
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2025 ∼ Homework 3 Solutions

1. Let F be a �eld. Identify each of the following statements as true or false:

(a) The zero vector space has no basis.

• False : the empty set is a basis for the zero space.

(b) The set {0} is a basis for the zero vector space.

• False : the empty set is a basis for the zero space.

(c) Every vector space has a �nite basis.

• False : there are in�nite-dimensional vector spaces, like F [x], which have no �nite basis.

(d) Every vector space has a unique basis.

• False : most vector spaces (e.g., F 2) have many di�erent bases.

(e) Every subspace of a �nite-dimensional vector space is �nite-dimensional.

• True : if W is a subspace of V then dim(W ) ≤ dim(V ), so dim(W ) is also �nite.

(f) Every subspace of an in�nite-dimensional vector space is in�nite-dimensional.

• False : in�nite-dimensional spaces have many �nite-dimensional subspaces (e.g., the zero subspace).

(g) If V =Mm×n(F ), then dimF V = mn.

• True : a basis is given by the mn matrices with a 1 in one entry and 0s elsewhere.

(h) If V = F [x], then dimF V is unde�ned.

• False : dimF F [x] is in�nite but perfectly well-de�ned.

(i) If V = Pn(F ), then dimF V = n.

• False : dimF V = n+ 1, not n.

(j) If dim(V ) = 5, then there exists a set of 5 vectors in V that span V but are not linearly independent.

• False : any spanning set with exactly 5 vectors is necessarily also linearly independent.

(k) If dim(V ) = 5, then a set of 4 vectors in V cannot span V .

• True : any spanning set must contain a basis, which would require at least 5 vectors.

(l) If dim(V ) = 5, then a set of 4 vectors in V cannot be linearly independent.

• False : if we take the �rst 4 vectors of any basis, then they are linearly independent.

(m) If dim(V ) = 5, then there is a unique subspace of V of dimension 0.

• True : the only subspace of dimension 0 is the zero subspace.

(n) If dim(V ) = 5, then there is a unique subspace of V of dimension 1.

• False : if v is any nonzero vector, then span(v) is 1-dimensional, and there are many such v.

(o) If dim(V ) = 5, then there is a unique subspace of V of dimension 5.

• True : the only subspace of dimension 5 is V itself.

(p) If V is in�nite-dimensional, then any in�nite linearly-independent subset is a basis.

• False : just because the subset is in�nite does not force it to span V . For example, if we take
V = F [x] and S = {1, x2, x4, x6, . . . }, then S is a linearly independent set that does not span V .

1



2. For each set S of vectors in the given vector space V , determine whether or not S is a basis of V :

(a) S = {〈1, 2〉} in V = R2.

• No : This set does not span V . Alternatively, any basis of R2 must consist of 2 vectors.

(b) S = {〈1, 2〉 , 〈3, 2〉} in V = R2.

• Yes : we can see that the two vectors in S are linearly independent, so since dimV = 2 that means
S is a basis of V .

(c) S = {〈1, 2〉 , 〈3, 2〉 , 〈1, 1〉} in V = R2.

• No : This set is not linearly independent. Alternatively, any basis of R2 must consist of 2 vectors.

(d) S = {〈1, 2, 4〉 , 〈3, 2, 1〉 , 〈1, 1, 1〉} in V = R3.

• Yes : we can check that the determinant

∣∣∣∣∣∣
1 3 1
2 2 1
3 1 1

∣∣∣∣∣∣ = 1, and therefore the three given vectors are

linearly independent and yield a basis of R3.

(e) S = {1, 1 + x, x+ x2} in V = P2(C).

• Yes : we have a+ bx+ cx2 = (a− b− c)(1) + b(1 + x) + c(1 + x2) so the given set spans V , and if
a(1) + b(1 + x) + c(x+ x2) = 0 then a+ b = b+ c = c = 0 hence a = b = c = 0 so the set is linearly
independent.

(f) S =

{[
1 1
0 0

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 0
1 1

]}
in V =M2×2(Q).

• No : This set is not linearly independent since

[
1 1
0 0

]
−
[

1 0
0 1

]
−
[

0 1
1 0

]
+

[
0 0
1 1

]
=[

0 0
0 0

]
. It also does not span V since for instance

[
1 0
0 0

]
is not in the span of these matrices.

