
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2025 ∼ Homework 7 Solutions

1. Let 〈·, ·〉 be an inner product on V with scalar �eld F with v,w ∈ V , and let W be a subspace of V . Identify
each of the following statements as true or false:

(a) An orthogonal set of vectors is linearly independent.

• False : the set {(0, 0, 0), (1, 0, 0)} is orthogonal but not linearly independent.

(b) An orthonormal set of vectors is linearly independent.

• True : we showed any set of nonzero orthogonal vectors is linearly independent, and an orthonormal
set is orthogonal and cannot include the zero vector (since its norm is 0).

(c) Every �nite-dimensional inner product space has an orthonormal basis.

• True : we can construct an orthonormal basis via Gram-Schmidt.

(d) If V is �nite-dimensional and W is any subspace of V , then dim(W ) = dim(W⊥).

• False : the correct formula is dim(W ) + dim(W⊥) = dim(V ).

(e) If w⊥ is a vector in W⊥, then the orthogonal projection of w⊥ onto W is w⊥ itself.

• False : the orthogonal projection of a vector w⊥ in W⊥ onto W is zero.

(f) If β = {w1, . . . ,wn} is an orthonormal basis of W , then w = 〈v,w1〉w1 + · · · + 〈v,wn〉wn is the
orthogonal projection of v into W .

• True : this is the orthogonal projection formula we proved.

(g) If V is �nite-dimensional, v ∈ V , and W is any subspace of V , the vector w ∈ W minimizing ||v −w||
is the orthogonal projection of v into W .

• True : this is the best-approximation property of the orthogonal projection.

(h) If T : V → V is linear, then the adjoint of T exists and is unique.

• False : the adjoint does not always necessarily exist over an arbitrary vector space. (If it does exist,
then it is unique.)

(i) If T : V → V is linear and V is �nite-dimensional, then the adjoint of T exists and is unique.

• True : we proved that the adjoint always exists over �nite-dimensional vector spaces.

(j) If T : V → F is linear and V is �nite-dimensional, then there exists w ∈ V such that T (v) = 〈v,w〉 for
all v ∈ V .
• True : this is the version of the Riesz representation theorem we established.

(k) For any S, T : V → V such that S∗ and T ∗ exist, we have (S + iT )∗ = S∗ + iT ∗.

• False : the correct formula is (S + iT )∗ = S∗ − iT ∗.
(l) For any S, T : V → V such that S∗ and T ∗ exist, we have (ST )∗ = S∗T ∗.

• False : the correct formula is (ST )∗ = T ∗S∗.

(m) If Ax = c is an inconsistent system of linear equations, then the best approximation of a solution is given
by the solutions x̂ of A∗x̂ = A∗Ac.

• False : the correct equation to solve is the normal equation (A∗A)x̂ = A∗c.
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2. Calculate the following things:

(a) The result of applying Gram-Schmidt to the vectors v1 = (1, 2, 0,−2), v2 = (1,−1, 4, 4), v3 = (6, 6, 0,−9)
in R4 under the dot product.

• First, w1 = v1 = (1, 2, 0,−2) .

• Next, w2 = v2 − a1w1, where a1 =
v2 ·w1

w1 ·w1
=

(1,−1, 4, 4) · (1, 2, 0,−2)
(1, 2, 0,−2) · (1, 2, 0,−2)

=
−9
9

= −1. Thus,

w2 = (1,−1, 4, 4) + (1, 2, 0,−2) = (2, 1, 4, 2) .

• Finally, w3 = v3 − b1w1 − b2w2 where b1 =
v3 ·w1

w1 ·w1
=

(6, 6, 0,−9) · (1, 2, 0,−2)
(1, 2, 0,−2) · (1, 2, 0,−2)

= 4, and b2 =

v3 ·w2

w2 ·w2
=

(6, 6, 0,−9) · (2, 1, 4, 2)
(2, 1, 4, 2) · (2, 1, 4, 2)

= 0. Thus, w3 = (6, 6, 0,−9) − 4(1, 2, 0,−2) − 0(2, 1, 4, 2) =

(2,−2, 0,−1) .

