- 1. Assume that V and W are arbitrary vector spaces, not necessarily finite-dimensional, over the scalar field F. Identify each of the following statements as true or false:
 - (a) If $T: V \to W$ is a linear transformation, then $T(\mathbf{0}_V) = \mathbf{0}_W$.
 - True: this is a property we proved about all linear transformations.
 - (b) If $T: V \to W$ has $T(\mathbf{a} + \mathbf{b}) = T(\mathbf{a}) + T(\mathbf{b})$ for every $\mathbf{a}, \mathbf{b} \in V$ then T is a linear transformation.
 - False: a linear transformation must also respect scalar multiplication. An explicit counterexample is given by the complex conjugation map $T : \mathbb{C} \to \mathbb{C}$ with T(a + bi) = a bi. This map respects addition but not scalar multiplication, since $T(i \cdot 1) = -i \neq i = i \cdot T(1)$.
 - (c) If $T: V \to W$ has $T(r\mathbf{a}) = rT(\mathbf{a})$ for every $r \in F$ and every $\mathbf{a} \in V$ then T is a linear transformation.
 - False: a linear transformation must also respect addition of vectors. An explicit counterexample is given by the map $T : \mathbb{C} \to \mathbb{C}$ (with $F = \mathbb{R}$) with T(a + 0i) = 0 and T(a + bi) = a + bi for $b \neq 0$. This map respects scaling by real constants, but not addition.
 - (d) If T is a linear transformation such that $T(\mathbf{v}) = \mathbf{0}$ implies $\mathbf{v} = \mathbf{0}$, then T is one-to-one.

• True : this is a result we established in class. In fact, it is an if-and-only if.

- (e) If $T: V \to V$ is a one-to-one linear transformation, then $T(\mathbf{v}) = \mathbf{0}$ implies $\mathbf{v} = \mathbf{0}$.
 - True: this is the converse of (d), and is also a result we established in class.
- (f) If $T: V \to W$ is linear and $\dim(\operatorname{im}(T)) = \dim(W)$, then T is onto.

• False : this is only true for finite-dimensional vector spaces.

(g) If $T: V \to W$ is linear and S spans V, then $T(S) = \{T(\mathbf{s}) : \mathbf{s} \in S\}$ spans W.

• False: we showed T(S) is a spanning set for im(T), but if T is not onto then T(S) cannot span W.

- (h) If $T: V \to W$ is linear and S is linearly independent in V, then T(S) is a linearly independent in W.
 - False : for example, if T is the zero map then S will never be linearly independent.
- (i) If $T: V \to W$ is linear and S is a basis for V, then T(S) is a basis for W.
 - False: from (g) and (h), T(S) need not be linearly independent nor span W.
- (j) For any $\mathbf{v}_1, \mathbf{v}_2 \in V$ and any $\mathbf{w}_1, \mathbf{w}_2 \in W$, there exists a linear transformation $T: V \to W$ such that $T(\mathbf{v}_1) = \mathbf{w}_1$ and $T(\mathbf{v}_2) = \mathbf{w}_2$.
 - False: if $\mathbf{v}_1, \mathbf{v}_2$ are linearly dependent, then the same dependence will hold between $T(\mathbf{v}_1)$ and $T(\mathbf{v}_2)$, so the values cannot be chosen arbitrarily.
- (k) There exists a linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^3$ whose nullity is 2 and whose rank is 2.
 - False: by the nullity-rank theorem, the nullity plus the rank must be 5, but 2 + 2 = 4.
- (l) There exists a linear transformation $T : \mathbb{R}^5 \to \mathbb{R}^3$ whose nullity is 4 and whose rank is 1.
 - True: one such map is T(a, b, c, d, e) = (a, 0, 0, 0).
- (m) There exists a linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^3$ whose nullity is 1 and whose rank is 4.
 - False: although the nullity-rank theorem does not pose any issues, the rank cannot be 4 because the target space \mathbb{R}^3 only has dimension 3.
- (n) If $T: V \to W$ is linear and for any $\mathbf{w} \in W$ there is a unique $\mathbf{v} \in V$ with $T(\mathbf{v}) = \mathbf{w}$, then T is an isomorphism.
 - True: this statement is equivalent to saying that T has an inverse function $T^{-1}: W \to V$, which is the same as saying that T is an isomorphism.
- (o) If V is isomorphic to W, then $\dim(V) = \dim(W)$.
 - True: an isomorphism maps a basis of V to a basis of W, so $\dim(V) = \dim(W)$.