3. Find a basis for, and the dimension of, each of the following vector spaces:

(a) The space of 3× 3 symmetric matrices over F = C.

• Such a matrix has the formM =

 a b c
b d e
c e f

 = a

 1 0 0
0 0 0
0 0 0

+b
 0 1 0

1 0 0
0 0 0

+c
 0 0 1

0 0 0
1 0 0

+
d

 0 0 0
0 1 0
0 0 0

+ e

 0 0 0
0 0 1
0 1 0

+ f

 0 0 0
0 0 0
0 0 1

.
• Thus,

 1 0 0
0 0 0
0 0 0

 ,
 0 1 0

1 0 0
0 0 0

 ,
 0 0 1

0 0 0
1 0 0

 ,
 0 0 0

0 1 0
0 0 0

 ,
 0 0 0

0 0 1
0 1 0

 ,
 0 0 0

0 0 0
0 0 1

 clearly

gives a basis, so the dimension is therefore 6 .

(b) The row space, column space, and nullspace of M =


1 1 1
2 2 2
3 3 3
4 4 4

 over R.

• Row-reducing M (immediately) yields the reduced row-echelon form E =


1 1 1
0 0 0
0 0 0
0 0 0

.
• The row space has a basis given by the row 〈1, 1, 1〉 , so the row space has dimension 1 .
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• Since there is a pivot in column 1, the column space has basis


1
2
3
4

 , and also has dimension 1 .

• For the nullspace, solving the linear system Ex = 0 (with variables x1, x2, x3, x4, x5 and free param-
eters a, b) yields the solution set 〈x1, x2, x3〉 = a 〈−1, 1, 0〉+ b 〈−1, 0, 1〉, so the nullspace has a basis

〈−1, 1, 0〉 , 〈−1, 0, 1〉 and dimension 2 .

(c) The vectors in Q5 of the form 〈a, b, c, d, e〉 with e = a+ b and b = c = d, over Q.

• Such vectors have the form 〈a, b, b, b, a+ b〉 = a 〈1, 0, 0, 0, 1〉+ b 〈0, 1, 1, 1, 1〉.
• Clearly, the set 〈1, 0, 0, 0, 1〉 , 〈0, 1, 1, 1, 1〉 is a basis, so the space has dimension 2 .

(d) The row space, column space, and nullspace of M =

 1 3 −2 −6 8
2 −1 2 8 1
−1 1 1 −3 3

 over C.

• Row-reducing M (eventually) yields the reduced row-echelon form E =

 1 0 0 2 1
0 1 0 −2 3
0 0 1 1 1

.
• The row space has a basis given by the rows 〈1, 0, 0, 2, 1〉 , 〈0, 1, 0,−2, 3〉 , 〈0, 0, 1, 1, 1〉 , so the row

space has dimension 3 .

• Since there are pivots in columns 1, 2, and 3, the column space has a basis

 1
2
−1

 ,
 3
−1
1

 ,
 −22

1

 ,

and also has dimension 3 .

• For the nullspace, solving the linear system Ex = 0 (with variables x1, x2, x3, x4, x5 and free param-
eters a, b) yields the solution set 〈x1, x2, x3, x4, x5〉 = a 〈−1,−3,−1, 0, 1〉 + b 〈−2, 2,−1, 1, 0〉, so the

nullspace has a basis 〈−1,−3,−1, 0, 1〉 , 〈−2, 2,−1, 1, 0〉 and dimension 2 .

(e) The polynomials p(x) in P4(R) such that p(1) = 0.

• Polynomials in P4(R) have the form p(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4.

• Then the condition p(1) = 0 requires a0 + a1 + a2 + a3 + a4 = 0, which is equivalent to a0 =
−a1 − a2 − a3 − a4.
• Hence the desired polynomials are of the form (−a1 − a2 − a3 − a4) + a1x + a2x

2 + a3x
3 + a4x

4 =
a1(−1 + x) + a2(−1 + x2) + a3(−1 + x3) + a4(−1 + x4).

• Hence we obtain a basis −1 + x,−1 + x2,−1 + x3,−1 + x4 so the space has dimension 4 .

