E. Dummit’s Math 4571 ~ Advanced Linear Algebra, Spring 2025 ~ Homework 5 Solutions

1. Assume that the vector spaces U, V, W are finite-dimensional over the field F, the bases «, 3,7, d are ordered,
and that S, T are linear transformations. Identify each of the following statements as true or false:

(a)

(b)

(c)

The space L(V, W) of all linear transformations from V to W has dimension dim V" - dim W.

. : since L£(V, W) is isomorphic to0 Mim(v)xdim(w)(F), their dimensions are also equal.
If A is an m X n matrix of rank r, then the solution space of Ax = 0 has dimension r.

° : the solution space is the nullspace, which has dimension n — r if the matrix has rank r.
If A is an m x n matrix and the system Ax = 0 has infinitely many solutions, then rank(A) < n.

° : in this case the nullspace must have dimension greater than 0, so by the nullity-rank theorem
that means the rank must be less than n.

If A is an n X n matrix of rank n, then the equation Ax = 0 has only the solution x = 0.
. : by the nullity-rank theorem, this means that the nullspace of A has dimension 0.
If the columns of A are all scalar multiples of some vector v, then rank(A4) < 1.
. : the column space is spanned by v so its dimension (which is the rank of A) is at most 1.
If dim(V) = m and dim(W) = n, then [T} is an element of M, xn(F).
. : if dim(V) = m and dim(W) = n then [T} is an n x m matrix. (Try it!)
If [S)? = [T])2 then S =T.

° : the map associating a linear transformation with its associated matrix is an isomorphism,
so two linear transformations have the same associated matrix if and only if they are equal.

If [T)5 = [T]% then a = and 8 = 4.

° : for example if T is the identity map on R? and «, 3 are the standard basis and v, § are twice
the standard basis, the associated matrices are both the identity matrix but the bases are different.

IfS:V = Wand T:V — W then [S + T2 = [S]? + [T]2.
° : this is the correct rule for computing the matrix associated to a sum.
fT:V—Wandv eV, then [T]3[v]s = [TV]a.

. : the correct formula is [T13[v], = [T'V]s-
IfS:V = WandT:U—V, then [ST]}, = [S]}[T]5.

(e [e3%

° : this is the correct rule for computing the matrix associated to a composition.
If T:V — V has an inverse T, then [T‘l]g = ([T]g)_l.

. : the correct formula is [T~ = ([T]})~", since [T]5[T]} = [I]g =1I,.
If T:V — V has an inverse T~', then for any v € V, [T~ 'v], = ([T]2)7*[v].

e [Truel: we have ((115) " [v]g = [T ']}[v]s = [T~ 'v], by the composition formula.
IfT:V -V and [T]g is the identity matrix, then 7" must be the identity transformation.

o : for example, if T is the doubling map and -y is obtained by doubling the vectors in 3, then
[T]g is the identity matrix but 7' is not the identity map.

If 7:V — V and [T]} is the zero matrix, then 7' must be the zero transformation.

. : if [T} is the zero matrix then T(f;) = 0 for every vector 3; € 8. Then since T is zero on a
basis, it is zero on all of V.




2. For each linear transformation 7" and given bases § and ~, find [T]g:

(a) T:C? — C3given by T'(a,b) = (a — b,b — 2a, 3b), with 8 = {(1,0),(0,1)},v = {(1,0,0),(0,1,0),(0,0,1)}.

0
1 -1
e We have 7'(1,0) = (1,-2,0) and T(0,1) = (~1,1,3) so the matrix is [T]} =| | -2 1

(b) The trace map from Msy3(R) — R with g = { [ (1)

0
0
.WehaveT(H 8})_1,T({8 ﬂ)—O,T({

e So the matrix is [T]; =|[ 1 0 0 5 ]|

(c) T :Q* — P4(Q) given by T(a,b,c,d) = a+ (a+b)x + (a + 3¢c)x? + (2a + d)z* + (b + 5¢ + d)x?, with 8
the standard basis and v = {2?, 2%, 2%, z,1}.