- 2. Calculate the following:
 - (a) If $S = \{\langle 2, 1, -1 \rangle, \langle -1, 2, 3 \rangle, \langle -2, 3, 5 \rangle, \langle 4, 1, -3 \rangle\}$, find a subset of S that is a basis for span(S) in \mathbb{R}^3 .
 - We simply row-reduce the matrix whose columns are the vectors in S:

$$\begin{bmatrix} 2 & -1 & -2 & 4 \\ 1 & 2 & 3 & 1 \\ -1 & 3 & 5 & -3 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & -1/5 & 9/5 \\ 0 & 1 & 8/5 & -2/5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- Since the first and second columns are pivotal, we conclude that the vectors $\langle 2, 1, -1 \rangle, \langle -1, 2, 3 \rangle$ are a basis for the column space, which is the same as span(S).
- (b) Extend the set $S = \{ \langle 1, 2, 1, 1 \rangle, \langle -1, 2, 2, 2 \rangle, \langle -2, 1, 2, 2 \rangle \}$ to a basis of \mathbb{Q}^4 .
 - We extend S to a spanning set, and then reduce the result to a basis, by appending the standard basis to S.
 - To do this, row-reduce the matrix whose columns are the vectors in S followed by the standard basis:

[1	-1	-2	1	0	0	0		1	0	0	2	-2	0	3]
2	2	1	0	1	0	0	RREF	0	1	0	-3	4	0	-5
1	2	2	0	0	1	0	\rightarrow	0	0	1	2	-3	0	4
1	2	2	0	0	0	1		0	0	0	0	0	1	-1

- Since columns 1, 2, 3, and 6 are pivotal, we conclude that we may append the vector corresponding to the 6th column of the original matrix, which is $\langle 0, 0, 1, 0 \rangle$.
- Hence we obtain a basis $\langle (1, 2, 1, 1), \langle -1, 2, 2, 2 \rangle, \langle -2, 1, 2, 2 \rangle, \langle 0, 0, 1, 0 \rangle$
- 3. For each map $T: V \to W$, determine whether or not T is a linear transformation from V to W, and if it is not, identify at least one property that fails:
 - (a) $V = W = \mathbb{R}^4$, T(a, b, c, d) = (a b, b c, c d, d a).
 - This map is linear because it is equivalent to left-multiplication by a 4×4 matrix.

(b)
$$V = W = \mathbb{R}^2$$
, $T(a, b) = (a, b^2)$.

• This map is not linear because it does not respect addition or scalar multiplication.

(c)
$$V = W = M_{2 \times 2}(\mathbb{Q}), T(A) = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} A - A \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix}.$$

• This map is linear: writing $B = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix}$, we see that $T(A_1 + cA_2) = B(A_1 + cA_2) - (A_1 + cA_2)C = (BA_1 - A_1C) + c(BA_2 - A_2C) = T(A_1) + cT(A_2).$

(d)
$$V = W = \mathbb{C}[x], T(p(x)) = p(x^2) - xp'(x)$$

- This map is linear is one may check it directly, or observe that the maps $T_1(p) = p(x^2)$ and $T_2(p) = xp'(x)$ are both linear separately, hence their difference is also.
- (e) $V = W = M_{4 \times 4}(\mathbb{F}_2), T(A) = Q^{-1}AQ$, for a fixed 4×4 matrix Q.

• This map is linear:
$$T(A_1 + cA_2) = Q^{-1}(A_1 + cA_2)Q = Q^{-1}A_1Q + cQ^{-1}A_2Q = T(A_1) + cT(A_2).$$

(f)
$$V = W = M_{4 \times 4}(\mathbb{R}), T(A) = A^{-1}QA$$
, for a fixed 4×4 matrix Q .

• This map is not linear, and is not even defined unless A is invertible. It fails both [T1] and [T2].

^{4.} For each map $T: V \to W$, (i) show that T is a linear transformation, (ii) find bases for the kernel and image of T, (iii) compute the nullity and rank of T and verify the conclusion of the nullity-rank theorem, and (iv) identify whether T is one-to-one, onto, or an isomorphism.

