- 1. Assume that the vector spaces U, V, W are finite-dimensional over the field F, the bases $\alpha, \beta, \gamma, \delta$ are ordered, and that S, T are linear transformations. Identify each of the following statements as true or false:
 - (a) The space $\mathcal{L}(V, W)$ of all linear transformations from V to W has dimension dim $V \cdot \dim W$.
 - True : since $\mathcal{L}(V, W)$ is isomorphic to $M_{\dim(V) \times \dim(W)}(F)$, their dimensions are also equal.
 - (b) If A is an $m \times n$ matrix of rank r, then the solution space of $A\mathbf{x} = \mathbf{0}$ has dimension r.
 - False: the solution space is the nullspace, which has dimension n r if the matrix has rank r.
 - (c) If A is an $m \times n$ matrix and the system $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions, then rank(A) < n.
 - True: in this case the nullspace must have dimension greater than 0, so by the nullity-rank theorem that means the rank must be less than n.
 - (d) If A is an $n \times n$ matrix of rank n, then the equation $A\mathbf{x} = \mathbf{0}$ has only the solution $\mathbf{x} = \mathbf{0}$.
 - True : by the nullity-rank theorem, this means that the nullspace of A has dimension 0.
 - (e) If the columns of A are all scalar multiples of some vector \mathbf{v} , then rank $(A) \leq 1$.
 - True: the column space is spanned by \mathbf{v} so its dimension (which is the rank of A) is at most 1.
 - (f) If dim(V) = m and dim(W) = n, then $[T]^{\gamma}_{\beta}$ is an element of $M_{m \times n}(F)$.
 - False: if dim(V) = m and dim(W) = n then $[T]^{\gamma}_{\beta}$ is an $n \times m$ matrix. (Try it!)
 - (g) If $[S]^{\beta}_{\alpha} = [T]^{\beta}_{\alpha}$ then S = T.
 - True: the map associating a linear transformation with its associated matrix is an isomorphism, so two linear transformations have the same associated matrix if and only if they are equal.
 - (h) If $[T]^{\beta}_{\alpha} = [T]^{\delta}_{\gamma}$ then $\alpha = \gamma$ and $\beta = \delta$.
 - False: for example if T is the identity map on \mathbb{R}^2 and α, β are the standard basis and γ, δ are twice the standard basis, the associated matrices are both the identity matrix but the bases are different.
 - (i) If $S: V \to W$ and $T: V \to W$ then $[S+T]^{\beta}_{\alpha} = [S]^{\beta}_{\alpha} + [T]^{\beta}_{\alpha}$.

• True : this is the correct rule for computing the matrix associated to a sum.

- (j) If $T: V \to W$ and $\mathbf{v} \in V$, then $[T]^{\beta}_{\alpha}[\mathbf{v}]_{\beta} = [T\mathbf{v}]_{\alpha}$.
 - False: the correct formula is $[T]^{\beta}_{\alpha}[\mathbf{v}]_{\alpha} = [T\mathbf{v}]_{\beta}$.
- (k) If $S: V \to W$ and $T: U \to V$, then $[ST]^{\gamma}_{\alpha} = [S]^{\gamma}_{\beta}[T]^{\beta}_{\alpha}$.
 - True : this is the correct rule for computing the matrix associated to a composition.
- (l) If $T: V \to V$ has an inverse T^{-1} , then $[T^{-1}]^{\gamma}_{\beta} = ([T]^{\gamma}_{\beta})^{-1}$.
 - False: the correct formula is $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$, since $[T^{-1}]^{\beta}_{\gamma}[T]^{\gamma}_{\beta} = [I]^{\beta}_{\beta} = I_n$.
- (m) If $T: V \to V$ has an inverse T^{-1} , then for any $\mathbf{v} \in V$, $[T^{-1}\mathbf{v}]_{\gamma} = ([T]^{\beta}_{\gamma})^{-1}[\mathbf{v}]_{\beta}$.
 - True: we have $([T]_{\gamma}^{\beta})^{-1}[\mathbf{v}]_{\beta} = [T^{-1}]_{\beta}^{\gamma}[\mathbf{v}]_{\beta} = [T^{-1}\mathbf{v}]_{\gamma}$ by the composition formula.
- (n) If $T: V \to V$ and $[T]^{\gamma}_{\beta}$ is the identity matrix, then T must be the identity transformation.
 - False: for example, if T is the doubling map and γ is obtained by doubling the vectors in β , then $[T]^{\gamma}_{\beta}$ is the identity matrix but T is not the identity map.
- (o) If $T: V \to V$ and $[T]^{\gamma}_{\beta}$ is the zero matrix, then T must be the zero transformation.
 - True: if $[T]_{\beta}^{\gamma}$ is the zero matrix then $T(\beta_i) = \mathbf{0}$ for every vector $\beta_i \in \beta$. Then since T is zero on a basis, it is zero on all of V.

