- 1. Let F be a field. Identify each of the following statements as true or false:
 - (a) The zero vector space has no basis.
 - False : the empty set is a basis for the zero space.
 - (b) The set $\{0\}$ is a basis for the zero vector space.
 - False : the empty set is a basis for the zero space.
 - (c) Every vector space has a finite basis.
 - False: there are infinite-dimensional vector spaces, like F[x], which have no finite basis.
 - (d) Every vector space has a unique basis.
 - False: most vector spaces (e.g., F^2) have many different bases.
 - (e) Every subspace of a finite-dimensional vector space is finite-dimensional.

• True : if W is a subspace of V then $\dim(W) \leq \dim(V)$, so $\dim(W)$ is also finite.

- (f) Every subspace of an infinite-dimensional vector space is infinite-dimensional.
 - False : infinite-dimensional spaces have many finite-dimensional subspaces (e.g., the zero subspace).
- (g) If $V = M_{m \times n}(F)$, then $\dim_F V = mn$.
 - True: a basis is given by the *mn* matrices with a 1 in one entry and 0s elsewhere.
- (h) If V = F[x], then $\dim_F V$ is undefined.
 - False : $\dim_F F[x]$ is infinite but perfectly well-defined.
- (i) If $V = P_n(F)$, then $\dim_F V = n$.
 - False: $\dim_F V = n + 1$, not n.
- (j) If $\dim(V) = 5$, then there exists a set of 5 vectors in V that span V but are not linearly independent.
 - False : any spanning set with exactly 5 vectors is necessarily also linearly independent.
- (k) If $\dim(V) = 5$, then a set of 4 vectors in V cannot span V.
 - True : any spanning set must contain a basis, which would require at least 5 vectors.
- (l) If $\dim(V) = 5$, then a set of 4 vectors in V cannot be linearly independent.
 - False : if we take the first 4 vectors of any basis, then they are linearly independent.
- (m) If $\dim(V) = 5$, then there is a unique subspace of V of dimension 0.
 - True : the only subspace of dimension 0 is the zero subspace.
- (n) If $\dim(V) = 5$, then there is a unique subspace of V of dimension 1.
 - False : if \mathbf{v} is any nonzero vector, then span (\mathbf{v}) is 1-dimensional, and there are many such \mathbf{v} .
- (o) If $\dim(V) = 5$, then there is a unique subspace of V of dimension 5.
 - True : the only subspace of dimension 5 is V itself.
- (p) If V is infinite-dimensional, then any infinite linearly-independent subset is a basis.
 - False: just because the subset is infinite does not force it to span V. For example, if we take V = F[x] and $S = \{1, x^2, x^4, x^6, \ldots\}$, then S is a linearly independent set that does not span V.

- 2. For each set S of vectors in the given vector space V, determine whether or not S is a basis of V:
 - (a) $S = \{ \langle 1, 2 \rangle \}$ in $V = \mathbb{R}^2$.
 - No: This set does not span V. Alternatively, any basis of \mathbb{R}^2 must consist of 2 vectors.
 - (b) $S = \{ \langle 1, 2 \rangle, \langle 3, 2 \rangle \}$ in $V = \mathbb{R}^2$.
 - <u>Yes</u>: we can see that the two vectors in S are linearly independent, so since dim V = 2 that means S is a basis of V.
 - (c) $S = \{ \langle 1, 2 \rangle, \langle 3, 2 \rangle, \langle 1, 1 \rangle \}$ in $V = \mathbb{R}^2$.
 - No: This set is not linearly independent. Alternatively, any basis of ℝ² must consist of 2 vectors.
 (d) S = {⟨1,2,4⟩, ⟨3,2,1⟩, ⟨1,1,1⟩} in V = ℝ³.
 - Yes: we can check that the determinant $\begin{vmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 3 & 1 & 1 \end{vmatrix} = 1$, and therefore the three given vectors are linearly independent and yield a basis of \mathbb{R}^3 .

(e)
$$S = \{1, 1 + x, x + x^2\}$$
 in $V = P_2(\mathbb{C})$

• Yes: we have $a + bx + cx^2 = (a - b - c)(1) + b(1 + x) + c(1 + x^2)$ so the given set spans V, and if $a(1) + b(1 + x) + c(x + x^2) = 0$ then a + b = b + c = c = 0 hence a = b = c = 0 so the set is linearly independent.

