E. Dummit’s Math 4571 ~ Advanced Linear Algebra, Spring 2025 ~ Homework 4 Solutions

1. Assume that V and W are arbitrary vector spaces, not necessarily finite-dimensional, over the scalar field F'.
Identify each of the following statements as true or false:

(a)

(b)

If T:V — W is a linear transformation, then 7(0y ) = Oy .

° : this is a property we proved about all linear transformations.
IfT:V — W has T(a+b) =T(a) + T(b) for every a,b € V then T is a linear transformation.
° : a linear transformation must also respect scalar multiplication. An explicit counterexample
is given by the complex conjugation map T : C — C with T(a + bi) = a — bi. This map respects
addition but not scalar multiplication, since T'(i - 1) = —i # i =14-T(1).

If T:V — W has T(ra) = rT'(a) for every r € F and every a € V then T is a linear transformation.

° : a linear transformation must also respect addition of vectors. An explicit counterexample
is given by the map T : C — C (with F' = R) with T'(a + 0i) = 0 and T'(a 4 bi) = a + bi for b # 0.
This map respects scaling by real constants, but not addition.

If T is a linear transformation such that 7'(v) = 0 implies v = 0, then T is one-to-one.
. : this is a result we established in class. In fact, it is an if-and-only if.
If T:V — V is a one-to-one linear transformation, then 7'(v) = 0 implies v = 0.
. : this is the converse of (d), and is also a result we established in class.
IfT:V — W is linear and dim(im(7)) = dim(W), then T is onto.
° : this is only true for finite-dimensional vector spaces.
If T:V — W is linear and S spans V, then T'(S) = {T'(s) : s € S} spans W.
. : we showed T'(S) is a spanning set, for im(7"), but if T is not onto then T'(S) cannot span W.
If T:V — W is linear and S is linearly independent in V', then T'(S) is a linearly independent in W.
) : for example, if T" is the zero map then S will never be linearly independent.
If T:V — W is linear and S is a basis for V, then T'(S) is a basis for W.

. : from (g) and (h), T'(S) need not be linearly independent nor span W.
For any vi,vy € V and any wi,ws € W, there exists a linear transformation 7" : V' — W such that
T(vi) =wy and T(va) = wa.
° : if vi, vy are linearly dependent, then the same dependence will hold between T'(vi) and
T(v2), so the values cannot be chosen arbitrarily.

There exists a linear transformation 7' : R® — R3 whose nullity is 2 and whose rank is 2.
° : by the nullity-rank theorem, the nullity plus the rank must be 5, but 2 + 2 = 4.
There exists a linear transformation 7 : R® — R3 whose nullity is 4 and whose rank is 1.

° : one such map is T'(a, b, ¢,d, e) = (a,0,0,0).
There exists a linear transformation 7 : R® — R3 whose nullity is 1 and whose rank is 4.
° : although the nullity-rank theorem does not pose any issues, the rank cannot be 4 because
the target space R? only has dimension 3.
If T:V — W is linear and for any w € W there is a unique v € V with T(v) = w, then T is an
isomorphism.
o : this statement is equivalent to saying that T has an inverse function 7= : W — V, which
is the same as saying that 7" is an isomorphism.
If V is isomorphic to W, then dim (V') = dim(W).
. : an isomorphism maps a basis of V' to a basis of W, so dim(V') = dim(W).




2. Calculate the following:

(a) If S = {(2,1,-1),(-1,2,3),(-2,3,5),(4,1,—3)}, find a subset of S that is a basis for span(S) in R3.

e We simply row-reduce the matrix whose columns are the vectors in S:

2 -1 -2 4 1 0 —1/5 9/5
1 2 3 1 |™M% o1 85 -—2/5
-1 3 5 -3 00 0 0

e Since the first and second columns are pivotal, we conclude that the vectors ’ (2,1,-1),(-1,2,3) ‘

are a basis for the column space, which is the same as span(.5).
(b) Extend the set S = {(1,2,1,1),(-1,2,2,2),(—2,1,2,2)} to a basis of Q*.

e We extend S to a spanning set, and then reduce the result to a basis, by appending the standard
basis to S.

e To do this, row-reduce the matrix whose columns are the vectors in S followed by the standard basis:

1 -1 =21 0 0 0 100 2 -2 0 3
2 2 1 01 0 O|rer |0 1 0 -3 4 0 -5
1 2 2 0010 001 2 -3 0 4
1 2 2 0 0 01 000 0 0 1 -1

e Since columns 1, 2, 3, and 6 are pivotal, we conclude that we may append the vector corresponding
to the 6th column of the original matrix, which is (0,0,1,0).

e Hence we obtain a basis ] (1,2,1,1),(-1,2,2,2),(-2,1,2,2),(0,0,1,0) \

3. For each map T : V' — W, determine whether or not 7T is a linear transformation from V to W, and if it is
not, identify at least one property that fails:

(a) V=W =R* T(a,b,c,d) = (a—b,b—c,c—d,d— a).
e This map because it is equivalent to left-multiplication by a 4 x 4 matrix.
(b) V=W =R? T(a,b) = (a,b?).

e This map because it does not respect addition or scalar multiplication.