- 2. For each linear transformation T and given bases β and γ , find $[T]_{\beta}^{\gamma}$:
 - $\begin{array}{l} \text{(a)} \ T: \mathbb{C}^2 \to \mathbb{C}^3 \text{ given by } T(a,b) = \langle a-b,b-2a,3b \rangle, \text{ with } \beta = \{\langle 1,0 \rangle, \langle 0,1 \rangle \}, \gamma = \{\langle 1,0,0 \rangle, \langle 0,1,0 \rangle, \langle 0,0,1 \rangle \}.\\ \text{ We have } T(1,0) = \langle 1,-2,0 \rangle \text{ and } T(0,1) = \langle -1,1,3 \rangle \text{ so the matrix is } [T]_{\beta}^{\gamma} = \boxed{\begin{bmatrix} 1 & -1 \\ -2 & 1 \\ 0 & 3 \end{bmatrix}}.\\ \text{(b) The trace map from } M_{2\times2}(\mathbb{R}) \to \mathbb{R} \text{ with } \beta = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right\} \text{ and } \gamma = \{1\}.\\ \text{ We have } T(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}) = 1, T(\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}) = 0, T(\begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}) = 0, \text{ and } T(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}) = 5.\\ \text{ So the matrix is } [T]_{\beta}^{\gamma} = \boxed{\begin{bmatrix} 1 & 0 & 0 & 5 \end{bmatrix}}.\\ \text{(c) } T: \mathbb{Q}^4 \to P_4(\mathbb{Q}) \text{ given by } T(a,b,c,d) = a + (a + b)x + (a + 3c)x^2 + (2a + d)x^3 + (b + 5c + d)x^4, \text{ with } \beta \text{ the standard basis and } \gamma = \{x^3, x^2, x^4, x, 1\}.\\ \text{ We have } T(1,0,0,0) = 1 + x + x^2 + 2x^3, T(0,1,0,0) = x + x^4, T(0,0,1,0) = 3x^2 + 5x^4, \text{ and } T(0,0,0,1) = x^3 + x^4. \text{ Thus, } [T]_{\beta}^{\gamma} = \boxed{\begin{bmatrix} 2 & 0 & 0 & 1 \\ 1 & 0 & 3 & 0 \\ 0 & 1 & 5 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.\\ \text{(d) } T: M_{2\times2}(\mathbb{R}) \to M_{2\times2}(\mathbb{R}) \text{ given by } T(A) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 1 & 0 & 2 \\ 3 & 4 \end{bmatrix} A \text{ with } \beta = \gamma = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.\\ \text{ We have } T(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}) = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}, T(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}) = \begin{bmatrix} 2 & 0 \\ 4 & 0 \end{bmatrix}, \text{ and } T(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}) = \begin{bmatrix} 0 & 2 \\ 0 & 4 \end{bmatrix}. \text{ Thus, } [T]_{\beta}^{\gamma} = \boxed{\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 4 & 0 \end{bmatrix}}. \end{aligned}$
 - (e) The matrix $[T]^{\gamma}_{\beta}$ associated to the linear transformation $T: P_3(\mathbb{R}) \to P_4(\mathbb{R})$ with $P(p) = x^2 p'(x)$, where $\beta = \{1 x, 1 x^2, 1 x^3, x^2 + x^3\}$ and $\gamma = \{1, x, x^2, x^3, x^4\}$.