e We have 7(1,0,0,0) = 1 + z + 2% + 223, 7(0,1,0,0) = z + 2%, 7(0,0,1,0) = 32? + 5z*, and
2 0 01
1 0 3 0
7(0,0,0,1) = 2* +z*. Thus, [T} =| | 0 1 5 1
11 0 0
1 0 0 O
. 1 2 . 1 0 01 0 0 0
(d)T.MQXQ(R)—>M2X2(R)g1venbyT(A)—[3 4]AW1thB ¥ {{O 0},[0 0}7[1 0],[0
1 0 1 0 [0 1 0 1 0 0 20
oWehaveT([OO})—[?)O],T(00})—{03],T([1O})—[40],and
[1 0 2 0
00], [0 2 o llo1 o0 2
T([o 1})[0 4}Thus’mﬂ 304 0
03 0 4

e) The matrix [T} associated to the linear transformation T : P3(R) — P4(R) with P(p) = 2?p’(x), where
B

B={1—-2,1—221—2%22+23} and v = {1, 2,22 23, 2*}.

e Since T(1 —z) = —22, T(1 — 2?) = =223, T(1 — 23) = -3z, T(2? + 23) = 223 + 3%, the matrix is

o 0 0 O
0o 0 0 O
-1 0 0 0
0o -2 0 2
0o 0 -3 3

(f) The projection map (see problem 8 of homework 4) on R? that maps the vectors (1,2,1) and (0, —3,1)
to themselves and sends (1,1, 1) to the zero vector, with 8 =~ = {(1,2,1),(0,—-3,1),(1,1,1)}.

e We have T(1,2,1) = (1,2,1), T(0,—3,1) = (0, —3,1), and T(1,1,1) = (0,0,0).
100

e So the matrix is simply [T]; =| | 0 1 0
0 0 0

(g) The same map as in part (f), but relative to the standard basis for R3.

e One approach is to compute the action of T' on the standard basis directly. Another approach is to
use the change-of-basis formula: if o is the standard basis and 3 is the basis from (f), then @ = [I]§ =

1 0 1 ~4 1 3 —4 1 3
2 -3 1 |so[[Jf=Q'=|-1 0 1 |.Then[T]3=Q[IQ '=|| -5 2 3
1 1 1 5 -1 -3 -5 1 4




3. Let T : P3(R) — P4(R) be given by T'(p) = 22p” ().

(a) With the bases a = {1,x,2%, 23} and v = {1, z, 2%, 23, 2*}, find [T]).

e We have T'(1) = 0, T(x) = 0, T(2?) = 222, and T(23) = 623, so [T]), =

o O o oo
o O o oo
S O N OO
O OO OO

(b) If g(z) = 1 — 2% + 223, compute [q], and [T'(q)], and verify that [T'(q)], = [T]2[d]a-

0
L 0
e We have [q], = 1 and T(q) = —222+1223,50 [T(¢)], = | —2 |. Indeed, [T'(q)], = [T]2[d)a-
12
2 0

Notice that T' = SU where U : P3(R) — P;(R) has U(p) = p”(x) and S : P(R) — P4(R) has S(p) = 2%p(z).
(c) With 8 = {1,z}, compute the associated matrices [S]}, and ]2 and then verify that [T]) = [S]Z[U]g

e Since S(1) = 2? and S(z) = 2° we have [S]} =

OO = OO
O = O OO

U
] , and likewise since U(1) =0, U(x) = 0,
0
6

U(2?) =2, and U(2?) = 6z, we see [U]? = [ 8 8 (2) } . Then [T]2 = [S]g[U]g as claimed.

(d) Which of S, T, and U are onto? One-to-one? Isomorphisms?

e The map U is onto (since its image is all of P;(R)), but S and T are not onto.

e Also, S is one-to-one, since its kernel is trivial, but U and T both have nonzero elements in their
kernels, so they are not one-to-one.

e Since none of the maps is both one-to-one and onto, none of them are isomorphisms.

4. Let F be a field and n > 2 be an integer. Recall that we say two matrices A and B are similar if there exists
an invertible matrix Q with B = Q1AQ.

(a) Show that if A and B are similar matrices in M,,x,(F'), then det(A) = det(B) and tr(A) = tr(B). [Hint:
You may use the fact that tr(CD) = tr(DC).]

o If B=Q 'AQ, then det(B) = det(Q1AQ) = det(Q ') det(A) det(Q) = #@det(A) det(Q) =
det(A).

e Likewise, using the property in the hint with C = Q! and D = AQ, we see tr(B) = tr(Q tAQ) =
tr(AQQ 1) = tr(A).
(b) Show that “being similar” is an equivalence relation on M, (F).

o Reflexive: Every matrix is similar to itself, since A = I, 1AI,.

e Symmetric: If A is similar to B, so that B = Q71 AQ, then A = QBQ™' = (Q~1)"'BQ~!, so B is
similar to A.

e Transitive: If A is similar to B and B is similar to C, say with A = Q7 'BQ and B = R'CR, then
A=R1'Q'CQR = (QR)"'C(QR), so A is similar to C.