(b) A basis for W⊥, if W = span[(1, 1, 1, 1), (2, 3, 4, 1)] inside R4 under the dot product.

• The orthogonal complement corresponds to the nullspace of the matrix whose rows are the given
vectors.

• Row-reducing

[
1 1 1 1
2 3 4 1

]
yields the reduced row-echelon form

[
1 0 −1 2
0 1 2 −1

]
.

• From the reduced row-echelon form, we see that {(−2, 1, 0, 1), (1,−2, 1, 0)} is a basis for the

nullspace and hence of W⊥.

(c) The orthogonal decomposition v = w +w⊥ of v = (2, 0, 11) into W = span[ 13 (1, 2, 2),
1
3 (2,−2, 1)] inside

R3 under the dot product. Also, verify the relation ||v||2 = ||w||2 +
∣∣∣∣w⊥∣∣∣∣2.

• Notice that the vectors e1 = 1
3 (1, 2, 2) and e2 = 1

3 (2,−2, 1) form an orthonormal basis for W .

• Thus, the orthogonal projection is w = projW (v) = 〈v, e1〉 e1 + 〈v, e2〉 e2 = 8e1 + 5e2 = (6, 2, 7) .

• We see that w⊥ = v −w = (−4,−2, 4) is orthogonal to both e1 and e2 so it is indeed in W⊥.

• Furthermore, ||v||2 = 125, while ||w||2 = 89 and
∣∣∣∣w⊥∣∣∣∣2 = 36, so indeed ||v||2 = ||w||2 +

∣∣∣∣w⊥∣∣∣∣2.
(d) An orthogonal basis for W = span[x, x2, x3] with inner product 〈f, g〉 =

´ 1
−1 f(x)g(x) dx.

• We start with w1 = p1 = x .

• Next, w2 = p2 − a1w1, where a1 =
〈p2,w1〉
〈w1,w1〉

=

´ 1
−1 x

3 dx´ 1
−1 x

2 dx
= 0. Thus, w2 = x2 .

• Finally, w3 = p3 − b1w1 − b2w2 where b1 =
〈p3,w1〉
〈w1,w1〉

=

´ 1
−1 x

4 dx´ 1
−1 x

2 dx
=

3

5
, and b2 =

〈p3,w2〉
〈w2,w2〉

=

´ 1
−1 x

5 dx´ 1
−1 x

4 dx
= 0. Thus, w3 = x3 − 3

5
x .

(e) The orthogonal projection of v = 1+2x2 into span[x, x2, x3], with inner product 〈f, g〉 =
´ 1
−1 f(x)g(x) dx.

• Using the basis from (d) we see w =
〈v, e1〉
〈e1, e1〉

e1+
〈v, e2〉
〈e2, e2〉

e2+
〈v, e3〉
〈e3, e3〉

e3 = 0e1−
11

3
e2+0e3 =

11

3
x2 .

(f) The quadratic polynomial p(x) ∈ P2(R) that minimizes the expression
´ 1
0
[p(x)−

√
x]2 dx.

• The desired polynomial is the orthogonal projection of f(x) =
√
x into W = P2(R). Using Gram-

Schmidt we can �nd an orthogonal basis forW , which yields e1 = 1, e2 = −1+2x, e3 = 1−6x+6x2.

• Using the orthogonal basis, we get the projection

w =
〈v, e1〉
〈e1, e1〉

e1 +
〈v, e2〉
〈e2, e2〉

e2 +
〈v, e3〉
〈e3, e3〉

e3 =
2

3
e1 +

2

5
e2 −

2

21
e3 =

6

35
+

48

35
x− 4

7
x2 .
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(g) The least-squares solution to the inconsistent system x+ 3y = 9, 3x+ y = 5, x+ y = 2.