• Since $T(1-x) = -x^2$, $T(1-x^2) = -2x^3$, $T(1-x^3) = -3x^4$, $T(x^2+x^3) = 2x^3 + 3x^4$, the matrix is $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 2 \\ 0 & 0 & -3 & 3 \end{bmatrix}$

- (f) The projection map (see problem 8 of homework 4) on \mathbb{R}^3 that maps the vectors $\langle 1, 2, 1 \rangle$ and $\langle 0, -3, 1 \rangle$ to themselves and sends $\langle 1, 1, 1 \rangle$ to the zero vector, with $\beta = \gamma = \{ \langle 1, 2, 1 \rangle, \langle 0, -3, 1 \rangle, \langle 1, 1, 1 \rangle \}$.
 - We have $T(1,2,1) = \langle 1,2,1 \rangle$, $T(0,-3,1) = \langle 0,-3,1 \rangle$, and $T(1,1,1) = \langle 0,0,0 \rangle$.

• So the matrix is simply
$$[T]_{\beta}^{\gamma} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- (g) The same map as in part (f), but relative to the standard basis for \mathbb{R}^3 .
 - One approach is to compute the action of T on the standard basis directly. Another approach is to use the change-of-basis formula: if α is the standard basis and β is the basis from (f), then $Q = [I]^{\alpha}_{\beta} =$

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & -3 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ so } [I]_{\alpha}^{\beta} = Q^{-1} = \begin{bmatrix} -4 & 1 & 3 \\ -1 & 0 & 1 \\ 5 & -1 & -3 \end{bmatrix}. \text{ Then } [T]_{\alpha}^{\alpha} = Q[T]_{\beta}^{\beta}Q^{-1} = \begin{bmatrix} -4 & 1 & 3 \\ -5 & 2 & 3 \\ -5 & 1 & 4 \end{bmatrix}.$$

3. Let $T: P_3(\mathbb{R}) \to P_4(\mathbb{R})$ be given by $T(p) = x^2 p''(x)$.

(a) With the bases $\alpha = \{1, x, x^2, x^3\}$ and $\gamma = \{1, x, x^2, x^3, x^4\}$, find $[T]_{\alpha}^{\gamma}$.

(b) If $q(x) = 1 - x^2 + 2x^3$, compute $[q]_{\alpha}$ and $[T(q)]_{\gamma}$ and verify that $[T(q)]_{\gamma} = [T]_{\alpha}^{\gamma}[q]_{\alpha}$.

• We have
$$[q]_{\alpha} = \begin{bmatrix} 1\\ 0\\ -1\\ 2 \end{bmatrix}$$
 and $T(q) = -2x^2 + 12x^3$, so $[T(q)]_{\gamma} = \begin{bmatrix} 0\\ 0\\ -2\\ 12\\ 0 \end{bmatrix}$. Indeed, $[T(q)]_{\gamma} = [T]_{\alpha}^{\gamma}[q]_{\alpha}$.

Notice that T = SU where $U : P_3(\mathbb{R}) \to P_1(\mathbb{R})$ has U(p) = p''(x) and $S : P_1(\mathbb{R}) \to P_4(\mathbb{R})$ has $S(p) = x^2 p(x)$. (c) With $\beta = \{1, x\}$, compute the associated matrices $[S]^{\gamma}_{\beta}$, and $[U]^{\beta}_{\alpha}$ and then verify that $[T]^{\gamma}_{\alpha} = [S]^{\gamma}_{\beta}[U]^{\beta}_{\alpha}$.

• Since
$$S(1) = x^2$$
 and $S(x) = x^3$ we have $[S]^{\gamma}_{\beta} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$, and likewise since $U(1) = 0, U(x) = 0,$