(c)VWMzXQ(Q),T(A){l 2]AA{ 3 1}

2 2 -1 1
e This map : writing B = [ ; ; and C = 1 1 , we see that T(A; + cAy) =
B(Al + CAQ) - (Al + CAQ)O = (BAl - AlC) + C(BA2 - AQC) = T(Al) + CT(AQ)
(d) V=W =Clz], T(p(z)) = p(z*) — ap'(z).

e This map : one may check it directly, or observe that the maps T (p) = p(2?) and Ty (p) =
ap’(z) are both linear separately, hence their difference is also.

(e) V=W = Myx4(Fs), T(A) = Q L AQ, for a fixed 4 x 4 matrix Q.
e This map |is linear |} T(A; + cAs) = Q7' (A1 + ¢A2)Q = Q1 A,Q + cQ ™1 42Q = T(A,) + ¢T(Ay).
(f) V=W = Myxs(R), T(A) = A1QA, for a fixed 4 x 4 matrix Q.

e This map , and is not even defined unless A is invertible. It fails both [T1] and [T2].

3

4. For each map T': V — W, (i) show that T is a linear transformation, (ii) find bases for the kernel and image
of T, (iii) compute the nullity and rank of 7" and verify the conclusion of the nullity-rank theorem, and (iv)
identify whether T is one-to-one, onto, or an isomorphism.



(a) T:Q? — Q3 defined by T'(a,b) = (a + b,2a + 2b,a + b).

This map is equivalent to left-multiplication by a matrix so it is a linear transformation.
The kernel is the set of vectors (a,b) with T'(a,b) = (0,0,0), so we obtain the system a +b = 0,

2a 4+ 2b =0, a + b = 0 which clearly has the solution a = —b. Hence ker(7T') has basis | {(1,—1)} |

e Theimage is spanned by {T'(1,0),7(0,1)} = {(1,2,1),(1,2,1) } so we have an obvious basis | {(1,2,1)} |

The nullity is [ 1] and the rank is [ 1], and indeed 1+ 1 = 2 = dimg Q.

Since ker(T') is not zero T is , and since im(7") only has dimension 1, T is .

1 1

(b) T : Myws(R) — Maxa(R) defined by T(A) = [ b }A.

This map is left-multiplication by a matrix so it is a linear transformation.

SinceT([Z Z]):{Ziz Ziz}weseeker(T):[aa bb]withbasis {[ L O},[O

at+c b+d

Likewise, im(7T) = { [ a+c b+d

. . 1 0 0 1
}}whlchhasanaturalbams {{1 0]’{0 1}}

The nullity is | 2 | and the rank is , and indeed 2 4 2 = 4 = dimg(Max2(R)).

Since ker(T') is not zero T is , and since im(7") only has dimension 2, T' is .

(¢) T : P,(C) — P3(C) defined by T'(p) = zp(x) + p'(z).

We have T'(f +cg) = x(f +cg) + (f +¢cg) = (xf + ') +clxeg+¢') =T(f) + T (g), so T is linear.
The kernel is the set of polynomials a + bz + cz? with b= 0, a +2c =0, b = 0, ¢ = 0, which clearly
requires a = b = ¢ = 0. Thus, ker(T) = {0}, so the empty set | () | is a basis.

The image is spanned by {T'(1),T(z),T(2%)} = ’ {z,2? +1,2% + 2z} ‘ which is in fact a basis.
The nullity is [0] and the rank is [3], and indeed 0 + 3 = 3 = dimc(P»(C)).

Since ker(T) = 0, T is | one-to-one |, but since im(7") only has dimension 3, T is .

(d) T : P3(F3) — P4(F3) defined by T'(p) = 23p”(z). [Warning: Note that 3 = 0 in F3.]

We have T'(f + cg) = 22(f + cg)” = 22" + c(2g") = T(f) + ¢T'(g) so T is linear.
More explicitly, if p = ag + a1z + asx? + azx® then T(p) = 23(2as + 6a3z) = 2az2>.
The kernel is the set of polynomials p = ag+ a1z +as2? +azx® with T(p) = 0, which requires 2as = 0

hence as = 0. Thus, ker(7T') has a basis .

The image is clearly the set of multiples of 2 hence has a basis .
The nullity is | 3 | and the rank is , and indeed 3 + 1 =4 = dimy, (P3(F3)).