• Alternatively, one could observe that p(1) = 0 requires the polynomial to be divisible by x−1, which

yields the basis x− 1, x(x− 1), x2(x− 1), x3(x− 1) .

(f) The matrices A in M2×2(Q) such that

[
1 1
2 2

]
A =

[
0 0
0 0

]
.

• IfA =

[
a b
c d

]
then the given condition requires

[
0 0
0 0

]
=

[
1 1
2 2

] [
a b
c d

]
=

[
a+ c b+ d
2a+ 2c 2b+ 2d

]
,

which yields a = −c and b = −d.

• Thus the matrices are of the form

[
−c −d
c d

]
= c

[
−1 0
1 0

]
+ d

[
0 −1
0 1

]
. Hence we obtain a

basis

[
−1 0
1 0

]
,

[
0 −1
0 1

]
and the space has dimension 2 .
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4. Let W be a vector space. Recall that if A and B are two subspaces of W then their sum is the set A+ B =
{a+ b : a ∈ A and b ∈ B}.

(a) Suppose that A ∩ B = {0}. If α is a basis for A and β is a basis for B, prove that α and β are disjoint
and that α ∪ β is a basis for A+B.

• First, we show that α ∪ β spans A + B: for any a + b ∈ A + B, since a ∈ A we can write
a = a1a1 + · · ·+ akak for some ai ∈ α and likewise since b ∈ B we can write b = b1b1 + · · ·+ blbl

for some bi ∈ β.
• Then a+ b = a1a1 + · · ·+ akak + b1b1 + · · ·+ blbl is in span(α ∪ β), as required.
• Now suppose we had a dependence a1a1 + · · ·+ akak + b1b1 + · · ·+ blbl = 0.

• Then rearranging gives a1a1 + · · ·+ akak = −(b1b1 + · · ·+ blbl). Since the left-hand side is a vector
in A and the right-hand side is a vector in B, the common expression is an element in A ∩B.

• But then since A ∩B = {0}, we have a1a1 + · · ·+ akak = 0 = −(b1b1 + · · ·+ blbl).

• Then since α and β are both linearly independent, we have a1 = · · · = ak = 0 and b1 = · · · = bl = 0.
Hence α ∪ β is linearly independent, as claimed.

(b) Now suppose that α is a basis for A and β is a basis for B. If α∪ β is a basis for A+B and α and β are
disjoint, prove that A ∩B = {0}.
• Suppose that v ∈ A ∩ B. Then since v ∈ A we may write v = a1a1 + · · · + akak for some ai ∈ α,
and since v ∈ B we may also write v = b1b1 + · · ·+ blbl for some bi ∈ β.

• Then subtracting the expressions yields a1a1 + · · ·+ akak − b1b1 − · · · − blbl = 0.

• But since α ∪ β is a basis and α, β are linearly independent, all of the scalar coe�cients must be
zero. Then v = 0a1 + · · ·+ 0ak = 0, and so A ∩B = {0}.

The situation in (a)-(b) is very important and arises often. Explicitly, if A and B are two subspaces of W
such that A+B =W and A∩B = {0} is the trivial subspace, we write W = A⊕B and call W the (internal)
direct sum of A and B. (The idea is that we may �decompose� W into two independent pieces A and B.)

(c) Show that R2 is the direct sum of the subspaces given by the x-axis and the y-axis, and is also the direct
sum of the subspaces given by the x-axis and the line y = 3x.

• First for X = {〈x, 0〉} and Y = {〈0, y〉}, since 〈x, y〉 = 〈x, 0〉 + 〈0, y〉, we have R2 = X + Y .
Furthermore, X ∩ Y = {〈0, 0〉} so the sum is a direct sum.

• Second with Z = {〈y/3, y〉}, since 〈x, y〉 = 〈x− y/3, 0〉+〈y/3, y〉, we have R2 = X+Z. Furthermore,
X ∩ Z = {〈0, 0〉} so the sum is a direct sum.

(d) Prove that W = A⊕B if and only if every vector w ∈W can be written uniquely in the form w = a+b
where a ∈ A and b ∈ B.
• First suppose that every vector w ∈W can be written uniquely in the form w = a+b where a ∈ A
and b ∈ B. Then clearly W = A+B.