5. Let V be a vector space and T : V' — V be linear.



(a) If V is finite-dimensional and ker(T") Nim(7") = {0}, prove in fact that V' = ker(T") @ im(T"). [Hint: Use
problem 4 from homework 3.]
e Let = {vy,...,v,} be a basis for ker(T") and v = {w1,..., Wy, } be a basis for im(T).
e Since ker(T) Nim(T) = {0}, by problem 4(a) of homework 3, we see that the union U~ is a basis
for ker(T) + im(T).
e But then by the nullity-rank theorem, ker(T) + im(7T) has dimension m + n = dim(ker T') +
dim(im 7T") = dim(V'), and so ker(T) 4+ im(T") = V.
e This means V = ker(T') & im(7), as claimed.
(b) Show that the result of (a) is not necessarily true if V' is infinite-dimensional.

e There are various possible counterexamples.

e One possibility is the right-shift map R(a1,as9,as,...) = (0,a1,as2,as,...) whose kernel is zero but
which is not onto: so ker(R) Nim(R) = {0} but V # ker(R) + im(R).

e Another is the antiderivative map on polynomials: A(p) = fOT p(t) dt. Again, the kernel is zero but
the map is not onto (since the image contains no nonzero constants).

(¢) If V is finite-dimensional and V' = ker(T') 4+ im(T), prove in fact that V = ker(T) @ im(T).

e Let 8= {vy,...,v,} be a basis for ker(T") and v = {w1,...,wy,, } be a basis for im(T).

e Since V' = ker(T")+im(7T) has dimension dim(V') = dim(ker T')+dim(im T") = m+n, since U~ spans
V it must be linearly independent. Then by problem 4(b) of homework 3, we see that ker(7")Nim(7T") =
{0}.

e This means by problem 4(a) of homework 3, we see that the union U+~ is a basis for ker(T") +im(T).

e This means V = ker(T) @ im(T), as claimed.

(d) Show that the result of (c) is not necessarily true if V' is infinite-dimensional.

e There are various possible counterexamples.

e One possibility is the left-shift map L(aq,as9,as,...) = (a2,as,...) whose kernel is the sequences
(a1,0,0,...) but which is also onto: so V = ker(T") 4+ im(7T") but ker(7") Nim(T) # {0}.

e Another is the derivative map on polynomials: A(p) = p’. Again, the kernel is nonzero but the map
is onto.

6. Let F be a field and d be a positive integer.

(a) Show that any polynomial in P;(F') with more than d distinct roots must be the zero polynomial. [Hint:
Use the factor theorem.]

Suppose p(z) is a polynomial of degree at most d with d + 1 distinct roots r1,...7r411.

By the factor theorem, p(x) is divisible by @ —rq, say p(x) = (x —r1)p1(x) where p; has degree d — 1.
e Then since 0 = p(r2) = (r2 — r1)p1(r2) we must have py divisible by & —ra, so p1(z) = (x — r2)p2(z)
where ps has degree d — 2, meaning p(z) = (z — 1) (z — r2)p2(x).

TIterating this procedure (or by a trivial induction) shows that p(z) = (x—r1)(z—r2) -+ (x—rq)pa(z)
for some polynomial py(z) of degree 0. But setting x = rq41 shows that pg(rqsy1) = 0 so since pq is
constant, it must be zero. Then p(x) = 0 is the zero polynomial.

Now let ag,ay,...,aq be distinct elements of F and consider the linear transformation 7' : Py(F) — Fa+!
given by T'(p) = (p(ag),p(a1),...,p(aq)).
(b) Show that ker(T") = {0} and deduce that 7" is an isomorphism.
o If p is in ker(T"), then p(ag) = p(a1) = --- = p(aqg) = 0, meaning that p has d + 1 roots. Thus, by
(a), p must be the zero polynomial. Thus ker(7T") = {0} as desired.
e Then by the nullity-rank theorem, we have dim(im7T) = d 4+ 1 = dim(F9*1), so T is also onto, and

is therefore an isomorphism.