- (a) $T: \mathbb{Q}^2 \to \mathbb{Q}^3$ defined by $T(a, b) = \langle a + b, 2a + 2b, a + b \rangle$.
 - This map is equivalent to left-multiplication by a matrix so it is a linear transformation.
 - The kernel is the set of vectors $\langle a, b \rangle$ with $T(a, b) = \langle 0, 0, 0 \rangle$, so we obtain the system a + b = 0, 2a + 2b = 0, a + b = 0 which clearly has the solution a = -b. Hence ker(T) has basis $\left\{ \langle 1, -1 \rangle \right\}$.
 - The image is spanned by $\{T(1,0), T(0,1)\} = \{\langle 1,2,1 \rangle, \langle 1,2,1 \rangle\}$ so we have an obvious basis $\{\langle 1,2,1 \rangle\}$
 - The nullity is 1 and the rank is 1, and indeed $1 + 1 = 2 = \dim_{\mathbb{Q}} \mathbb{Q}^2$.
 - Since $\ker(T)$ is not zero T is not one-to-one, and since $\operatorname{im}(T)$ only has dimension 1, T is not onto

(b) $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ defined by $T(A) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} A$.

• This map is left-multiplication by a matrix so it is a linear transformation.

• Since
$$T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a+c & b+d \\ a+c & b+d \end{bmatrix}$$
 we see ker $(T) = \begin{bmatrix} a & b \\ -a & -b \end{bmatrix}$ with basis $\left\{ \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \right\}$

- Likewise, $\operatorname{im}(T) = \left\{ \begin{bmatrix} a+c & b+a \\ a+c & b+d \end{bmatrix} \right\}$ which has a natural basis $\left\{ \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\} \right\}$
- The nullity is 2 and the rank is 2, and indeed $2 + 2 = 4 = \dim_{\mathbb{R}}(M_{2\times 2}(\mathbb{R}))$.
- Since ker(T) is not zero T is not one-to-one, and since im(T) only has dimension 2, T is not onto

(c) $T: P_2(\mathbb{C}) \to P_3(\mathbb{C})$ defined by T(p) = xp(x) + p'(x).

- We have T(f + cg) = x(f + cg) + (f + cg)' = (xf + f') + c(xg + g') = T(f) + cT(g), so T is linear.
- The kernel is the set of polynomials $a + bx + cx^2$ with b = 0, a + 2c = 0, b = 0, c = 0, which clearly requires a = b = c = 0. Thus, ker $(T) = \{0\}$, so the empty set \emptyset is a basis.
- The image is spanned by $\{T(1), T(x), T(x^2)\} = \left[\{x, x^2 + 1, x^3 + 2x\} \right]$ which is in fact a basis.
- The nullity is 0 and the rank is 3, and indeed $0 + 3 = 3 = \dim_{\mathbb{C}}(P_2(\mathbb{C}))$.
- Since ker(T) = 0, T is one-to-one, but since im(T) only has dimension 3, T is not onto.
- (d) $T: P_3(\mathbb{F}_3) \to P_4(\mathbb{F}_3)$ defined by $T(p) = x^3 p''(x)$. [Warning: Note that 3 = 0 in \mathbb{F}_3 .]
 - We have $T(f + cg) = x^2(f + cg)'' = x^2f'' + c(x^2g'') = T(f) + cT(g)$ so T is linear.
 - More explicitly, if $p = a_0 + a_1x + a_2x^2 + a_3x^3$ then $T(p) = x^3(2a_2 + 6a_3) = 2a_2x^3$.
 - The kernel is the set of polynomials $p = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ with T(p) = 0, which requires $2a_2 = 0$ hence $a_2 = 0$. Thus, ker(T) has a basis $[\{1, x, x^3\}]$.
 - The image is clearly the set of multiples of x^3 hence has a basis $\{x^3\}$
 - The nullity is 3 and the rank is 1, and indeed $3 + 1 = 4 = \dim_{\mathbb{F}_3}(P_3(\mathbb{F}_3))$.
 - Since ker $(T) \neq 0, T$ is not one-to-one, and since im(T) only has dimension 1, T is not onto
- 5. Suppose that $T: V \to W$ is a linear transformation.
 - (a) If T is onto, show that $\dim(W) \leq \dim(V)$.
 - If T is onto, then $\operatorname{im} T = W$, so $\operatorname{dim}(\ker T) + \operatorname{dim}(W) = \operatorname{dim}(V)$. Since $\operatorname{dim}(\ker T) \ge 0$, this means $\operatorname{dim}(W) \le \operatorname{dim}(V)$.
 - (b) If T is one-to-one, show that T is an isomorphism from V to $\operatorname{im}(T)$, and deduce that $\operatorname{dim}(V) \leq \operatorname{dim}(W)$.
 - For the first part, if T is one-to-one, then $T: V \to im(T)$ is a one-to-one map that is onto (by definition of imT), meaning it is an isomorphism.
 - For the second part, since T is an isomorphism from V to $\operatorname{im}(T)$, we have $\operatorname{dim}(\operatorname{im} T) = \operatorname{dim}(V)$. But since $\operatorname{im}(T)$ is a subspace of W, we see that $\operatorname{dim}(\operatorname{im} T) \leq \operatorname{dim}(W)$, so $\operatorname{dim}(V) = \operatorname{dim}(\operatorname{im} T) \leq \operatorname{dim}(W)$.