• We have A =

 1 3
3 1
1 1

 and c =

 9
5
2

. Since A clearly has rank 2, ATA will be invertible and

there will be a unique least-squares solution.

• We computeA∗A =

[
11 7
7 11

]
, which is indeed invertible and has inverse (A∗A)−1 =

1

72

[
11 −7
−7 11

]
.

• The least-squares solution is therefore x̂ = (A∗A)−1A∗c =

[
2/3
8/3

]
.

(h) The least-squares line y = a + bx approximating the points {(4, 7), (11, 21), (15, 29), (19, 35), (30, 49)}.
(Give three decimal places.)

• We seek the least-squares solution for Ax = c, where A =


1 4
1 11
1 15
1 19
1 30

, x =

[
a
b

]
, and c =


7
21
29
35
49

.
• We compute A∗A =

[
5 79
79 1623

]
, so the least-squares solution is x̂ = (A∗A)−1A∗c ≈

[
2.856
1.604

]
.

• Thus, to three decimal places, the desired line is y = 1.604x+ 2.856 .

(i) The least-squares quadratic y = a+bx+cx2 approximating the points {(−2, 22), (−1, 11), (0, 4), (1, 3), (2, 13)}.
(Give three decimal places.)

• We seek the least-squares solution for Ax = c, with A =


1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

, x =

 c
b
a

, c =


22
11
4
3
13

.

• We compute A∗A =

 5 0 10
0 10 0
10 0 34

, so the least-squares solution is x̂ = (A∗A)−1A∗c ≈

 3.743
−2.6
3.429

.
• Thus, the desired quadratic polynomial is y = 3.743− 2.6x+ 3.429x2 .

3. Let V be an inner product space with scalar �eld F . The goal of this problem is to prove the so-called
�polarization identities�.

(a) If F = R, prove that 〈v,w〉 = 1
4 ||v +w||2 − 1

4 ||v −w||2.
• We just expand the norms on the right-hand side: ||v +w||2 − ||v −w||2 = 〈v +w,v +w〉 −
〈v −w,v −w〉 = [〈v,v〉+ 2 〈v,w〉+ 〈w,w〉]− [〈v,v〉 − 2 〈v,w〉+ 〈w,w〉] = 4 〈v,w〉 so dividing by
4 yields the claimed result.

(b) If F = C, prove that 〈v,w〉 = 1
4 ||v +w||2 + i

4 ||v + iw||2 − 1
4 ||v −w||2 − i

4 ||v − iw||
2
.

• As in part (a) we just expand the norms on the right-hand side:

4∑
k=1

ik
∣∣∣∣v + ikw

∣∣∣∣2 = ||v +w||2 + i ||v + iw||2 − ||v −w||2 − i ||v − iw||2

= 〈v +w,v +w〉+ i 〈v + iw,v + iw〉 − 〈v −w,v −w〉 − i 〈v − iw,v − iw〉
= [〈v,v〉+ 〈v,w〉+ 〈w,v〉+ 〈w,w〉] + i[〈v,v〉 − i 〈v,w〉+ i 〈w,v〉+ 〈w,w〉]
− [〈v,v〉 − 〈v,w〉 − 〈w,v〉+ 〈w,w〉]− i [〈v,v〉+ i 〈v,w〉 − i 〈w,v〉+ 〈w,w〉]

= 4 〈v,w〉

and so dividing by 4 yields the claimed result.
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4. Let V be a �nite-dimensional inner product space and W be a subspace of V .

(a) Prove that W ∩W⊥ = {0} and deduce that V =W ⊕W⊥. [Hint: Use dim(W ) + dim(W⊥) = dim(V ).]

• Suppose w ∈ W ∩W⊥. Then 〈w,w〉 = 0 since the inner product of any vector in W with any
vector in W⊥ is 0. But then property [I3] of the inner product immediately implies w = 0, so
W ∩W⊥ = {0}.