(f)
$$S = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \right\}$$
 in $V = M_{2 \times 2}(\mathbb{Q})$.
• No: This set is not linearly independent since $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. It also does not span V since for instance $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is not in the span of these matrices.

- 3. Find a basis for, and the dimension of, each of the following vector spaces:

• Since there is a pivot in column 1, the column space has basis

, and also has dimension $\boxed{1}$

 $\mathbf{2}$

 $\frac{3}{4}$

- For the nullspace, solving the linear system $E\mathbf{x} = \mathbf{0}$ (with variables x_1, x_2, x_3, x_4, x_5 and free parameters a, b) yields the solution set $\langle x_1, x_2, x_3 \rangle = a \langle -1, 1, 0 \rangle + b \langle -1, 0, 1 \rangle$, so the nullspace has a basis $\langle -1, 1, 0 \rangle, \langle -1, 0, 1 \rangle$ and dimension 2.
- (c) The vectors in \mathbb{Q}^5 of the form $\langle a, b, c, d, e \rangle$ with e = a + b and b = c = d, over \mathbb{Q} .
 - Such vectors have the form $\langle a, b, b, b, a + b \rangle = a \langle 1, 0, 0, 0, 1 \rangle + b \langle 0, 1, 1, 1, 1 \rangle$.
 - Clearly, the set $|\langle 1, 0, 0, 0, 1 \rangle, \langle 0, 1, 1, 1, 1 \rangle|$ is a basis, so the space has dimension |2|.
- (d) The row space, column space, and nullspace of $M = \begin{bmatrix} 1 & 3 & -2 & -6 & 8 \\ 2 & -1 & 2 & 8 & 1 \\ -1 & 1 & 1 & -3 & 3 \end{bmatrix}$ over \mathbb{C} .
 - Row-reducing M (eventually) yields the reduced row-echelon form $E = \begin{bmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & -2 & 3 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$.
 - The row space has a basis given by the rows $\langle 1, 0, 0, 2, 1 \rangle$, $\langle 0, 1, 0, -2, 3 \rangle$, $\langle 0, 0, 1, 1, 1 \rangle$, so the row space has dimension 3.
 - Since there are pivots in columns 1, 2, and 3, the column space has a basis

1		3		$\begin{bmatrix} -2 \end{bmatrix}$	
2	,	-1	,	2	
1		1		1	

and also has dimension 3.

- For the nullspace, solving the linear system $E\mathbf{x} = \mathbf{0}$ (with variables x_1, x_2, x_3, x_4, x_5 and free parameters a, b) yields the solution set $\langle x_1, x_2, x_3, x_4, x_5 \rangle = a \langle -1, -3, -1, 0, 1 \rangle + b \langle -2, 2, -1, 1, 0 \rangle$, so the nullspace has a basis $\langle -1, -3, -1, 0, 1 \rangle$, $\langle -2, 2, -1, 1, 0 \rangle$ and dimension $\boxed{2}$.
- (e) The polynomials p(x) in $P_4(\mathbb{R})$ such that p(1) = 0.
 - Polynomials in $P_4(\mathbb{R})$ have the form $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$.
 - Then the condition p(1) = 0 requires $a_0 + a_1 + a_2 + a_3 + a_4 = 0$, which is equivalent to $a_0 = -a_1 a_2 a_3 a_4$.
 - Hence the desired polynomials are of the form $(-a_1 a_2 a_3 a_4) + a_1x + a_2x^2 + a_3x^3 + a_4x^4 = a_1(-1+x) + a_2(-1+x^2) + a_3(-1+x^3) + a_4(-1+x^4).$
 - Hence we obtain a basis $-1 + x, -1 + x^2, -1 + x^3, -1 + x^4$ so the space has dimension 4.
 - Alternatively, one could observe that p(1) = 0 requires the polynomial to be divisible by x 1, which yields the basis $x 1, x(x 1), x^2(x 1), x^3(x 1)$.

