
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2025 ∼ Homework 4, due Fri Feb 7th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Assume that V and W are arbitrary vector spaces, not necessarily �nite-dimensional, over the scalar �eld F .
Identify each of the following statements as true or false:

(a) If T : V →W is a linear transformation, then T (0V ) = 0W .

(b) If T : V →W has T (a+ b) = T (a) + T (b) for every a,b ∈ V then T is a linear transformation.

(c) If T : V →W has T (ra) = rT (a) for every r ∈ F and every a ∈ V then T is a linear transformation.

(d) If T is a linear transformation such that T (v) = 0 implies v = 0, then T is one-to-one.

(e) If T : V → V is a one-to-one linear transformation, then T (v) = 0 implies v = 0.

(f) If T : V →W is linear and dim(im(T )) = dim(W ), then T is onto.

(g) If T : V →W is linear and S spans V , then T (S) = {T (s) : s ∈ S} spans W .

(h) If T : V →W is linear and S is linearly independent in V , then T (S) is a linearly independent in W .

(i) If T : V →W is linear and S is a basis for V , then T (S) is a basis for W .

(j) For any v1,v2 ∈ V and any w1,w2 ∈ W , there exists a linear transformation T : V → W such that
T (v1) = w1 and T (v2) = w2.

(k) There exists a linear transformation T : R5 → R3 whose nullity is 2 and whose rank is 2.

(l) There exists a linear transformation T : R5 → R3 whose nullity is 4 and whose rank is 1.

(m) There exists a linear transformation T : R5 → R3 whose nullity is 1 and whose rank is 4.

(n) If T : V → W is linear and for any w ∈ W there is a unique v ∈ V with T (v) = w, then T is an
isomorphism.

(o) If V is isomorphic to W , then dim(V ) = dim(W ).

2. Calculate the following:

(a) If S = {〈2, 1,−1〉 , 〈−1, 2, 3〉 , 〈−2, 3, 5〉 , 〈4, 1,−3〉}, �nd a subset of S that is a basis for span(S) in R3.

(b) Extend the set S = {〈1, 2, 1, 1〉 , 〈−1, 2, 2, 2〉 , 〈−2, 1, 2, 2〉} to a basis of Q4.

3. For each map T : V → W , determine whether or not T is a linear transformation from V to W , and if it is
not, identify at least one property that fails:

(a) V =W = R4, T (a, b, c, d) = (a− b, b− c, c− d, d− a).
(b) V =W = R2, T (a, b) = (a, b2).

(c) V =W =M2×2(Q), T (A) =

[
1 2
2 2

]
A−A

[
3 1
−1 1

]
.

(d) V =W = C[x], T (p(x)) = p(x2)− xp′(x).
(e) V =W =M4×4(F2), T (A) = Q−1AQ, for a �xed 4× 4 matrix Q.

(f) V =W =M4×4(R), T (A) = A−1QA, for a �xed 4× 4 matrix Q.

4. For each map T : V →W , (i) show that T is a linear transformation, (ii) �nd bases for the kernel and image
of T , (iii) compute the nullity and rank of T and verify the conclusion of the nullity-rank theorem, and (iv)
identify whether T is one-to-one, onto, or an isomorphism.

(a) T : Q2 → Q3 de�ned by T (a, b) = 〈a+ b, 2a+ 2b, a+ b〉.

(b) T :M2×2(R)→M2×2(R) de�ned by T (A) =

[
1 1
1 1

]
A.

(c) T : P2(C)→ P3(C) de�ned by T (p) = xp(x) + p′(x).

(d) T : P3(F3)→ P4(F3) de�ned by T (p) = x3p′′(x). [Warning: Note that 3 = 0 in F3.]
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Part II: Solve the following problems. Justify all answers with rigorous, clear explanations.

5. Suppose that T : V →W is a linear transformation.

(a) If T is onto, show that dim(W ) ≤ dim(V ).

(b) If T is one-to-one, show that T is an isomorphism from V to im(T ), and deduce that dim(V ) ≤ dim(W ).

6. Suppose dim(V ) = n and that T : V → V is a linear transformation with T 2 = 0: in other words, that
T (T (v)) = 0 for every vector v ∈ V .

(a) Show that im(T ) is a subspace of ker(T ).

(b) Show that dim(im(T )) ≤ n/2.

7. Let F be a �eld and let V be the vector space of in�nite sequences {an}n≥1 = (a1, a2, a3, a4, . . . ) of ele-
ments of F . De�ne the left-shift operator L : V → V via L(a1, a2, a3, a4, . . . ) = (a2, a3, a4, a5, . . . ) and the
right-shift operator R : V → V via R(a1, a2, a3, a4, . . . ) = (0, a1, a2, a3, . . . ).

(a) Show that L is a linear transformation that is onto but not one-to-one.

(b) Show that R is a linear transformation that is one-to-one but not onto.

(c) Deduce that on in�nite-dimensional vector spaces, the conditions of being one-to-one, being onto, and
being an isomorphism are not in general equivalent.

(d) Verify that L ◦R is the identity map on V , but that R ◦ L is not the identity map on V .

(e) Deduce that on in�nite-dimensional vector spaces, a linear transformation with a left inverse or a right
inverse need not have a two-sided inverse.

8. A linear transformation T : V → V such that T 2 = T is called a projection map. The goal of this problem is
to give some other descriptions of projection maps.

(a) Suppose that T : V → V has the property that there exists a subspace W such that im(T ) = W
and T is the identity map when restricted to W . Show that T is a projection map (it is called a
projection onto the subspace W ).

(b) Conversely, suppose T is a projection map. Show that T is a projection onto the subspace W = im(T ).

(c) Suppose that T is a projection map. Prove that V = ker(T )⊕im(T ). [Hint: Write v = [v−T (v)]+T (v).]

Remark: Projection maps are so named because they represent the geometric idea of projection. For ex-
ample, in the event that W = im(T ) is one-dimensional, the corresponding projection map T represents
projecting onto that line.

9. [Challenge] The goal of this problem is to demonstrate some bizarre things one can do with in�nite bases.

(a) Show that dimQ R = dimQ C. Deduce that there exists a Q-vector space isomorphism ϕ : C→ R. [Hint:
Use the fact that �nite-dimensional Q-vector spaces are countable.]

We will now use this isomorphism ϕ : C → R to de�ne a di�erent vector space structure on C. Intuitively,
the idea is to start with the set R as a vector space over itself, and then use the isomorphism ϕ−1 to relabel
the vectors as complex numbers, but keep the scalars as real numbers.

(b) Let V be the set of complex numbers with the addition operation z1⊕z2 = z1+z2 and scalar multiplication
de�ned as follows: for α ∈ R and z ∈ C, set α� z = ϕ−1[αϕ(z)]. Show (V,⊕,�) is an R-vector space.

(c) Using the vector space structure de�ned in (b), show that dimR V = 1.

Remark: The point of (c) is that by changing the de�nition of scalar multiplication, we can make C into a
1-dimensional R-vector space. By doing a similar thing in the reverse order, we could even make R into
a 2-dimensional C-vector space.
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