• For the second statement, per the hint, since dim(W )+dim(W⊥) = dim(V ) and W ∩W⊥ = {0} we
must have W +W⊥ = V (in fact we already proved this by showing that the union of a basis of W
and a basis ofW⊥ gives a basis for V ). Hence by the de�nition of direct sum, we have V =W ⊕W⊥.

(b) Let T : V → W be the function de�ned by setting T (v) = w where v = w + w⊥ for w ∈ W and
w⊥ ∈ W⊥. Prove that T is linear, that T 2 = T , that im(T ) = W , and that ker(T ) = W⊥. Conclude
that T is projection onto the subspace W with kernel W⊥.

• Suppose v1 = w1 +w⊥1 and v2 = w2 +w⊥2 where the wi ∈W and the w⊥i ∈W⊥.
• Then for any scalar c, we see v1 + cv2 = (w1 + cw2) + (w⊥1 + cw⊥2 ) where w1 + cw2 ∈ W and

w⊥1 + cw⊥2 ∈W⊥ since these are both subspaces. Thus, by uniqueness of orthogonal decomposition,
this is the orthogonal decomposition of v1 + cv2.

• Then T (v1 + cv2) = w1 + cw2 = T (v1) + cT (v2) so T is linear.

• Also, T 2(v) = T (T (v)) = T (w) = w since we can clearly write w = w + 0 so T (w) = w again by
uniqueness. Hence T 2(v) = T (v) for every v ∈ V , so T is a projection map.

5. Suppose V is an inner product space (not necessarily �nite-dimensional) and T : V → V is a linear transforma-
tion possessing an adjoint T ∗. We say T is Hermitian (or self-adjoint) if T = T ∗, and that T is skew-Hermitian
if T = −T ∗.

(a) Show that T is Hermitian if and only if iT is skew-Hermitian.

• Note (iT )∗ = −i T ∗ so T = T ∗ if and only if (iT )∗ = −iT .
(b) Show that T + T ∗, T ∗T , and TT ∗ are all Hermitian, while T − T ∗ is skew-Hermitian.

• Note (T + T ∗)∗ = T ∗ + T ∗∗ = T + T ∗, (T ∗T )∗ = T ∗T ∗∗ = T ∗T , and (TT ∗)∗ = T ∗∗T ∗ = TT ∗.

• Also, (T − T ∗)∗ = T ∗ − T ∗∗ = T ∗ − T .
(c) Show that T can be written as T = S1 + iS2 for unique Hermitian transformations S1 and S2.

• In such a case we would necessarily have T ∗ = (S1 + iS2)
∗ = S∗1 − iS∗2 = S1 − iS2.

• Solving for S1 and S2 in terms of T and T ∗ then yields S1 =
1

2
(T + T ∗) and S2 =

1

2i
(T − T ∗), so

these are the only possible choices.

• On the other hand, by (a) and (b), we see that these S1 and S2 are in fact Hermitian, so these are
the unique choices.

(d) Suppose T is Hermitian. Prove that 〈T (v),v〉 is a real number for any vector v.

• If T ∗ = T then 〈Tv,v〉 = 〈v, T ∗v〉 = 〈v, Tv〉 = 〈Tv,v〉, so 〈Tv,v〉 equals its conjugate hence is
real.

6. Suppose V is an inner product space over the �eld F (where F = R or C) and T : V → V is linear. We say
T is a �distance-preserving map� on V if ||Tv|| = ||v|| for all v in V , and we say T is a �pairing-preserving
map� on V if 〈v,w〉 = 〈Tv, Tw〉 for all v and w in V .

(a) Prove that T is distance-preserving if and only if it is pairing-preserving. [Hint: Use problem 3.]

• Clearly if 〈v,w〉 = 〈Tv, Tv〉 then ||v||2 = 〈v,v〉 = 〈Tv, Tv〉 = ||Tv||2.
• The converse follows by using the polarization identities from problem 4 to recover the inner product
from the norm.