(f) The matrices A in $M_{2\times 2}(\mathbb{Q})$ such that $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

- If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then the given condition requires $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ 2a+2c & 2b+2d \end{bmatrix}$, which yields a = -c and b = -d.
- Thus the matrices are of the form $\begin{bmatrix} -c & -d \\ c & d \end{bmatrix} = c \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}$. Hence we obtain a basis $\begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}$ and the space has dimension 2.

- 4. Let W be a vector space. Recall that if A and B are two subspaces of W then their sum is the set $A + B = \{\mathbf{a} + \mathbf{b} : \mathbf{a} \in A \text{ and } \mathbf{b} \in B\}$.
 - (a) Suppose that $A \cap B = \{0\}$. If α is a basis for A and β is a basis for B, prove that α and β are disjoint and that $\alpha \cup \beta$ is a basis for A + B.
 - First, we show that $\alpha \cup \beta$ spans A + B: for any $\mathbf{a} + \mathbf{b} \in A + B$, since $\mathbf{a} \in A$ we can write $\mathbf{a} = a_1 \mathbf{a}_1 + \cdots + a_k \mathbf{a}_k$ for some $\mathbf{a}_i \in \alpha$ and likewise since $\mathbf{b} \in B$ we can write $\mathbf{b} = b_1 \mathbf{b}_1 + \cdots + b_l \mathbf{b}_l$ for some $\mathbf{b}_i \in \beta$.
 - Then $\mathbf{a} + \mathbf{b} = a_1 \mathbf{a}_1 + \dots + a_k \mathbf{a}_k + b_1 \mathbf{b}_1 + \dots + b_l \mathbf{b}_l$ is in span $(\alpha \cup \beta)$, as required.
 - Now suppose we had a dependence $a_1\mathbf{a}_1 + \cdots + a_k\mathbf{a}_k + b_1\mathbf{b}_1 + \cdots + b_l\mathbf{b}_l = \mathbf{0}$.
 - Then rearranging gives $a_1 \mathbf{a}_1 + \cdots + a_k \mathbf{a}_k = -(b_1 \mathbf{b}_1 + \cdots + b_l \mathbf{b}_l)$. Since the left-hand side is a vector in A and the right-hand side is a vector in B, the common expression is an element in $A \cap B$.
 - But then since $A \cap B = \{\mathbf{0}\}$, we have $a_1\mathbf{a}_1 + \cdots + a_k\mathbf{a}_k = \mathbf{0} = -(b_1\mathbf{b}_1 + \cdots + b_l\mathbf{b}_l)$.
 - Then since α and β are both linearly independent, we have $a_1 = \cdots = a_k = 0$ and $b_1 = \cdots = b_l = 0$. Hence $\alpha \cup \beta$ is linearly independent, as claimed.
 - (b) Now suppose that α is a basis for A and β is a basis for B. If $\alpha \cup \beta$ is a basis for A + B and α and β are disjoint, prove that $A \cap B = \{0\}$.
 - Suppose that $\mathbf{v} \in A \cap B$. Then since $\mathbf{v} \in A$ we may write $\mathbf{v} = a_1 \mathbf{a}_1 + \cdots + a_k \mathbf{a}_k$ for some $\mathbf{a}_i \in \alpha$, and since $\mathbf{v} \in B$ we may also write $\mathbf{v} = b_1 \mathbf{b}_1 + \cdots + b_l \mathbf{b}_l$ for some $\mathbf{b}_i \in \beta$.
 - Then subtracting the expressions yields $a_1\mathbf{a}_1 + \cdots + a_k\mathbf{a}_k b_1\mathbf{b}_1 \cdots b_l\mathbf{b}_l = \mathbf{0}$.
 - But since $\alpha \cup \beta$ is a basis and α, β are linearly independent, all of the scalar coefficients must be zero. Then $\mathbf{v} = 0\mathbf{a}_1 + \cdots + 0\mathbf{a}_k = \mathbf{0}$, and so $A \cap B = \{\mathbf{0}\}$.

The situation in (a)-(b) is very important and arises often. Explicitly, if A and B are two subspaces of W such that A + B = W and $A \cap B = \{0\}$ is the trivial subspace, we write $W = A \oplus B$ and call W the (internal) direct sum of A and B. (The idea is that we may "decompose" W into two independent pieces A and B.)