Since ker(T) # 0, T is , and since im(7T") only has dimension 1, T is .

5. Suppose that T : V — W is a linear transformation.

(a) If T is onto, show that dim(W) < dim(V).

If T is onto, then im7T = W, so dim(ker T") + dim(W) = dim(V'). Since dim(kerT") > 0, this means
dim(W) < dim(V).

(b) If T is one-to-one, show that 7" is an isomorphism from V' to im(T"), and deduce that dim(V) < dim(W).

For the first part, if T' is one-to-one, then T : V — im(7T) is a one-to-one map that is onto (by
definition of im7"), meaning it is an isomorphism.

For the second part, since T is an isomorphism from V to im(7"), we have dim(im7") = dim(V'). But
since im(7') is a subspace of W, we see that dim(im7") < dim(W), so dim(V) = dim(im7") < dim(W).




6. Suppose dim(V) = n and that T : V — V is a linear transformation with 72 = 0: in other words, that
T(T(v)) = 0 for every vector v € V.
(a) Show that im(7') is a subspace of ker(T).
e Suppose w is in im(7"). This means that there exists v with w = T'(v).
e Then T(w) = T(T(v)) = 0, meaning that w is in ker(7"). Thus, im(7T") C ker(7T') so it is a subspace.
(b) Show that dim(im(T)) < n/2.
e By part (a), im(7) is a subspace of ker(T'), so taking dimensions gives dim(im(7")) < dim(ker(7)).

e By the nullity-rank theorem, dim(im(7)) + dim(ker(7")) = n. Thus, 2dim(im(7")) < dim(im(7)) +
dim(ker(T)) = n, so dim(im(7)) < n/2.

7. Let F be a field and let V' be the vector space of infinite sequences {a,}n>1 = (a1, a2,a3,a4,...) of ele-
ments of F. Define the left-shift operator L : V' — V via L(ay,as,a3,a4,...) = (az,as,a4,as,...) and the
right-shift operator R : V — V via R(a1,az,as,a4,...) = (0,a1,a2,as,...).

(a) Show that L is a linear transformation that is onto but not one-to-one.
e We have L(aj+cby, ag+cba, ag+cbs, ag+cby, . ..) = (ag+cba, ag+cbs, ag+cby ...) = L(ay,az,as,...)+
cL(by,ba,bs,...) so L is linear.
e Also, L(0,a1,a9,as,...) = (a1,a2,as,...) so L is onto. But since ker(L) = {¢,0,0,0,...} is not
trivial, L is not one-to-one.
(b) Show that R is a linear transformation that is one-to-one but not onto.
o We have R(aj+cby, as+cbs, az+cbs, agtcby,...) = (0,a1+cby, as+cby, az+cbs,...) = R(ay,as,as,...)+
cR(b1,ba,bs,...) so R is linear.
e If R(ay,az,as,...) =0 then clearly a; = ay = a3 =--- =0, so R is one-to-one. But im(R) consists
of only the sequences which have first element zero, so R is not onto.

(c) Deduce that on infinite-dimensional vector spaces, the conditions of being one-to-one, being onto, and
being an isomorphism are not in general equivalent.

e This follows from (a) and (b), since L is one-to-one but not onto, while R is onto but not one-to-one,
and neither one is an isomorphism.

(d) Verify that L o R is the identity map on V, but that R o L is not the identity map on V.
e We have (L o R)(ay,a2,a3,a4,...) = L(0,a1,as,as,a4,...) = (a1,a2,a3,a4,...) so L o R is the
identity on every sequence hence on V.
e But (Ro L)(ay,as,as,aq,...) = R(ag,as,as,as,...) = (0,a2,as,a4,...), which is not equal to the
original vector whenever a; # 0. So R o L is not the identity map on V.

(e) Deduce that on infinite-dimensional vector spaces, a linear transformation with a left inverse or a right
inverse need not have a two-sided inverse.

e This follows from (d), since L has a right inverse (namely R) and R has a left inverse (namely L),
but neither L nor R has a two-sided inverse because they are not isomorphisms as noted in (c).

8. A linear transformation 7' : V — V such that T2 = T is called a projection map. The goal of this problem is
to give some other descriptions of projection maps.

(a) Suppose that T : V' — V has the property that there exists a subspace W such that im(7T) = W
and T is the identity map when restricted to W. Show that T is a projection map (it is called a
projection onto the subspace W).

e Let v € V. Then T(v) € im(T), and so T acts as the identity on T'(v), which is to say, T(T(v)) =
T(v). Since this holds for every vector v € V, this means T2 = T, so T is a projection map.

