E. Dummit’s Math 4571 ~ Advanced Linear Algebra, Spring 2025 ~ Homework 3 Solutions

1. Let F be a field. Identify each of the following statements as true or false:

(a) The zero vector space has no basis.

° : the empty set is a basis for the zero space.
(b) The set {0} is a basis for the zero vector space.

° : the empty set is a basis for the zero space.
(c) Every vector space has a finite basis.
. : there are infinite-dimensional vector spaces, like F[x], which have no finite basis.
(d) Every vector space has a unique basis.
) : most vector spaces (e.g., F'?) have many different bases.
(e) Every subspace of a finite-dimensional vector space is finite-dimensional.
. : if W is a subspace of V then dim(W) < dim(V'), so dim(W) is also finite.
(f) Every subspace of an infinite-dimensional vector space is infinite-dimensional.
° : infinite-dimensional spaces have many finite-dimensional subspaces (e.g., the zero subspace).
() ¥V = Myxn(F), then dimp V = mn.
o : a basis is given by the mn matrices with a 1 in one entry and 0Os elsewhere.
(h) If V = F[z], then dimp V is undefined.
. : dimp Fz] is infinite but perfectly well-defined.
(i) If V = P,(F), then dimp V = n.
° : dimgp V =n+ 1, not n.
(j) If dim(V) = 5, then there exists a set of 5 vectors in V' that span V but are not linearly independent.
) : any spanning set with exactly 5 vectors is necessarily also linearly independent.
(k) If dim(V) =5, then a set of 4 vectors in V' cannot span V.
. : any spanning set must contain a basis, which would require at least 5 vectors.
(1) If dim (V') = 5, then a set of 4 vectors in V' cannot be linearly independent.
° : if we take the first 4 vectors of any basis, then they are linearly independent.
(m) If dim(V) = 5, then there is a unique subspace of V' of dimension 0.
° : the only subspace of dimension 0 is the zero subspace.
(n) If dim(V') = 5, then there is a unique subspace of V' of dimension 1.
. : if v is any nonzero vector, then span(v) is 1-dimensional, and there are many such v.
(o) If dim(V') = 5, then there is a unique subspace of V' of dimension 5.
° : the only subspace of dimension 5 is V' itself.
(p) If V is infinite-dimensional, then any infinite linearly-independent subset is a basis.

° : just because the subset is infinite does not force it to span V. For example, if we take
V = F[r] and S = {1,22, 2%, 2%,...}, then S is a linearly independent set that does not span V.




2. For each set S of vectors in the given vector space V, determine whether or not S is a basis of V:
(a) S=1{(1,2)}in V = R2.
o : This set does not span V. Alternatively, any basis of R? must consist of 2 vectors.
(b) S ={(1,2),(3,2)} in V = R2,

° : we can see that the two vectors in S are linearly independent, so since dim V = 2 that means
S is a basis of V.
() S ={(1,2),(3,2),(1,1)} in V = R2.
° : This set is not linearly independent. Alternatively, any basis of R? must consist of 2 vectors.
(d) S=1{(1,2,4),(3,2,1),(1,1,1)} in V = R3,
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° : we can check that the determinant | 2 1 | =1, and therefore the three given vectors are
3 1

linearly independent and yield a basis of R3.
(e) S={l,1+z,2+22}in V = P(C).

. : we have a + bx + cz? = (a — b — ¢)(1) + b(1 + z) + ¢(1 + 2?) so the given set spans V, and if
a(l)+b(1+x)+c(z+2?)=0thena+b=0b+c=c=0hence a=b=c=0 so the set is linearly
independent.

11 1 0 0 1 0 0 .
. . . . . 11 10 0 1 0 0
. . This set is not linearly independent since [0 0 } — [ 0 1 } - {1 0 } + {1 1} =

0 0 . . . . .
[ } . It also does not span V since for instance is not in the span of these matrices.

0 0 0 0

3. Find a basis for, and the dimension of, each of the following vector spaces:

(a) The space of 3 x 3 symmetric matrices over F' = C.

a b c 1 00 01 0 0 0 1
e Such amatrix hasthefoom M = | b d e | =a 0 O[4+b[1 0 O |4c| 0 0 0 |+
c e f 0 0 0 0 0 0 1 00
0 0 0 0 0 0 0 0 0
d{0 1 0|+e|l 0 0 1 |4+f)0 0 0.
0 0 0 01 0 0 0 1
1 00 01 0 0 0 1 0 0 0 0 0 0 0 0 0
e Thus,/| O O Of,[1 O O}|,{0 O O],]0 1 O{,[{0 O 1|, 0 O O] |clearly
0 0 O 0 0 0 1 00 0 0 0 01 0 0 0 1
gives a basis, so the dimension is therefore @
1 1 1
2 2 2
(b) The row space, column space, and nullspace of M = 3 3 3 |over R.
4 4 4
1 1 1
. . . . 0 0 0
e Row-reducing M (immediately) yields the reduced row-echelon form F = 00 0
0 0 0

e The row space has a basis given by the row | (1,1, 1) |, so the row space has dimension .