- 6. Suppose dim(V) = n and that $T: V \to V$ is a linear transformation with $T^2 = 0$: in other words, that $T(T(\mathbf{v})) = \mathbf{0}$ for every vector $\mathbf{v} \in V$.
 - (a) Show that im(T) is a subspace of ker(T).
 - Suppose **w** is in im(T). This means that there exists **v** with $\mathbf{w} = T(\mathbf{v})$.
 - Then $T(\mathbf{w}) = T(T(\mathbf{v})) = \mathbf{0}$, meaning that \mathbf{w} is in ker(T). Thus, im $(T) \subseteq \text{ker}(T)$ so it is a subspace.
 - (b) Show that $\dim(\operatorname{im}(T)) \leq n/2$.
 - By part (a), $\operatorname{im}(T)$ is a subspace of ker(T), so taking dimensions gives $\operatorname{dim}(\operatorname{im}(T)) \leq \operatorname{dim}(\operatorname{ker}(T))$.
 - By the nullity-rank theorem, $\dim(\operatorname{im}(T)) + \dim(\ker(T)) = n$. Thus, $2\dim(\operatorname{im}(T)) \le \dim(\operatorname{im}(T)) + \dim(\ker(T)) = n$, so $\dim(\operatorname{im}(T)) \le n/2$.
- 7. Let F be a field and let V be the vector space of infinite sequences $\{a_n\}_{n\geq 1} = (a_1, a_2, a_3, a_4, \dots)$ of elements of F. Define the <u>left-shift operator</u> $L: V \to V$ via $L(a_1, a_2, a_3, a_4, \dots) = (a_2, a_3, a_4, a_5, \dots)$ and the <u>right-shift operator</u> $R: V \to V$ via $R(a_1, a_2, a_3, a_4, \dots) = (0, a_1, a_2, a_3, \dots)$.
 - (a) Show that L is a linear transformation that is onto but not one-to-one.
 - We have $L(a_1+cb_1, a_2+cb_2, a_3+cb_3, a_4+cb_4, \dots) = (a_2+cb_2, a_3+cb_3, a_4+cb_4, \dots) = L(a_1, a_2, a_3, \dots) + cL(b_1, b_2, b_3, \dots)$ so L is linear.
 - Also, $L(0, a_1, a_2, a_3, ...) = (a_1, a_2, a_3, ...)$ so L is onto. But since $ker(L) = \{c, 0, 0, 0, ...\}$ is not trivial, L is not one-to-one.
 - (b) Show that R is a linear transformation that is one-to-one but not onto.
 - We have $R(a_1+cb_1, a_2+cb_2, a_3+cb_3, a_4+cb_4, \dots) = (0, a_1+cb_1, a_2+cb_2, a_3+cb_3, \dots) = R(a_1, a_2, a_3, \dots) + cR(b_1, b_2, b_3, \dots)$ so R is linear.
 - If $R(a_1, a_2, a_3, ...) = 0$ then clearly $a_1 = a_2 = a_3 = \cdots = 0$, so R is one-to-one. But im(R) consists of only the sequences which have first element zero, so R is not onto.
 - (c) Deduce that on infinite-dimensional vector spaces, the conditions of being one-to-one, being onto, and being an isomorphism are not in general equivalent.
 - This follows from (a) and (b), since L is one-to-one but not onto, while R is onto but not one-to-one, and neither one is an isomorphism.
 - (d) Verify that $L \circ R$ is the identity map on V, but that $R \circ L$ is not the identity map on V.
 - We have $(L \circ R)(a_1, a_2, a_3, a_4, ...) = L(0, a_1, a_2, a_3, a_4, ...) = (a_1, a_2, a_3, a_4, ...)$ so $L \circ R$ is the identity on every sequence hence on V.
 - But $(R \circ L)(a_1, a_2, a_3, a_4, \dots) = R(a_2, a_3, a_4, a_5, \dots) = (0, a_2, a_3, a_4, \dots)$, which is not equal to the original vector whenever $a_1 \neq 0$. So $R \circ L$ is not the identity map on V.
 - (e) Deduce that on infinite-dimensional vector spaces, a linear transformation with a left inverse or a right inverse need not have a two-sided inverse.
 - This follows from (d), since L has a right inverse (namely R) and R has a left inverse (namely L), but neither L nor R has a two-sided inverse because they are not isomorphisms as noted in (c).
- 8. A linear transformation $T: V \to V$ such that $T^2 = T$ is called a <u>projection map</u>. The goal of this problem is to give some other descriptions of projection maps.
 - (a) Suppose that $T: V \to V$ has the property that there exists a subspace W such that im(T) = W and T is the identity map when restricted to W. Show that T is a projection map (it is called a projection onto the subspace W).
 - Let $\mathbf{v} \in V$. Then $T(\mathbf{v}) \in \operatorname{im}(T)$, and so T acts as the identity on $T(\mathbf{v})$, which is to say, $T(T(\mathbf{v})) = T(\mathbf{v})$. Since this holds for every vector $\mathbf{v} \in V$, this means $T^2 = T$, so T is a projection map.
 - (b) Conversely, suppose T is a projection map. Show that T is a projection onto the subspace W = im(T).
 - By definition we have $\operatorname{im}(T) = W$. Also, for any $\mathbf{w} \in W$ we have $\mathbf{w} = T(\mathbf{v})$ for some $\mathbf{v} \in V$.
 - Then since T is a projection map, $T(\mathbf{w}) = T^2(\mathbf{v}) = T(\mathbf{v}) = \mathbf{w}$, so T acts as the identity on W.