(b) Conversely, suppose T is a projection map. Show that T is a projection onto the subspace W = im(T).

e By definition we have im(7') = W. Also, for any w € W we have w = T'(v) for some v € V.
e Then since T is a projection map, T(w) = T?(v) = T(v) = w, so T acts as the identity on W.



(¢) Suppose that T is a projection map. Prove that V' = ker(T')®im (7). [Hint: Write v = [v—T'(v)]+T(v).]

To show that V = ker(T) @ im(T") we must show V =ker(T') + im(T) and ker(T") Nim(7") = {0}.
For the first part, following the hint observe that [v — T(v)] + T'(v). Then T(v — T(v)) = T(v) —
T?%(v) = 0, so we see v — T(v) € ker(T).

Since clearly T(v) € im(T"), we see v = [v —T'(v)] + T'(v) is the sum of an element of ker(7") and an
element of im(T"), whence V' = ker(T) + im(7T").

For the second part, suppose v is in ker(T) Nim(7T"). Then T'(v) = 0 and there exists some w in V
with T'(w) = v. But then v=T(w) =T(T(w)) =T(v) = 0.

Thus, ker(T) Nim(7T") = {0}, and so V = ker(T) @ im(7T) as claimed.

Remark: Projection maps are so named because they represent the geometric idea of projection. For ex-
ample, in the event that W = im(7") is one-dimensional, the corresponding projection map 7T represents
projecting onto that line.

9. [Challenge] The goal of this problem is to demonstrate some bizarre things one can do with infinite bases.

(a) Show that dimgR = dimg C. Deduce that there exists a Q-vector space isomorphism ¢ : C — R. [Hint:
Use the fact that finite-dimensional Q-vector spaces are countable.]

Let § = {v;}jes be a basis for R as a Q-vector space. Note that J must be infinite because any
finite-dimensional vector space over QQ is countable, whereas R is uncountable.

We claim that if we define i = {iv,},cs then S Uif is a basis for C as a Q-vector space.

To see S U if spans, if z = a + bi € C, then we may write a = a1vy + -+ + a,v, and b =
biwi+- - -+b,, W, for some v;,w; € 8. But then z = a+bi = a1vi+---+a,v,+b1iwi +- - -+ bniw,,
is in the span of S UiS.

To see S Uif is linearly independent, spans, if a;vy + -+« + a, vy, + b1iwy + -+ - + byiw,, = 0, then
the real and imaginary parts must both be zero. But independence of 5 and a1vy + -+ + apv, =
biwy + -+ bWy, =0 impliesay =---=a, =by =--- =b,, =

So BUS is a basis for C as a Q-vector space. This means dimg C = 2dimg R, but since the latter
dimension is infinite, it also equals dimg R by standard properties of infinite sets.

The existence of the vector space isomorphism then follows immediately, since spaces of equal di-
mension are isomorphic.

We will now use this isomorphism ¢ : C — R to define a different vector space structure on C. Intuitively,
the idea is to start with the set R as a vector space over itself, and then use the isomorphism ¢~ to relabel
the vectors as complex numbers, but keep the scalars as real numbers.

(b) Let V be the set of complex numbers with the addition operation z1®zs = 21+ 22 and scalar multiplication
defined as follows: for « € R and z € C, set a« ® z = ¢~ ayp(z)]. Show (V,4,®) is an R-vector space.

The axioms [V1]-[V4] only concern addition so they follow trivially from properties of complex
number addition. Note also that ¢ and ¢! are both additive, which is actually the only property
that we will need.

[V5]: We have a ® (80 2) = a © ¢~ [Bp(2)] = l[aso[ e = ¢ [aBe(2)]] = (aB) © 2
[V6]: We have (a+8) & 2 = g~ [(a + B)p(2)] = ¢~ fap()] + ¢ [Fp()] =a @2+ A =

[V7]: We have a © (z + w) = ¢~ Hap(z + w)] = ¢ 1[ o(2) + ap(w)] = ¢~ ap(2)] + ¢~ Hap(w)] =
a®z+adw.

[V8]: We have 1 ® z = ¢ H1p(2)] = ¢ p(2)] = 2.

(¢) Using the vector space structure defined in (b), show that dimg V = 1.

We show that the set {1} is a basis. Clearly it is linearly independent since 1 # 0.
To see it spans, observe that for any 2z € C, we have ¢(2) ® 1 = ¢ p(2)p(1)] = ¢ He(2)] = 2
because ¢(1) = 1. Therefore, every vector z € C is a scalar multiple of 1, so {1} spans V.

Remark: The point of (c¢) is that by changing the definition of scalar multiplication, we can make C into a
1-dimensional R-vector space. By doing a similar thing in the reverse order, we could even make R into
a 2-dimensional C-vector space.




