
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2025 ∼ Homework 6, due Fri Feb 21st.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Assume that V is �nite-dimensional over the �eld F , the bases α, β, γ are ordered, T is linear, and 〈·, ·〉 is an
inner product on V . Identify each of the following statements as true or false:

(a) If T : V → V is an isomorphism, then [T ]ββ = Q[T ]ααQ
−1 where Q = [T ]βα.

(b) For any T : V → V , there always exists an invertible matrix Q such that [T ]ββ = Q[T ]ααQ
−1.

(c) For any T : V → V , if P = [I]γβ , then it is true that [T ]γγ = P [T ]ββP
−1.

(d) An inner product is linear in each of its components.

(e) There is exactly one inner product on Rn.
(f) In any inner product space, 〈w,v〉 = 〈v,w〉.
(g) In any inner product space, ||v +w|| ≥ ||v||+ ||w||.
(h) In any inner product space, if 〈v, 2v〉 = 0 then v = 0.

(i) In any inner product space, if 〈v,x〉 = 〈v,y〉 then x = y.

(j) In any inner product space, for a �xed w ∈ V , the map T : V → F with T (v) = 〈v,w〉 is linear.
(k) In any inner product space, for a �xed w ∈ V , the map T : V → F with T (v) = 〈w,v〉 is linear.
(l) The Cauchy-Schwarz inequality holds in every inner product space.

(m) The triangle inequality holds in real inner product spaces but not complex inner product spaces.

2. Suppose V = P3(R), with standard basis β = {1, x, x2, x3}, and let T : V → V be the linear transformation
with T (1) = 1− x+ x2 − x3, T (x) = 2x− x3, and T (x2) = 3 + x− x3, and T (x3) = 1− x2.

(a) Find [T ]ββ .

Now let γ be the ordered basis γ = {x3, x2, x+ 1, x}.
(b) Find the change-of-basis matrix Q = [I]γβ and its inverse.

(c) For v = 2− x− 2x2 + x3, compute [v]β , [v]γ , and verify that [v]γ = Q[v]β .

(d) Find [T ]γβ , [T ]
β
γ , and [T ]γγ .

3. For each of the following pairings, determine (with brief justi�cation) whether or not it is an inner product
on the given vector space:

(a) The pairing 〈A,B〉 = tr(A+B) on M2×2(R).
(b) The pairing 〈(a, b), (c, d)〉 = 5ac+ 3bc+ 3ad+ 4bd on R2.

(c) The pairing 〈(a, b), (c, d)〉 = 5ac+ 3bc+ 3ad+ 4bd on C2.

(d) The pairing 〈(a, b), (c, d)〉 = ac on R2.

(e) The pairing 〈f, g〉 =
´ 1
0
f ′(x)g(x) dx on C[0, 1].

4. For each pair of vectors v,w in the given inner product space, compute 〈v,w〉, ||v||, ||w||, and ||v +w||, and
verify the Cauchy-Schwarz and triangle inequalities for v and w:

(a) v = (1, 2, 2, 4) and w = (4, 1, 4, 4) in R4 with the standard inner product.

(b) v = (i,−i, 1 + i) and w = (2− i, 4,−2i) in C3 with the standard inner product.

(c) v = et and w = e2t in C[0, 1] with the inner product 〈f, g〉 =
´ 1
0
f(t)g(t) dt.
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Part II: Solve the following problems. Justify all answers with rigorous, clear explanations.

5. Suppose that V is a �nite-dimensional vector space and T : V → V is linear.

(a) Suppose there exists a basis β of V such that [T ]ββ is a diagonal matrix whose diagonal entries are all 1s

and 0s. Show that T is a projection map (i.e., that T 2 = T ).

(b) Conversely, suppose that T is a projection map. Show that there exists a basis β of V such that

[T ]ββ is a diagonal matrix whose diagonal entries are all 1s and 0s. [Hint: As shown on homework 4,
V = ker(T )⊕ im(T ); take β be a basis of ker(T ) followed by a basis of im(T ).]

6. Let V be an inner product space.

(a) If 〈·, ·〉1 and 〈·, ·〉2 are two inner products on V , show that 〈·, ·〉3 = 〈·, ·〉1 + 〈·, ·〉2 is also an inner product
on V , where 〈v,w〉3 = 〈v,w〉1 + 〈v,w〉2.

(b) If 〈·, ·〉1 is an inner product on V and c is a positive real number, show that 〈·, ·〉3 = c 〈·, ·〉1 is also an
inner product on V , where 〈v,w〉3 = c 〈v,w〉1.

(c) Does the collection of inner products on V form a vector space under the natural addition and scalar
multiplication described above? Explain why or why not.

7. Prove the following inequalities:

(a) Prove that (a1 + a2 + · · ·+ an) · (
1

a1
+

1

a2
+ · · ·+ 1

an
) ≥ n2 for any positive real numbers a1, a2, . . . , an,

with equality if and only if all of the ai are equal.

(b) If a, b, c, d are real numbers with a2 + b2 + c2 + d2 ≤ 5, show that a+ 2b+ 3c+ 4d ≤ 5
√
6.

(c) Prove Nesbitt's inequality: for any positive real numbers a, b, c it is true that
a

b+ c
+

b

a+ c
+

c

a+ b
≥ 3

2
.

[Hint: Apply Cauchy-Schwarz to (
√
a+ b,

√
b+ c,

√
c+ a) and (1/

√
a+ b, 1/

√
b+ c, 1/

√
c+ a).]

(d) Prove the following generalization of Cauchy-Schwarz: if 〈·, ·〉 is an inner product on the vector space V

then
[∑n

j=1 〈vj ,wj〉
]2
≤

[∑n
j=1 〈vj ,vj〉

]
·
[∑n

j=1 〈wj ,wj〉
]
for any vectors {v1, . . . ,vn} and {w1, . . . ,wn}

in V . [Hint: Apply Cauchy-Schwarz to the inner product space Ṽ of n-tuples of elements of V .]

8. [Challenge] Let N be a positive integer and suppose we are given a set SP of N points and a set SL of N
lines in the Euclidean plane. An �incidence� is de�ned to be a pair (P,L) with P ∈ SP , L ∈ SL, and where
the point P lies on the line L. If I represents the total number of incidences, we have an obvious estimate
I ≤ N2; the goal of this problem is to prove a substantially better estimate of I ≤ N3/2 +N .

(a) Show that I =
∑
P∈SP

∑
L∈SL

δP,L where δP,L = 1 if P lies on L and 0 otherwise.

(b) For any �xed lines L1 6= L2, show that
∑
P∈SP

δP,L1
δP,L2

≤ 1.

(c) Show that
∑
P∈SP

(
∑
L∈SL

δP,L)
2 ≤ I+(N2−N). [Hint: Write (

∑
L∈SL

δP,L)
2 = (

∑
L1∈SL

δP,L1
)(
∑
L2∈SL

δP,L2
)

and then split apart into the terms where L1 = L2 and where L1 6= L2.]

(d) Show that I2 ≤ IN +N(N2 −N) and deduce that I ≤ N3/2 +N . [Hint: Use Cauchy-Schwarz on the
outer sum in (a).]

Remark: This technique as used in algebraic combinatorics is often called the �L2 method�, and there
are many open questions related to this one seeking optimal estimates and constructions for point-line
incidences.
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