• For example, if F = R we have 〈Tv, Tw〉 = 1

4
||T (v +w)||2 − 1

4
||T (v −w)||2 =

1

4
||v +w||2 −

1

4
||v −w||2 = 〈v,w〉, and similarly in the complex case.
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A map T : V → V satisfying the distance- and pairing-preserving conditions is called a (linear) isometry.

(b) Show that the transformations S, T : R3 → R3 given by S(x, y, z) = (z,−x, y) and T (x, y, z) = 1
3 (x +

2y + 2z, 2x+ y − 2z, 2x− 2y + z) are both isometries under the usual dot product.

• We simply compute ||S(x, y, z)|| = z2 + x2 + y2 = ||(x, y, z)||, and ||T (x, y, z)|| = 1

9
[(x+ 2y+ 2z)2 +

(2x+ y − 2z)2 + (2x− 2y + z)2] = x2 + y2 + z2 = ||(x, y, z)||.
• Thus, S and T both preserve norms, so by the above, they are isometries.

(c) Show that isometries are one-to-one.

• Suppose T is an isometry. If v ∈ ker(T ) then ||v|| = ||T (v)|| = 0, so v = 0 by [I3]. Thus T is
one-to-one.

(d) Show that isometries preserve orthogonal and orthonormal sets.

• Suppose T is an isometry. If 〈v,w〉 = 0 then 〈Tv, Tw〉 = 0.

• Thus, if {v1,v2, . . . } is an orthogonal set, then {T (v1), T (v2), . . . } is also orthogonal.

• Furthermore, since ||v|| = ||T (v)||, T also preserves orthonormal sets.

(e) Suppose T ∗ exists. Prove that T is an isometry if and only if T ∗T is the identity transformation.

• Observe that 〈v,w〉 − 〈Tv, Tw〉 = 〈v,w〉 − 〈v, T ∗Tw〉 = 〈v, (I − T ∗T )w〉.
• Thus, setting v = (I−T ∗T )w shows that the left-hand side is identically zero if and only if (I−T ∗T )w
is identically zero, if and only if T ∗T = I.

(f) We say that a matrix A ∈ Mn×n(F ) is unitary if A−1 = A∗. Show that the isometries of Fn (with its
usual inner product) are precisely those maps given by left-multiplication by a unitary matrix.

• This is simply the matrix version of (e): the isometries are the linear transformations with A∗A = In,
and A∗A = In is equivalent to saying that A−1 = A∗.

Remark: Notice that A ∈Mn×n(C) is unitary if and only if the columns of A are an orthonormal basis of C.
Thus, the result of part (f) can equivalently be thought of as saying that the distance-preserving maps
on Cn (or Rn) are simply changes of basis from one orthonormal basis (the columns of A) to another
(the standard basis).

7. [Challenge] The goal of this problem is to give an example of an inner product space that has no orthonormal
basis. Let V = `2(R) be the vector space of in�nite real sequences {ai}i≥1 = (a1, a2, . . . ) such that

∑∞
i=1 a

2
i

is �nite, under componentwise addition and scalar multiplication.

(a) Show that the pairing 〈{ai}i≥1, {bi}i≥1〉 =
∑∞

i=1 aibi is an inner product on V . (Make sure to justify
why this sum converges.)

• First, we must justify why the pairing is well de�ned: starting with the Cauchy-Schwarz inequality

(
∑n

i=1 aibi)
2 ≤

∑n
i=1 a

2
i ·
∑n

i=1 b
2
i , if we take the limit as n → ∞, then we obtain (

∑∞
i=1 aibi)

2 ≤∑∞
i=1 a

2
i ·
∑∞

i=1 b
2
i . But the right-hand side is �nite by the assumption that {ai}i≥1 and {bi}i≥1 are

elements of V , and so this means |
∑∞

i=1 aibi| is �nite (i.e., the sum converges).

• Now we just verify the three parts of the de�nition of an inner product. Let v = {ai}i≥1, v′ =
{a′i}i≥1, w = {bi}i≥1.