- (c) Show that \mathbb{R}^2 is the direct sum of the subspaces given by the x-axis and the y-axis, and is also the direct sum of the subspaces given by the x-axis and the line y = 3x.
 - First for $X = \{\langle x, 0 \rangle\}$ and $Y = \{\langle 0, y \rangle\}$, since $\langle x, y \rangle = \langle x, 0 \rangle + \langle 0, y \rangle$, we have $\mathbb{R}^2 = X + Y$. Furthermore, $X \cap Y = \{\langle 0, 0 \rangle\}$ so the sum is a direct sum.
 - Second with Z = {⟨y/3, y⟩}, since ⟨x, y⟩ = ⟨x y/3, 0⟩ + ⟨y/3, y⟩, we have ℝ² = X + Z. Furthermore, X ∩ Z = {⟨0, 0⟩} so the sum is a direct sum.
- (d) Prove that $W = A \oplus B$ if and only if every vector $\mathbf{w} \in W$ can be written uniquely in the form $\mathbf{w} = \mathbf{a} + \mathbf{b}$ where $\mathbf{a} \in A$ and $\mathbf{b} \in B$.
 - First suppose that every vector $\mathbf{w} \in W$ can be written uniquely in the form $\mathbf{w} = \mathbf{a} + \mathbf{b}$ where $\mathbf{a} \in A$ and $\mathbf{b} \in B$. Then clearly W = A + B.
 - Furthermore, for any $\mathbf{w} \in A \cap B$, we may write $\mathbf{w} = \mathbf{w} + \mathbf{0} = \mathbf{0} + \mathbf{w}$. Hence by uniqueness, we must have $\mathbf{w} = \mathbf{0}$, and therefore $A \cap B = \{\mathbf{0}\}$. Hence $W = A \oplus B$ as required.
 - Conversely, suppose $W = A \oplus B$. Then every vector $\mathbf{w} \in W$ can be written as $\mathbf{a} + \mathbf{b}$, so we need only consider uniqueness: if $\mathbf{w} = \mathbf{a} + \mathbf{b} = \mathbf{a}' + \mathbf{b}'$, then subtracting yields $\mathbf{a} \mathbf{a}' = \mathbf{b}' \mathbf{b}$.
 - Since the vector $\mathbf{a} \mathbf{a}' = \mathbf{b}' \mathbf{b}$ is in both A and B, it must be the zero vector: hence $\mathbf{a} = \mathbf{a}'$ and $\mathbf{b} = \mathbf{b}'$, so the representation of \mathbf{w} is unique as required.
- (e) Show that if $W = A \oplus B$ then $\dim(W) = \dim(A) + \dim(B)$. Show using an explicit counterexample that the converse statement need not hold.
 - The first part is simply a rewriting of part (b). For the second part, if for example we take $W = \mathbb{R}^2$ with $A = B = \operatorname{span}(\langle 1, 0 \rangle)$, then the dimensions sum correctly, but $A + B = A = \operatorname{span}(\langle 1, 0 \rangle) \neq W$.