- (c) Suppose that T is a projection map. Prove that $V = \ker(T) \oplus \operatorname{im}(T)$. [Hint: Write $\mathbf{v} = [\mathbf{v} T(\mathbf{v})] + T(\mathbf{v})$.]
 - To show that $V = \ker(T) \oplus \operatorname{im}(T)$ we must show $V = \ker(T) + \operatorname{im}(T)$ and $\ker(T) \cap \operatorname{im}(T) = \{\mathbf{0}\}.$
 - For the first part, following the hint observe that $[\mathbf{v} T(\mathbf{v})] + T(\mathbf{v})$. Then $T(\mathbf{v} T(\mathbf{v})) = T(\mathbf{v}) T^2(\mathbf{v}) = \mathbf{0}$, so we see $\mathbf{v} T(\mathbf{v}) \in \ker(T)$.
 - Since clearly $T(\mathbf{v}) \in \operatorname{im}(T)$, we see $\mathbf{v} = [\mathbf{v} T(\mathbf{v})] + T(\mathbf{v})$ is the sum of an element of ker(T) and an element of $\operatorname{im}(T)$, whence $V = \ker(T) + \operatorname{im}(T)$.
 - For the second part, suppose \mathbf{v} is in $\ker(T) \cap \operatorname{im}(T)$. Then $T(\mathbf{v}) = \mathbf{0}$ and there exists some \mathbf{w} in V with $T(\mathbf{w}) = \mathbf{v}$. But then $\mathbf{v} = T(\mathbf{w}) = T(T(\mathbf{w})) = T(\mathbf{v}) = \mathbf{0}$.
 - Thus, $\ker(T) \cap \operatorname{im}(T) = \{\mathbf{0}\}$, and so $V = \ker(T) \oplus \operatorname{im}(T)$ as claimed.
- **Remark:** Projection maps are so named because they represent the geometric idea of projection. For example, in the event that W = im(T) is one-dimensional, the corresponding projection map T represents projecting onto that line.
- 9. [Challenge] The goal of this problem is to demonstrate some bizarre things one can do with infinite bases.
 - (a) Show that $\dim_{\mathbb{Q}} \mathbb{R} = \dim_{\mathbb{Q}} \mathbb{C}$. Deduce that there exists a \mathbb{Q} -vector space isomorphism $\varphi : \mathbb{C} \to \mathbb{R}$. [Hint: Use the fact that finite-dimensional \mathbb{Q} -vector spaces are countable.]
 - Let $\beta = {\mathbf{v}_j}_{j \in J}$ be a basis for \mathbb{R} as a \mathbb{Q} -vector space. Note that J must be infinite because any finite-dimensional vector space over \mathbb{Q} is countable, whereas \mathbb{R} is uncountable.
 - We claim that if we define $i\beta = \{i\mathbf{v}_i\}_{i \in J}$ then $\beta \cup i\beta$ is a basis for \mathbb{C} as a \mathbb{Q} -vector space.
 - To see $\beta \cup i\beta$ spans, if $z = a + bi \in \mathbb{C}$, then we may write $a = a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n$ and $b = b_1\mathbf{w}_1 + \cdots + b_m\mathbf{w}_m$ for some $\mathbf{v}_i, \mathbf{w}_i \in \beta$. But then $z = a + bi = a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n + b_1i\mathbf{w}_1 + \cdots + b_mi\mathbf{w}_m$ is in the span of $\beta \cup i\beta$.
 - To see $\beta \cup i\beta$ is linearly independent, spans, if $a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n + b_1i\mathbf{w}_1 + \cdots + b_mi\mathbf{w}_m = 0$, then the real and imaginary parts must both be zero. But independence of β and $a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n = b_1\mathbf{w}_1 + \cdots + b_m\mathbf{w}_m = 0$ implies $a_1 = \cdots = a_n = b_1 = \cdots = b_m = 0$.
 - So $\beta \cup i\beta$ is a basis for \mathbb{C} as a \mathbb{Q} -vector space. This means $\dim_{\mathbb{Q}} \mathbb{C} = 2 \dim_{\mathbb{Q}} \mathbb{R}$, but since the latter dimension is infinite, it also equals $\dim_{\mathbb{Q}} \mathbb{R}$ by standard properties of infinite sets.
 - The existence of the vector space isomorphism then follows immediately, since spaces of equal dimension are isomorphic.