e Since there is a pivot in column 1, the column space has basis

= W N =

, and also has dimension .

e For the nullspace, solving the linear system Ex = 0 (with variables x1, z2, 23, 24, x5 and free param-
eters a,b) yields the solution set (z1,22,23) =a({—1,1,0) + b(—1,0,1), so the nullspace has a basis

’ (—1,1,0), (—1,0,1) ‘ and dimension .

(c) The vectors in Q° of the form (a,b,c,d,e) with e = a+b and b = ¢ = d, over Q.
e Such vectors have the form (a,b,b,b,a +b) =a(1,0,0,0,1) +b(0,1,1,1,1).
e Clearly, the set ’ (1,0,0,0,1),(0,1,1,1,1) ‘ is a basis, so the space has dimension .

1 3 -2 —6

(d) The row space, column space, and nullspace of M = 2 -1 2 8
-1 1 1 =3
e Row-reducing M (eventually) yields the reduced row-echelon form E =

space has dimension .

e Since there are pivots in columns 1, 2, and 3, the column space has a basis

and also has dimension .
e For the nullspace, solving the linear system Ex = 0 (with variables x1, x2, 23, 24, 25 and free param-
eters a,b) yields the solution set (x1,za, 23,24, 25) = a (—=1,-3,—-1,0,1) + b(—2,2,—1,1,0), so the
nullspace has a basis ’ (—-1,-3,-1,0,1), (—2,2,-1,1,0) ‘ and dimension .

(e) The polynomials p(x) in Ps(R) such that p(1) = 0.

e Polynomials in P;(R) have the form p(x) = ag + a1z + as2? + azx® + asx

00 2 1

1 0 -2 3

01 1 1

0 , so the row
1 3 -2
2 ) -1 ) 2 >
-1 1 1

4

e Then the condition p(1) = 0 requires ag + a1 + a2 + az + a4 = 0, which is equivalent to ay =
—a1 —as — a3 — Q4.

4

e Hence the desired polynomials are of the form (—a; — a2 — a3 — aq) + a1z + asx? + azxd + agxt =
a1(=14+2) + ag(—1 4+ 22) + az(—=1 + 22) + ag(—1 + 2*).

e Hence we obtain a basis ’ 14z, -14+22-1+2% -1 +2* ‘ so the space has dimension .

e Alternatively, one could observe that p(1) = 0 requires the polynomial to be divisible by « — 1, which
yields the basis ’x —La(x—1),2%(x —1),2%(z -1 ‘

)
f) The matrices A in Msy2(Q) such that 11 A= 0
(1) ’
0
0

a
oIfA:{C d

b . " .
} then the given condition requires [

2 2

which yields a = —c and b = —d.

e Thus the matrices are of the form [ N

-1 0

basis [ 1 0

i

0
0

-1
1

|

a =3 o]

and the space has dimension .

0

0

0] |11 a b| | a+c b+d
0o |2 2 c d| | 2a+2c 26+2d |’

}. Hence we obtain a




4. Let W be a vector space. Recall that if A and B are two subspaces of W then their sum is the set A + B =
{a+b:acAandb e B}.

(a) Suppose that AN B = {0}. If « is a basis for A and § is a basis for B, prove that o and § are disjoint
and that a U S is a basis for A + B.

e First, we show that a« U 8 spans A + B: for any a+ b € A+ B, since a € A we can write
a = aja; + --- + agay for some a; € « and likewise since b € B we can write b = b1by + - -+ + b;by
for some b; € 5.

e Then a+b =aja; + -+ agay + bi1by + - -+ b;b; is in span(a U 3), as required.

e Now suppose we had a dependence aja; + --- + agag + b1by +--- + bjb; = 0.

e Then rearranging gives aja; + - - -+ arax = —(b1by + - -+ b;b;). Since the left-hand side is a vector
in A and the right-hand side is a vector in B, the common expression is an element in A N B.

e But then since AN B = {0}, we have aja; + - + agar = 0= —(b1by + - - - + bjby).

e Then since o and S are both linearly independent, we have a; =--- =ay =0and by =--- =b; = 0.
Hence o U S is linearly independent, as claimed.