- 5. Let V be a vector space such that $\dim_{\mathbb{C}} V = n$. Prove that if V is now considered a vector space over \mathbb{R} (using the same addition and scalar multiplication), then $\dim_{\mathbb{R}} V = 2n$.
 - Suppose that $\dim_{\mathbb{C}} V = n$. Choose a basis $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ for V, as a complex vector space. We claim that the set $S' = \{\mathbf{v}_1, i\mathbf{v}_1, \mathbf{v}_2, i\mathbf{v}_2, \dots, \mathbf{v}_n, i\mathbf{v}_n\}$ is a basis for V considered as a real vector space, which would immediately imply that $\dim_{\mathbb{R}} V = 2n$.
 - S' spans V: Let \mathbf{x} be a vector in V. By the assumption that S spans V, there exist (complex) scalars with $\mathbf{x} = (a_1 + b_1 i)\mathbf{v}_1 + \cdots + (a_n + b_n i)\mathbf{v}_n$. But by rearranging, we see that $\mathbf{x} = a_1\mathbf{v}_1 + b_1(i\mathbf{v}_1) + \cdots + a_n\mathbf{v}_n + b_n(i\mathbf{v}_n)$, meaning that \mathbf{x} is a linear combination of the vectors in S' using real coefficients, as required.
 - S' is linearly independent: Suppose there exist real numbers a_i, b_i such that $\mathbf{0} = a_1 \mathbf{v}_1 + b_1(i\mathbf{v}_1) + \cdots + a_n \mathbf{v}_n + b_n(i\mathbf{v}_n)$. By rearranging this yields $\mathbf{0} = (a_1 + b_1i)\mathbf{v}_1 + \cdots + (a_n + b_ni)\mathbf{v}_n$. But by the hypothesis that S is linearly independent, all of these (complex) coefficients must be zero.
- 6. Let F be a finite field with q elements. The goal of this problem is to count the invertible matrices in $M_{n \times n}(F)$.
 - (a) Suppose W is a k-dimensional subspace of F^n . Show that W contains exactly q^k vectors.
 - Choose a basis $\mathbf{w}_1, \ldots, \mathbf{w}_k$ for W. Then every vector in W may be written as a linear combination $a_1\mathbf{w}_1 + \cdots + a_k\mathbf{w}_k$ for unique scalars a_1, \ldots, a_k .
 - Since there are q choices for each scalar a_i for each $1 \le i \le k$, there are q^k total choices for the coefficients and thus q^k possible vectors.
 - (b) Show that the number of invertible $n \times n$ matrices in $M_{n \times n}(F)$ is equal to the number of ordered lists $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ of *n* linearly independent vectors from F^n .
 - From our discussion of bases of F^n , we know that a list $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ of *n* vectors in F^n is linearly independent if and only if it is a basis.
 - Also from our discussion, we know that the matrix whose columns are the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is invertible if and only if the columns are linearly independent.
 - Thus, by combining these two facts, we see that the number of invertible $n \times n$ matrices in $M_{n \times n}(F)$ is equal to the number of ordered lists $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ of n linearly independent vectors from F^n .
 - (c) For any integer $0 \le k \le n$, show that there are exactly $(q^n 1)(q^n q) \cdots (q^n q^{k-1})$ ordered lists \mathbf{v}_1 , $\mathbf{v}_2, \ldots, \mathbf{v}_k$ of k linearly independent vectors from F^n . [Hint: Count the number of ways to choose the vector \mathbf{v}_{k+1} not in span $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$.]
 - Since subsets of linearly independent sets are linearly independent, we see that each of $\{\mathbf{v}_1\}, \{\mathbf{v}_1, \mathbf{v}_2\}, \dots, \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent.
 - So we simply need to count the number of selections of the vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ (in order) where each of the sets $\{\mathbf{v}_1\}, \{\mathbf{v}_1, \mathbf{v}_2\}, ..., \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is linearly independent.
 - If we have chosen $\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}$, then \mathbf{v}_i may be any vector not in span $(\mathbf{v}_1, \ldots, \mathbf{v}_{i-1})$. By part (a), there are q^{i-1} vectors in this span, so there are $q^n q^{i-1}$ possible choices for \mathbf{v}_i .
 - Multiplying, we obtain the total number of lists as $(q^n 1)(q^n q) \cdots (q^n q^k)$, as required.
 - (d) Deduce that the number of invertible $n \times n$ matrices in $M_{n \times n}(F)$ is equal to $(q^n 1)(q^n q) \cdots (q^n q^{k-1}) \cdots (q^n q^{n-1})$. In particular, find the number of invertible 5×5 matrices over the field \mathbb{F}_2 .
 - The first result follows immediately from setting k = n in part (c).
 - For the second part, taking n = 5 and q = 2 yields the total $31 \cdot 30 \cdot 28 \cdot 24 \cdot 16 = 9999360$.