We will now use this isomorphism $\varphi : \mathbb{C} \to \mathbb{R}$ to define a different vector space structure on \mathbb{C} . Intuitively, the idea is to start with the set \mathbb{R} as a vector space over itself, and then use the isomorphism φ^{-1} to relabel the vectors as complex numbers, but keep the scalars as real numbers.

- (b) Let V be the set of complex numbers with the addition operation $z_1 \oplus z_2 = z_1 + z_2$ and scalar multiplication defined as follows: for $\alpha \in \mathbb{R}$ and $z \in \mathbb{C}$, set $\alpha \odot z = \varphi^{-1}[\alpha \varphi(z)]$. Show (V, \oplus, \odot) is an \mathbb{R} -vector space.
 - The axioms [V1]-[V4] only concern addition so they follow trivially from properties of complex number addition. Note also that φ and φ^{-1} are both additive, which is actually the only property that we will need.
 - [V5]: We have $\alpha \odot (\beta \odot z) = \alpha \odot \varphi^{-1}[\beta \varphi(z)] = \varphi^{-1}[\alpha \varphi[\varphi^{-1}[\beta \varphi(z)]]] = \varphi^{-1}[\alpha \beta \varphi(z)]] = (\alpha \beta) \odot z$.
 - [V6]: We have $(\alpha + \beta) \odot z = \varphi^{-1}[(\alpha + \beta)\varphi(z)] = \varphi^{-1}[\alpha\varphi(z)] + \varphi^{-1}[\beta\varphi(z)] = \alpha \odot z + \beta \odot z$.
 - [V7]: We have $\alpha \odot (z+w) = \varphi^{-1}[\alpha \varphi(z+w)] = \varphi^{-1}[\alpha \varphi(z) + \alpha \varphi(w)] = \varphi^{-1}[\alpha \varphi(z)] + \varphi^{-1}[\alpha \varphi(w)] = \alpha \odot z + \alpha \odot w.$
 - [V8]: We have $1 \odot z = \varphi^{-1}[1\varphi(z)] = \varphi^{-1}[\varphi(z)] = z$.
- (c) Using the vector space structure defined in (b), show that $\dim_{\mathbb{R}} V = 1$.
 - We show that the set $\{1\}$ is a basis. Clearly it is linearly independent since $1 \neq 0$.
 - To see it spans, observe that for any $z \in \mathbb{C}$, we have $\varphi(z) \odot 1 = \varphi^{-1}[\varphi(z)\varphi(1)] = \varphi^{-1}[\varphi(z)] = z$ because $\varphi(1) = 1$. Therefore, every vector $z \in \mathbb{C}$ is a scalar multiple of 1, so $\{1\}$ spans V.
- **Remark:** The point of (c) is that by changing the definition of scalar multiplication, we can make \mathbb{C} into a 1-dimensional \mathbb{R} -vector space. By doing a similar thing in the reverse order, we could even make \mathbb{R} into a 2-dimensional \mathbb{C} -vector space.