(b) Now suppose that « is a basis for A and 3 is a basis for B. If « U is a basis for A+ B and « and 3 are
disjoint, prove that AN B = {0}.
e Suppose that v € AN B. Then since v € A we may write v = a1a; + - -+ + axay for some a; € q,
and since v € B we may also write v = b;by + - - - + b;b; for some b; € 8.
e Then subtracting the expressions yields a;a; + -+ + agay — bbby —--- —b;b; = 0.

e But since o U [ is a basis and «, 8 are linearly independent, all of the scalar coefficients must be
zero. Then v =0a; +---+ 0ay = 0, and so AN B = {0}.

The situation in (a)-(b) is very important and arises often. Explicitly, if A and B are two subspaces of W
such that A+ B = W and AN B = {0} is the trivial subspace, we write W = A@ B and call W the (internal)
direct sum of A and B. (The idea is that we may “decompose” W into two independent pieces A and B.)

(c) Show that R? is the direct sum of the subspaces given by the x-axis and the y-axis, and is also the direct
sum of the subspaces given by the z-axis and the line y = 3z.

e First for X = {(z,0)} and Y = {(0,y)}, since (z,y) = (z,0) + (0,y), we have R> = X + Y.
Furthermore, X NY = {(0,0)} so the sum is a direct sum.

e Second with Z = {{y/3,y)}, since (x,y) = (x — y/3,0)+(y/3,y), we have R? = X +Z. Furthermore,
X NZ={(0,0)} so the sum is a direct sum.

(d) Prove that W = A@® B if and only if every vector w € W can be written uniquely in the form w =a+b
where a € A and b € B.

e First suppose that every vector w € W can be written uniquely in the form w = a+ b where a € A
and b € B. Then clearly W = A+ B.

e Furthermore, for any w € AN B, we may write w = w + 0 = 0 + w. Hence by uniqueness, we must
have w = 0, and therefore AN B = {0}. Hence W = A @ B as required.

e Conversely, suppose W = A @ B. Then every vector w € W can be written as a + b, so we need
only consider uniqueness: if w = a+ b = a’ + b’, then subtracting yields a —a’ = b’ — b.

e Since the vector a—a’ = b’ — b is in both A and B, it must be the zero vector: hence a = a’ and
b = b/, so the representation of w is unique as required.

(e) Show that if W = A® B then dim(W) = dim(A) + dim(B). Show using an explicit counterexample that
the converse statement need not hold.

e The first part is simply a rewriting of part (b). For the second part, if for example we take W = R?
with A = B = span((1,0)), then the dimensions sum correctly, but A + B = A = span((1,0)) # W.




5. Let V be a vector space such that dim¢ V' = n. Prove that if V' is now considered a vector space over R (using
the same addition and scalar multiplication), then dimg V' = 2n.

e Suppose that dim¢ V' = n. Choose a basis S = {vi,va,...,v,} for V, as a complex vector space. We
claim that the set S’ = {vy,ivy,va,iva,..., vy, iv,} is a basis for V considered as a real vector space,
which would immediately imply that dimg V' = 2n.

e S/ spans V: Let x be a vector in V. By the assumption that S spans V, there exist (complex) scalars
with x = (a1 + b13)vy + -+ - + (an + bpi)v,. But by rearranging, we see that x = a;vy + b1 (ivy) + -+ +
anVy + by (ivy), meaning that x is a linear combination of the vectors in S’ using real coefficients, as
required.

e 5 is linearly independent: Suppose there exist real numbers a;, b; such that 0 = a;vy + by (ivy) + -+ +
anVy + b, (1vy,). By rearranging this yields 0 = (aq + b1i)vy + - - - + (ay, + bpi)vy,. But by the hypothesis
that S is linearly independent, all of these (complex) coefficients must be zero.

6. Let F be a finite field with ¢ elements. The goal of this problem is to count the invertible matrices in M,, y,, (F).

(a) Suppose W is a k-dimensional subspace of F™. Show that W contains exactly ¢* vectors.

Choose a basis wi,...,wy for W. Then every vector in W may be written as a linear combination
a1wyq + - - - + apwy, for unique scalars aq, ..., ag.

Since there are ¢ choices for each scalar a; for each 1 < i < k, there are ¢* total choices for the
coefficients and thus ¢* possible vectors.

(b) Show that the number of invertible n x n matrices in M, «,(F') is equal to the number of ordered lists
Vi, V2, ... , vV, of n linearly independent vectors from F™.

From our discussion of bases of F", we know that a list vy, va, ... , v, of n vectors in F™ is linearly
independent if and only if it is a basis.

Also from our discussion, we know that the matrix whose columns are the vectors vi, vo, ... , v, is
invertible if and only if the columns are linearly independent.

Thus, by combining these two facts, we see that the number of invertible n x n matrices in My, x, (F)
is equal to the number of ordered lists vy, vs, ... , v,, of n linearly independent vectors from F™.