• Furthermore, for any w ∈ A∩B, we may write w = w+ 0 = 0+w. Hence by uniqueness, we must
have w = 0, and therefore A ∩B = {0}. Hence W = A⊕B as required.

• Conversely, suppose W = A ⊕ B. Then every vector w ∈ W can be written as a + b, so we need
only consider uniqueness: if w = a+ b = a′ + b′, then subtracting yields a− a′ = b′ − b.

• Since the vector a − a′ = b′ − b is in both A and B, it must be the zero vector: hence a = a′ and
b = b′, so the representation of w is unique as required.

(e) Show that if W = A⊕B then dim(W ) = dim(A)+dim(B). Show using an explicit counterexample that
the converse statement need not hold.

• The �rst part is simply a rewriting of part (b). For the second part, if for example we take W = R2

with A = B = span(〈1, 0〉), then the dimensions sum correctly, but A+B = A = span(〈1, 0〉) 6=W .
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5. Let V be a vector space such that dimC V = n. Prove that if V is now considered a vector space over R (using
the same addition and scalar multiplication), then dimR V = 2n.

• Suppose that dimC V = n. Choose a basis S = {v1,v2, . . . ,vn} for V , as a complex vector space. We
claim that the set S′ = {v1, iv1,v2, iv2, . . . ,vn, ivn} is a basis for V considered as a real vector space,
which would immediately imply that dimR V = 2n.

• S′ spans V : Let x be a vector in V . By the assumption that S spans V , there exist (complex) scalars
with x = (a1 + b1i)v1 + · · ·+ (an + bni)vn. But by rearranging, we see that x = a1v1 + b1(iv1) + · · ·+
anvn + bn(ivn), meaning that x is a linear combination of the vectors in S′ using real coe�cients, as
required.

• S′ is linearly independent: Suppose there exist real numbers ai, bi such that 0 = a1v1 + b1(iv1) + · · ·+
anvn + bn(ivn). By rearranging this yields 0 = (a1 + b1i)v1 + · · ·+ (an + bni)vn. But by the hypothesis
that S is linearly independent, all of these (complex) coe�cients must be zero.

6. Let F be a �nite �eld with q elements. The goal of this problem is to count the invertible matrices inMn×n(F ).

(a) Suppose W is a k-dimensional subspace of Fn. Show that W contains exactly qk vectors.

• Choose a basis w1, . . . ,wk for W . Then every vector in W may be written as a linear combination
a1w1 + · · ·+ akwk for unique scalars a1, . . . , ak.

• Since there are q choices for each scalar ai for each 1 ≤ i ≤ k, there are qk total choices for the
coe�cients and thus qk possible vectors.

(b) Show that the number of invertible n × n matrices in Mn×n(F ) is equal to the number of ordered lists
v1, v2, ... , vn of n linearly independent vectors from Fn.

• From our discussion of bases of Fn, we know that a list v1, v2, ... , vn of n vectors in Fn is linearly
independent if and only if it is a basis.

• Also from our discussion, we know that the matrix whose columns are the vectors v1, v2, ... , vn is
invertible if and only if the columns are linearly independent.

• Thus, by combining these two facts, we see that the number of invertible n×n matrices inMn×n(F )
is equal to the number of ordered lists v1, v2, ... , vn of n linearly independent vectors from Fn.

(c) For any integer 0 ≤ k ≤ n, show that there are exactly (qn − 1)(qn − q) · · · (qn − qk−1) ordered lists v1,
v2, ... , vk of k linearly independent vectors from Fn. [Hint: Count the number of ways to choose the
vector vk+1 not in span(v1, . . . ,vk).]

• Since subsets of linearly independent sets are linearly independent, we see that each of {v1}, {v1,v2},
... , {v1,v2, ...,vk} is linearly independent.

• So we simply need to count the number of selections of the vectors v1, v2, ... , vk (in order) where
each of the sets {v1}, {v1,v2}, ... , {v1,v2, ...,vk} is linearly independent.

• If we have chosen v1, . . . ,vi−1, then vi may be any vector not in span(v1, . . . ,vi−1). By part (a),
there are qi−1 vectors in this span, so there are qn − qi−1 possible choices for vi.