- (d) Which of S, T, and U are onto? One-to-one? Isomorphisms?
 - The map U is onto (since its image is all of $P_1(\mathbb{R})$), but S and T are not onto.
 - Also, S is one-to-one, since its kernel is trivial, but U and T both have nonzero elements in their kernels, so they are not one-to-one.
 - Since none of the maps is both one-to-one and onto, none of them are isomorphisms.
- 4. Let F be a field and $n \ge 2$ be an integer. Recall that we say two matrices A and B are similar if there exists an invertible matrix Q with $B = Q^{-1}AQ$.
 - (a) Show that if A and B are similar matrices in $M_{n \times n}(F)$, then $\det(A) = \det(B)$ and $\operatorname{tr}(A) = \operatorname{tr}(B)$. [Hint: You may use the fact that $\operatorname{tr}(CD) = \operatorname{tr}(DC)$.]
 - If $B = Q^{-1}AQ$, then $\det(B) = \det(Q^{-1}AQ) = \det(Q^{-1})\det(A)\det(Q) = \frac{1}{\det(Q)}\det(A)\det(Q) = \det(A)\det(Q) = \det(A)\det(Q)$.
 - Likewise, using the property in the hint with $C = Q^{-1}$ and D = AQ, we see $tr(B) = tr(Q^{-1}AQ) = tr(AQQ^{-1}) = tr(A)$.
 - (b) Show that "being similar" is an equivalence relation on $M_{n \times n}(F)$.
 - Reflexive: Every matrix is similar to itself, since $A = I_n^{-1} A I_n$.
 - Symmetric: If A is similar to B, so that $B = Q^{-1}AQ$, then $A = QBQ^{-1} = (Q^{-1})^{-1}BQ^{-1}$, so B is similar to A.
 - Transitive: If A is similar to B and B is similar to C, say with $A = Q^{-1}BQ$ and $B = R^{-1}CR$, then $A = R^{-1}Q^{-1}CQR = (QR)^{-1}C(QR)$, so A is similar to C.

^{5.} Let V be a vector space and $T: V \to V$ be linear.

- (a) If V is finite-dimensional and $\ker(T) \cap \operatorname{im}(T) = \{0\}$, prove in fact that $V = \ker(T) \oplus \operatorname{im}(T)$. [Hint: Use problem 4 from homework 3.]
 - Let $\beta = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a basis for ker(T) and $\gamma = {\mathbf{w}_1, \dots, \mathbf{w}_m}$ be a basis for im(T).
 - Since $\ker(T) \cap \operatorname{im}(T) = \{\mathbf{0}\}$, by problem 4(a) of homework 3, we see that the union $\beta \cup \gamma$ is a basis for $\ker(T) + \operatorname{im}(T)$.
 - But then by the nullity-rank theorem, $\ker(T) + \operatorname{im}(T)$ has dimension $m + n = \dim(\ker T) + \dim(\operatorname{im} T) = \dim(V)$, and so $\ker(T) + \operatorname{im}(T) = V$.
 - This means $V = \ker(T) \oplus \operatorname{im}(T)$, as claimed.
- (b) Show that the result of (a) is not necessarily true if V is infinite-dimensional.
 - There are various possible counterexamples.
 - One possibility is the right-shift map $R(a_1, a_2, a_3, ...) = (0, a_1, a_2, a_3, ...)$ whose kernel is zero but which is not onto: so ker $(R) \cap im(R) = \{0\}$ but $V \neq ker(R) + im(R)$.
 - Another is the antiderivative map on polynomials: $A(p) = \int_0^x p(t) dt$. Again, the kernel is zero but the map is not onto (since the image contains no nonzero constants).
- (c) If V is finite-dimensional and $V = \ker(T) + \operatorname{im}(T)$, prove in fact that $V = \ker(T) \oplus \operatorname{im}(T)$.
 - Let $\beta = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a basis for ker(T) and $\gamma = {\mathbf{w}_1, \dots, \mathbf{w}_m}$ be a basis for im(T).
 - Since $V = \ker(T) + \operatorname{im}(T)$ has dimension $\dim(V) = \dim(\ker T) + \dim(\operatorname{im} T) = m + n$, since $\beta \cup \gamma$ spans V it must be linearly independent. Then by problem 4(b) of homework 3, we see that $\ker(T) \cap \operatorname{im}(T) = \{\mathbf{0}\}$.
 - This means by problem 4(a) of homework 3, we see that the union $\beta \cup \gamma$ is a basis for ker(T) + im(T).
 - This means $V = \ker(T) \oplus \operatorname{im}(T)$, as claimed.
- (d) Show that the result of (c) is not necessarily true if V is infinite-dimensional.
 - There are various possible counterexamples.
 - One possibility is the left-shift map $L(a_1, a_2, a_3, ...) = (a_2, a_3, ...)$ whose kernel is the sequences $(a_1, 0, 0, ...)$ but which is also onto: so $V = \ker(T) + \operatorname{im}(T)$ but $\ker(T) \cap \operatorname{im}(T) \neq \{\mathbf{0}\}$.
 - Another is the derivative map on polynomials: A(p) = p'. Again, the kernel is nonzero but the map is onto.
- 6. Let F be a field and d be a positive integer.
 - (a) Show that any polynomial in $P_d(F)$ with more than d distinct roots must be the zero polynomial. [Hint: Use the factor theorem.]
 - Suppose p(x) is a polynomial of degree at most d with d+1 distinct roots r_1, \ldots, r_{d+1} .
 - By the factor theorem, p(x) is divisible by $x r_1$, say $p(x) = (x r_1)p_1(x)$ where p_1 has degree d 1.
 - Then since $0 = p(r_2) = (r_2 r_1)p_1(r_2)$ we must have p_1 divisible by $x r_2$, so $p_1(x) = (x r_2)p_2(x)$ where p_2 has degree d 2, meaning $p(x) = (x r_1)(x r_2)p_2(x)$.
 - Iterating this procedure (or by a trivial induction) shows that $p(x) = (x r_1)(x r_2) \cdots (x r_d)p_d(x)$ for some polynomial $p_d(x)$ of degree 0. But setting $x = r_{d+1}$ shows that $p_d(r_{d+1}) = 0$ so since p_d is constant, it must be zero. Then p(x) = 0 is the zero polynomial.