(c) For any integer 0 < k < n, show that there are exactly (¢" — 1)(¢" — q)--- (¢" — ¢* ') ordered lists vy,
V3, ... , Vg of k linearly independent vectors from F™. [Hint: Count the number of ways to choose the
vector Vi1 not in span(vy, ..., vg).]

Since subsets of linearly independent sets are linearly independent, we see that each of {v1}, {v1,va},
wee y {V1,Va, ..., vi} is linearly independent.

So we simply need to count the number of selections of the vectors vi, va, ... , vi (in order) where
each of the sets {v1}, {vi,va}, ... , {v1,Va,...,vi} is linearly independent.
If we have chosen vy,...,v;_1, then v; may be any vector not in span(vy,...,v;_1). By part (a),

there are ¢*~! vectors in this span, so there are ¢" — ¢*~! possible choices for v;.

Multiplying, we obtain the total number of lists as (¢ — 1)(¢" — q) - - - (¢" — ¢¥), as required.

(d) Deduce that the number of invertible n x n matrices in M,,x,(F) is equal to (¢" — 1)(¢" — q) --- (¢" —

q

F=1)...(¢" — ¢"~ ). In particular, find the number of invertible 5 x 5 matrices over the field Fs.

The first result follows immediately from setting & = n in part (c).
For the second part, taking n = 5 and ¢ = 2 yields the total 31 -30-28-24 - 16 = 9999360.




7. [Challenge] Zorn’s lemma states that if F is a nonempty partially-ordered set in which every chain has an
upper bound (i.e., an element U € F such that X < U for all X in the chain), then F contains a maximal
element (i.e., an element M € F such that if M <Y for some Y € F, then in fact Y = M). The goal of this
problem is to use Zorn’s lemma to prove that any linearly independent set can be extended to a basis and
that any spanning set contains a basis.

(a) Suppose that S is a maximal linearly-independent subset of a vector space V (this means that if T is
any linearly-independent subset of V' containing S, then in fact T = S). Prove that S is a basis of V.

e Suppose S does not span V: then there exists a vector w € V' such that w ¢ span(S).

e Then by our results on linear independence and span, the set S U {w} would also be linearly inde-
pendent. But this contradicts the assumption that S is maximal, since T'= S U {w} would be a
linearly independent set containing S with T # S.

e This is impossible, so there cannot exist any vector w € V with w ¢ span(S). Hence S spans V, so
since it is linearly independent, it is a basis.

(b) Suppose C is a chain of linearly independent subsets of V' (i.e., a collection of linearly independent subsets
with the property that A C B or B C A for any A, B € C). Show that U = (. A is also linearly
independent. [Hint: A linear dependence can only involve finitely many vectors.|

e Suppose that there exist vectors vy, ..., vy in U and scalars a1, ..., ai such that a;vi+- - -+arvy = 0.

e Suppose the vectors v; lie in the subsets A; € C. Then since C is a chain, since A; C A; for each pair
(i,4), by a trivial induction we see that one of the A; must contain all of the others, hence contains
all of the vectors v;.

e But since this subset A; is linearly independent, we must have a; = --- = ax = 0, and so vy,..., Vg
are linearly independent.

e Thus, since every finite subset of U is linearly independent, U is linearly independent.
(¢) Prove that every linearly independent subset of V' can be extended to a basis.

e Let F be the collection of all linearly-independent subsets of V containing the given set, partially
ordered by inclusion. Note that F is not empty since it contains the original linearly independent
set.

e By part (b), if C is any chain in F contains a maximal element. Such a maximal element is a maximal
linearly-independent subset of V', which by part (a) is a basis of V.

(d) Suppose that S is a minimal spanning set of a vector space V (this means that if T is any subset of S
that spans V, then in fact T = S). Prove that S is a basis of V.

e Suppose S is not a basis of V: then necessarily S must be linearly dependent, so there exists vector
w € S such that w € span(S’) where S" = S\{w}.

e Then by our results on span, we have span(S’) = span(S) = V, but S’ is a proper subset of S,
contradicting minimality. Hence S must be linearly independent hence a basis.

(e) Let V = Q with scalar field F' = Q and let S,, = {n,n+ 1,n +2,...} for each positive integer n. Show
that each set S, is a spanning set and that the sets S,, form a chain, but that the intersection (., S,
is not a spanning set.

e Since V is 1-dimensional, any set containing something other than 0 automatically spans V. Since
each S, is infinite, they all span V', and clearly S; 2 Sy O S3 O -+ so they form a chain.

e However, the intersection ﬂf:’:l S, is empty, because any positive integer k is not in Sk41, and so
the intersection is not a spanning set.

Remark: It is natural to try to use Zorn’s lemma to prove that a minimal spanning set must exist, in analogy
to (b). This does not work, as (e) shows: the intersection of a chain of spanning sets need not span V!