• [I1]: We have 〈v + αv′,w〉 =
∑∞

i=1(ai + αa′i)bi =
∑∞

i=1 aibi + α
∑∞

i=1 a
′
ibi = 〈v,w〉+ α 〈v′,w〉.

• [I2]: We have 〈w,v〉 =
∑∞

i=1 biai =
∑∞

i=1 aibi = 〈v,w〉.
• [I3]: We have 〈v,v〉 =

∑∞
i=1 a

2
i which is a sum of squares hence always nonnegative, and it is zero

only when all ai = 0, which is to say, when v = 0.
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(b) Let vi ∈ V be the sequence with a 1 in the ith component and 0s elsewhere. Show that the set
S = {v1,v2, . . . ,vn, . . . } is an orthonormal set in V and that the only vector w orthogonal to all of the
vi is the zero vector. Deduce that S is a maximal orthonormal set of V that is not a basis of V .

• It is obvious that S is orthonormal, since 〈vi,vj〉 = 0 for i 6= j and ||vi|| = 1 for all i.

• If w = {bi}i≥1, then 〈w,vi〉 = bi since the only term that survives in the sum is bi · 1 in the ith
term. So if 〈w,vi〉 = 0 for all i, then each bi = 0 so that w = 0.

• This means that S is a maximal orthonormal subset of V , since it is orthonormal and there are no
vectors that could be added to it to preserve orthonormality (since the only vector orthogonal to all
of S is the zero vector, by the above).

• On the other hand, S is not a basis of V , since for example the vector {1/2i}i≥1, which is in V since∑∞
i=1(1/2

i)2 = 1/3 is �nite, cannot be written as a �nite linear combination of the vectors in S.

Part (b) shows that Gram-Schmidt does not necessarily construct an orthonormal basis of V . In fact, V has
no orthonormal basis at all.

(c) Suppose V has an orthonormal basis {ei}i∈I for some indexing set I (which is necessarily in�nite), and
choose a countably in�nite subset e1, e2, . . . , en, . . . . Show that the sum v =

∑∞
k=1 2

−kek is a well-
de�ned vector in V that cannot be written as a (�nite) linear combination of the basis {ei}i∈I . [Hint:

Show that ||v||2 = limn→∞
∣∣∣∣∑n

k=1 2
−kek

∣∣∣∣2 is �nite.]

• We need to show that the sum for v converges to a vector in V . Clearly, since the vectors ei in the
sum all have length 1, each of their coordinates is at most 1, so the ith coordinate of

∑∞
k=1 2

−kek is
at most

∑∞
k=1 2

−k = 1. So the coordinates of the sum certainly all converge to a �nite value.

• Furthermore, the sum is in fact in V : since the vectors ei are orthonormal, we have ||v||2 =

limn→∞
∣∣∣∣∑n

k=1 2
−kek

∣∣∣∣2 = limn→∞
∑n

k=1 2
−2k = limn→∞

1

3
(1 − 1/2−2n) =

1

3
, so in fact ||v||2

is �nite and so v is in V .

• However, we claim that v cannot be written as a �nite linear combination of the basis elements ei.

• To see this, �rst note that since {ei}i∈I is an orthonormal basis of V , the the inner product 〈v, ei〉
gives the coe�cient of ei in the decomposition of v. But since v =

∑∞
k=1 2

−kek, we see that
〈v, ek〉 = 2−k is nonzero for in�nitely many of the basis vectors ek. This precludes the possibility
that v is a �nite linear combination of the basis elements ei, which is a contradiction since {ei}i∈I
was assumed to be a basis.

Remark: The point here is that because our de�nition of span and basis only allows us to use �nite linear
combinations, these de�nitions are not well suited to handle in�nite-dimensional spaces like `2(R). How-
ever, it is possible (by exploiting the fact that `2 is a topologically-complete metric space) to deal with
these issues and de�ne a �Schauder basis� that allows the use of in�nite sums, which amounts to viewing
`2 as a Hilbert space.
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