Now let a_0, a_1, \ldots, a_d be distinct elements of F and consider the linear transformation $T: P_d(F) \to F^{d+1}$ given by $T(p) = (p(a_0), p(a_1), \ldots, p(a_d)).$

- (b) Show that $ker(T) = \{0\}$ and deduce that T is an isomorphism.
 - If p is in ker(T), then $p(a_0) = p(a_1) = \cdots = p(a_d) = 0$, meaning that p has d + 1 roots. Thus, by (a), p must be the zero polynomial. Thus ker(T) = $\{0\}$ as desired.
 - Then by the nullity-rank theorem, we have $\dim(\operatorname{im} T) = d + 1 = \dim(F^{d+1})$, so T is also onto, and is therefore an isomorphism.
- (c) Conclude that, for any list of d+1 points $(a_0, b_0), \ldots, (a_d, b_d)$ with distinct first coordinates, there exists a unique polynomial of degree at most d having the property that $p(a_i) = b_i$ for each $0 \le i \le d$.

- This is (ultimately) just a restatement of the fact that T is an isomorphism from (b): since T is onto, there is a polynomial p(x) in $P_d(F)$ with $T(p) = (b_0, b_1, \ldots, b_d)$, which is the same as saying that $p(a_0) = b_0, \ldots, p(a_d) = b_d$.
- Furthermore, since T is one-to-one, there is only one such polynomial.
- 7. [Challenge] The goal of this problem is to discuss dual vector spaces. If V is an F-vector space, its <u>dual space</u> V^* is the set of F-valued linear transformations $T: V \to F$. Observe that V^* is a vector space under pointwise addition and scalar multiplication.

If $\beta = {\mathbf{e}_i}_i$ is a basis of V, its associated <u>dual set</u> is the set $\beta^* = {e_i^*}_i$ where $e_i^* : V \to F$ is defined by $e_i^*(\mathbf{e}_i) = 1$ and $e_i^*(\mathbf{e}_j) = 0$ for $i \neq j$. (In other words, e_i^* is the linear transformation that sends \mathbf{e}_i to 1 and all of the other basis vectors in β to 0.)