• Multiplying, we obtain the total number of lists as (qn − 1)(qn − q) · · · (qn − qk), as required.
(d) Deduce that the number of invertible n × n matrices in Mn×n(F ) is equal to (qn − 1)(qn − q) · · · (qn −

qk−1) · · · (qn − qn−1). In particular, �nd the number of invertible 5× 5 matrices over the �eld F2.

• The �rst result follows immediately from setting k = n in part (c).

• For the second part, taking n = 5 and q = 2 yields the total 31 · 30 · 28 · 24 · 16 = 9999360.
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7. [Challenge] Zorn's lemma states that if F is a nonempty partially-ordered set in which every chain has an
upper bound (i.e., an element U ∈ F such that X ≤ U for all X in the chain), then F contains a maximal
element (i.e., an element M ∈ F such that if M ≤ Y for some Y ∈ F , then in fact Y =M). The goal of this
problem is to use Zorn's lemma to prove that any linearly independent set can be extended to a basis and
that any spanning set contains a basis.

(a) Suppose that S is a maximal linearly-independent subset of a vector space V (this means that if T is
any linearly-independent subset of V containing S, then in fact T = S). Prove that S is a basis of V .

• Suppose S does not span V : then there exists a vector w ∈ V such that w 6∈ span(S).

• Then by our results on linear independence and span, the set S ∪ {w} would also be linearly inde-
pendent. But this contradicts the assumption that S is maximal, since T = S ∪ {w} would be a
linearly independent set containing S with T 6= S.

• This is impossible, so there cannot exist any vector w ∈ V with w 6∈ span(S). Hence S spans V , so
since it is linearly independent, it is a basis.

(b) Suppose C is a chain of linearly independent subsets of V (i.e., a collection of linearly independent subsets
with the property that A ⊆ B or B ⊆ A for any A,B ∈ C). Show that U =

⋃
A∈C A is also linearly

independent. [Hint: A linear dependence can only involve �nitely many vectors.]

• Suppose that there exist vectors v1, . . . ,vk in U and scalars a1, . . . , ak such that a1v1+· · ·+akvk = 0.

• Suppose the vectors vi lie in the subsets Ai ∈ C. Then since C is a chain, since Ai ⊆ Aj for each pair
(i, j), by a trivial induction we see that one of the Ai must contain all of the others, hence contains
all of the vectors vi.

• But since this subset Ai is linearly independent, we must have a1 = · · · = ak = 0, and so v1, . . . ,vk

are linearly independent.

• Thus, since every �nite subset of U is linearly independent, U is linearly independent.

(c) Prove that every linearly independent subset of V can be extended to a basis.

• Let F be the collection of all linearly-independent subsets of V containing the given set, partially
ordered by inclusion. Note that F is not empty since it contains the original linearly independent
set.

• By part (b), if C is any chain in F contains a maximal element. Such a maximal element is a maximal
linearly-independent subset of V , which by part (a) is a basis of V .

(d) Suppose that S is a minimal spanning set of a vector space V (this means that if T is any subset of S
that spans V , then in fact T = S). Prove that S is a basis of V .

• Suppose S is not a basis of V : then necessarily S must be linearly dependent, so there exists vector
w ∈ S such that w ∈ span(S′) where S′ = S\{w}.
• Then by our results on span, we have span(S′) = span(S) = V , but S′ is a proper subset of S,
contradicting minimality. Hence S must be linearly independent hence a basis.

(e) Let V = Q with scalar �eld F = Q and let Sn = {n, n+ 1, n+ 2, . . . } for each positive integer n. Show
that each set Sn is a spanning set and that the sets Sn form a chain, but that the intersection

⋂∞
n=1 Sn

is not a spanning set.

• Since V is 1-dimensional, any set containing something other than 0 automatically spans V . Since
each Sn is in�nite, they all span V , and clearly S1 ⊇ S2 ⊇ S3 ⊇ · · · so they form a chain.

• However, the intersection
⋂∞

n=1 Sn is empty, because any positive integer k is not in Sk+1, and so
the intersection is not a spanning set.

Remark: It is natural to try to use Zorn's lemma to prove that a minimal spanning set must exist, in analogy
to (b). This does not work, as (e) shows: the intersection of a chain of spanning sets need not span V !

6