- 7. [Challenge] Zorn's lemma states that if \mathcal{F} is a nonempty partially-ordered set in which every chain has an upper bound (i.e., an element $U \in \mathcal{F}$ such that $X \leq U$ for all X in the chain), then \mathcal{F} contains a maximal element (i.e., an element $M \in \mathcal{F}$ such that if $M \leq Y$ for some $Y \in \mathcal{F}$, then in fact Y = M). The goal of this problem is to use Zorn's lemma to prove that any linearly independent set can be extended to a basis and that any spanning set contains a basis.
 - (a) Suppose that S is a maximal linearly-independent subset of a vector space V (this means that if T is any linearly-independent subset of V containing S, then in fact T = S). Prove that S is a basis of V.
 - Suppose S does not span V: then there exists a vector $\mathbf{w} \in V$ such that $\mathbf{w} \notin \operatorname{span}(S)$.
 - Then by our results on linear independence and span, the set $S \cup \{\mathbf{w}\}$ would also be linearly independent. But this contradicts the assumption that S is maximal, since $T = S \cup \{\mathbf{w}\}$ would be a linearly independent set containing S with $T \neq S$.
 - This is impossible, so there cannot exist any vector $\mathbf{w} \in V$ with $\mathbf{w} \notin \operatorname{span}(S)$. Hence S spans V, so since it is linearly independent, it is a basis.
 - (b) Suppose C is a chain of linearly independent subsets of V (i.e., a collection of linearly independent subsets with the property that $A \subseteq B$ or $B \subseteq A$ for any $A, B \in C$). Show that $U = \bigcup_{A \in C} A$ is also linearly independent. [Hint: A linear dependence can only involve finitely many vectors.]
 - Suppose that there exist vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in U and scalars a_1, \ldots, a_k such that $a_1\mathbf{v}_1 + \cdots + a_k\mathbf{v}_k = \mathbf{0}$.
 - Suppose the vectors \mathbf{v}_i lie in the subsets $A_i \in \mathcal{C}$. Then since \mathcal{C} is a chain, since $A_i \subseteq A_j$ for each pair (i, j), by a trivial induction we see that one of the A_i must contain all of the others, hence contains all of the vectors \mathbf{v}_i .
 - But since this subset A_i is linearly independent, we must have $a_1 = \cdots = a_k = 0$, and so $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent.
 - Thus, since every finite subset of U is linearly independent, U is linearly independent.
 - (c) Prove that every linearly independent subset of V can be extended to a basis.
 - Let \mathcal{F} be the collection of all linearly-independent subsets of V containing the given set, partially ordered by inclusion. Note that \mathcal{F} is not empty since it contains the original linearly independent set.
 - By part (b), if C is any chain in \mathcal{F} contains a maximal element. Such a maximal element is a maximal linearly-independent subset of V, which by part (a) is a basis of V.
 - (d) Suppose that S is a minimal spanning set of a vector space V (this means that if T is any subset of S that spans V, then in fact T = S). Prove that S is a basis of V.
 - Suppose S is not a basis of V: then necessarily S must be linearly dependent, so there exists vector $\mathbf{w} \in S$ such that $\mathbf{w} \in \text{span}(S')$ where $S' = S \setminus \{\mathbf{w}\}$.
 - Then by our results on span, we have $\operatorname{span}(S') = \operatorname{span}(S) = V$, but S' is a proper subset of S, contradicting minimality. Hence S must be linearly independent hence a basis.
 - (e) Let $V = \mathbb{Q}$ with scalar field $F = \mathbb{Q}$ and let $S_n = \{n, n+1, n+2, ...\}$ for each positive integer n. Show that each set S_n is a spanning set and that the sets S_n form a chain, but that the intersection $\bigcap_{n=1}^{\infty} S_n$ is not a spanning set.
 - Since V is 1-dimensional, any set containing something other than 0 automatically spans V. Since each S_n is infinite, they all span V, and clearly $S_1 \supseteq S_2 \supseteq S_3 \supseteq \cdots$ so they form a chain.
 - However, the intersection $\bigcap_{n=1}^{\infty} S_n$ is empty, because any positive integer k is not in S_{k+1} , and so the intersection is not a spanning set.
 - **Remark:** It is natural to try to use Zorn's lemma to prove that a minimal spanning set must exist, in analogy to (b). This does not work, as (e) shows: the intersection of a chain of spanning sets need not span V!