- (a) Show that the dual set β^* is linearly independent.
 - Suppose we have a linear dependence $a_1e_i^* + a_2e_2^* + \cdots + a_ne_n^* = 0$, meaning that this function $a_1e_1^* + a_2e_2^* + \cdots + a_ne_n^*$ evaluates to zero on every vector in V.
 - In particular, evaluating this function on the vector \mathbf{e}_i yields the coefficient a_i .
- (b) If V is finite-dimensional, let $f \in V^*$. Show that $f = \sum_i f(\mathbf{e}_i)e_i^*$. Deduce that the dual set β^* is a basis of V^* and that $\dim(V^*) = \dim(V)$. [Hint: Show f agrees with the sum on each \mathbf{e}_i .]
 - Let $g = \sum_i f(\mathbf{e}_i)e_i^*$. Then $g(\mathbf{e}_j) = [\sum_i f(\mathbf{e}_i)e_i^*](\mathbf{e}_j) = \sum_i f(\mathbf{e}_i) \cdot e_i^*(\mathbf{e}_j)$, but $e_i^*(\mathbf{e}_j) = 0$ except when i = j. So the sum reduces just to the term where i = j: namely, $g(\mathbf{e}_j) = f(\mathbf{e}_j) \cdot e_i^*(\mathbf{e}_j) = f(\mathbf{e}_j)$.
 - Therefore, we see that g and f agree on each basis vector \mathbf{e}_j , so since a linear transformation is characterized by its values on a basis, g and f are equal as functions.
 - The second part follows immediately, since it implies that the $\{e_i^*\}_i$ span V^* , so by part (a), they are a basis for V^* . For the last part we simply observe that there are the same number of e_i^* as \mathbf{e}_i , so $\dim(V^*) = \dim(V)$.

Part (b) shows that when V is finite-dimensional, the association $\{\mathbf{e}_i\}_i \to \{e_i^*\}_i$ extends to an isomorphism of V with V^{*}. However, this isomorphism depends on a choice of a specific basis for V. Iterating this map shows that V is also isomorphic with its double-dual V^{**}: interestingly, however, there exists a natural isomorphism of V with V^{**} that does not require a specific choice of basis.

- (c) For $\mathbf{v} \in V$, define the "evaluation-at- \mathbf{v} map" $\hat{\mathbf{v}} : V^* \to F$ by setting $\hat{\mathbf{v}}(f) = f(\mathbf{v})$ for every $f \in V^*$: then $\hat{\mathbf{v}}$ is an element of V^{**} . When V is finite-dimensional, show that the map $\varphi : V \to V^{**}$ with $\varphi(\mathbf{v}) = \hat{\mathbf{v}}$ is an isomorphism. [Hint: Show φ is linear and one-to-one.]
 - First, φ is linear: for $\mathbf{v}, \mathbf{w} \in V$ and $f \in V^*$ we have $\varphi(\mathbf{v} + \alpha \mathbf{w})(f) = f(\mathbf{v} + \alpha \mathbf{w}) = f(\mathbf{v}) + \alpha f(\mathbf{w}) = \varphi(\mathbf{v})(f) + \alpha \varphi(\mathbf{w})(f)$.
 - Second, φ is one-to-one: suppose $\mathbf{v} \in V$ is nonzero. Then we may extend it to a basis β and take $f: V \to F$ to be the linear transformation mapping \mathbf{v} to 1 and the rest of β to 0: this means $f(\mathbf{v}) = 1$ and thus $\hat{\mathbf{v}}(f) = 1$, meaning that $\varphi(\hat{\mathbf{v}})(f) = 1$, so $\varphi(\hat{\mathbf{v}})$ is not zero.
 - Finally, since $\dim(V) = \dim(V^{**})$, since φ is one-to-one and linear, it is an isomorphism.

Essentially all of the results of (b) and (c) fail when V is infinite-dimensional.

- (d) For V = F[x] with basis $\beta = \{1, x, x^2, x^3, ...\}$, show that the linear transformation T with T(p) = p(1) is not in span (β^*) . Deduce that β^* is not a basis of V^* .
 - Note that the element e_i of the dual set β^* evaluates to 1 on x^i and 0 on other powers of x.
 - The linear transformation T, on the other hand, evaluates to 1 on all powers of x. It therefore cannot be written as a finite linear combination of the elements e_i^* , since any such element $a_0e_0^* + \cdots + a_ne_n^*$ evaluates to zero on x^{n+1} .
 - Therefore, T is not in span(β^*), so β^* does not span V^* hence is not a basis.

Remark: In part (d), it can in fact be shown that the dimension of V^* is uncountable, while the dimension of V is countable, so V^* and V are not even isomorphic.