(c) Conclude that, for any list of d+ 1 points (ag, bp), - . ., (aq, bg) with distinct first coordinates, there exists
a unique polynomial of degree at most d having the property that p(a;) = b; for each 0 <i < d.



e This is (ultimately) just a restatement of the fact that 7" is an isomorphism from (b): since T is
onto, there is a polynomial p(z) in Py(F) with T(p) = (bg, b1, ...,bq), which is the same as saying
that p(ao) = b()7 ey p(ad) = bd.

e Furthermore, since T' is one-to-one, there is only one such polynomial.

7. [Challenge] The goal of this problem is to discuss dual vector spaces. If V' is an F-vector space, its dual space
V* is the set of F'-valued linear transformations 7' : V' — F. Observe that V* is a vector space under pointwise
addition and scalar multiplication.

If B = {e;}; is a basis of V, its associated dual set is the set §* = {el}; where ef : V — F is defined by
ef(e;) =1 and e} (e;) = 0 for ¢ # j. (In other words, e} is the linear transformation that sends e; to 1 and all
of the other basis vectors in 3 to 0.)

(a) Show that the dual set 8* is linearly independent.
e Suppose we have a linear dependence aje] + agel + --- + ane), = 0, meaning that this function
aie] + azes + - - + ape), evaluates to zero on every vector in V.
e In particular, evaluating this function on the vector e; yields the coefficient a;.

(b) If V is finite-dimensional, let f € V*. Show that f =), f(e;)e;. Deduce that the dual set 8* is a basis
of V* and that dim(V*) = dim(V). [Hint: Show f agrees with the sum on each e; ]
o Let g=>", f(ej)e;. Then g(e;) =[>_, f(ei)e;](e;) =, f(e;) - e;(e;), but e} (e;) = 0 except when
i = j. So the sum reduces just to the term where i = j: namely, g(e;) = f(e;) - €] (e;) = f(e;).
e Therefore, we see that g and f agree on each basis vector e;, so since a linear transformation is
characterized by its values on a basis, g and f are equal as functions.
e The second part follows immediately, since it implies that the {e}}; span V*, so by part (a), they

are a basis for V*. For the last part we simply observe that there are the same number of e} as e;,
so dim(V*) = dim(V).

Part (b) shows that when V is finite-dimensional, the association {e;}; — {e}}; extends to an isomorphism of
V with V*. However, this isomorphism depends on a choice of a specific basis for V. Iterating this map shows
that V is also isomorphic with its double-dual V**: interestingly, however, there exists a natural isomorphism
of V' with V** that does not require a specific choice of basis.

(¢) For v € V, define the “evaluation-at-v map” v : V* — F by setting v(f) = f(v) for every f € V*: then
¥ is an element of V**. When V is finite-dimensional, show that the map ¢ : V — V** with p(v) =¥
is an isomorphism. [Hint: Show ¢ is linear and one-to-one.]

e First, ¢ is linear: for v,w € V and f € V* we have (v + aw)(f) = f(v+aw) = f(v) + af(w) =
e(v)(f) + ap(w)(f).

e Second, ¢ is one-to-one: suppose v € V is nonzero. Then we may extend it to a basis § and take
f 'V — F to be the linear transformation mapping v to 1 and the rest of 8 to 0: this means
f(v) =1 and thus v(f) = 1, meaning that o(v)(f) = 1, so ¢(¥) is not zero.

e Finally, since dim(V') = dim(V**), since ¢ is one-to-one and linear, it is an isomorphism.

Essentially all of the results of (b) and (c) fail when V' is infinite-dimensional.

(d) For V = F|x] with basis 8 = {1,x,22,23,...}, show that the linear transformation T with T'(p) = p(1)
is not in span(5*). Deduce that 8* is not a basis of V*.
e Note that the element e; of the dual set 8* evaluates to 1 on 2% and 0 on other powers of .

e The linear transformation 7', on the other hand, evaluates to 1 on all powers of . It therefore cannot
be written as a finite linear combination of the elements e, since any such element agpeg + - - - + ane};
evaluates to zero on z"*1.

e Therefore, T is not in span(8*), so f* does not span V* hence is not a basis.

Remark: In part (d), it can in fact be shown that the dimension of V* is uncountable, while the dimension
of V is countable, so V* and V are not even isomorphic.




