

1 1 1
e For example, if F = R we have (Tv,Tw) = ZHT(V—&-W)H2 1 IT(v —w)|]> = 1||v—|—w||2 —

1
1 |[v — wl||* = (v,w), and similarly in the complex case.



A map T : V — V satisfying the distance- and pairing-preserving conditions is called a (linear) isometry.

(b) Show that the transformations 5,7 : R® — R® given by S(z,y,2) = (2, —,y) and T(z,y,2) = (= +
2y + 22,2z +y — 22,2z — 2y + z) are both isometries under the usual dot product.

1
e We simply compute [|(z,y, 2)| = 2% + 2% + 4> = ||(2,2) ||, and [T, y, 2)[| = gl(x+2y+22)? +
2z +y—22)° + (20 - 2y + 2)°] = 2* +y° + 2° = ||(z,y,2)|l.
e Thus, S and T both preserve norms, so by the above, they are isometries.
(c¢) Show that isometries are one-to-one.

e Suppose T is an isometry. If v € ker(T) then ||v|| = ||T(v)|| = 0, so v.= 0 by [I3]. Thus T is
one-to-one.

(d) Show that isometries preserve orthogonal and orthonormal sets.
e Suppose T is an isometry. If (v,w) =0 then (T'v,Tw) = 0.
e Thus, if {vy,Vva,...} is an orthogonal set, then {T'(v1),T(v3),...} is also orthogonal.
e Furthermore, since ||v|| = ||T(v)]||, T also preserves orthonormal sets.
(e) Suppose T™* exists. Prove that T is an isometry if and only if T7*T is the identity transformation.
e Observe that (v,w) — (Tv,Tw) = (v,w) — (v, T*Tw) = (v, (I — T*T)w).
e Thus, setting v = (I—T*T)w shows that the left-hand side is identically zero if and only if (/—T*T)w
is identically zero, if and only if T*T = 1.
(f) We say that a matrix A € M, x,(F) is unitary if A= = A*. Show that the isometries of F™ (with its

usual inner product) are precisely those maps given by left-multiplication by a unitary matrix.

e This is simply the matrix version of (e): the isometries are the linear transformations with A*A = I,,,
and A*A = I, is equivalent to saying that A=1 = A*.

Remark: Notice that A € M,,«,,(C) is unitary if and only if the columns of A are an orthonormal basis of C.
Thus, the result of part (f) can equivalently be thought of as saying that the distance-preserving maps
on C™ (or R™) are simply changes of basis from one orthonormal basis (the columns of A) to another
(the standard basis).

7. [Challenge] The goal of this problem is to give an example of an inner product space that has no orthonormal
basis. Let V = ¢*(R) be the vector space of infinite real sequences {a;};>1 = (a1,a2,...) such that Y =, a?
is finite, under componentwise addition and scalar multiplication.

(a) Show that the pairing ({a;}i>1,{bi}i>1) = D io; a;b; is an inner product on V. (Make sure to justify
why this sum converges.)

e First, we must justify Why the pairing is well defined: starting with the Cauchy-Schwarz inequality

> a b;)’ < S a? - >0 b2, if we take the limit as n — oo, then we obtain (>°;-, aib;)’ <
Yoo ia > b2 But the right-hand side is finite by the assumption that {a;};>1 and {b;};>1 are

elements of V, and so this means |>";, a;b;| is finite (i.e., the sum converges).
e Now we just verify the three parts of the definition of an inner product. Let v = {a;};>1, v/ =
{aitiz1, w = {bi}iz1.
[I1]: We have (v + av’,w) = > (a; + aal)b; = > o0  aibi + ad ooy alb; = (v, w) + a (v, w).
[12]: We have (w,v) =2 bia; =Y oo a;ib; = (v, w).
[I3]: We have (v,v) = > 72, a? which is a sum of squares hence always nonnegative, and it is zero
only when all a; = 0, which is to say, when v = 0.



(b) Let v; € V be the sequence with a 1 in the ith component and Os elsewhere. Show that the set
S ={vi,Va,...,Vp,... } is an orthonormal set in V" and that the only vector w orthogonal to all of the
v; is the zero vector. Deduce that S is a maximal orthonormal set of V' that is not a basis of V.

e It is obvious that S is orthonormal, since (v;,v;) =0 for ¢ # j and ||v;|| =1 for all 1.

o If w = {b;}i>1, then (w,v;) = b; since the only term that survives in the sum is b; - 1 in the ith
term. So if (w,v;) =0 for all 4, then each b; = 0 so that w = 0.

e This means that S is a maximal orthonormal subset of V', since it is orthonormal and there are no
vectors that could be added to it to preserve orthonormality (since the only vector orthogonal to all
of S is the zero vector, by the above).

e On the other hand, S is not a basis of V, since for example the vector {1/2¢},>1, which is in V since
o2 (1/2%)2 = 1/3 is finite, cannot be written as a finite linear combination of the vectors in S.

Part (b) shows that Gram-Schmidt does not necessarily construct an orthonormal basis of V. In fact, V' has
no orthonormal basis at all.

(c¢) Suppose V has an orthonormal basis {e;};c; for some indexing set I (which is necessarily infinite), and
choose a countably infinite subset ej,es,...,e,,.... Show that the sum v = Zzozl 2= ke, is a well-
defined vector in V' that cannot be written as a (finite) linear combination of the basis {e;};c;. [Hint:

Show that [[v||> = lim,_« > nes 2_kek‘|2 is finite.]

e We need to show that the sum for v converges to a vector in V. Clearly, since the vectors e; in the
sum all have length 1, each of their coordinates is at most 1, so the ith coordinate of 21?;1 27 ke, is
at most Y, 27% = 1. So the coordinates of the sum certainly all converge to a finite value.

o . . 2
e Furthermore, the sum is in fact in V: since the vectors e; are orthonormal, we have ||v||® =

n . n . 1 .
limy, oo ||Z:k:1 2*kekH2 = limy 00 Dopy 2728 = limy, 00 §(1 —1/27) = 30 S0 in fact HV||2
is finite and so visin V.

e However, we claim that v cannot be written as a finite linear combination of the basis elements e;.

e To see this, first note that since {e;};cs is an orthonormal basis of V, the the inner product (v, e;)
gives the coefficient of e; in the decomposition of v. But since v = Y ;7 27 *e;, we see that
(v,er) = 27 is nonzero for infinitely many of the basis vectors e;. This precludes the possibility
that v is a finite linear combination of the basis elements e;, which is a contradiction since {e;};cr
was assumed to be a basis.

Remark: The point here is that because our definition of span and basis only allows us to use finite linear
combinations, these definitions are not well suited to handle infinite-dimensional spaces like ¢%(R). How-
ever, it is possible (by exploiting the fact that ¢2 is a topologically-complete metric space) to deal with
these issues and define a “Schauder basis” that allows the use of infinite sums, which amounts to viewing

£? as a Hilbert space.




