- 1. Identify each of the following statements as true or false:
 - (a) Every vector space contains a zero vector.
 - True : this is one of the vector space axioms.
 - (b) In any vector space, $\alpha \mathbf{v} = \alpha \mathbf{w}$ implies that $\mathbf{v} = \mathbf{w}$.
 - False: for example we have $0 \cdot \mathbf{v} = 0 \cdot \mathbf{w}$ for any \mathbf{v}, \mathbf{w} .
 - (c) In any vector space, $\alpha \mathbf{v} = \beta \mathbf{v}$ implies that $\alpha = \beta$.
 - False: for example we have $1 \cdot \mathbf{0} = 2 \cdot \mathbf{0}$.
 - (d) If U is a subspace of V and V is a subspace of W, then U is a subspace of W.
 - True : this follows from the subspace criterion (or even just the definition of subspace).
 - (e) The empty set is a subspace of any vector space.
 - False : subspaces are by definition not empty.
 - (f) The intersection of two subspaces is always a subspace.
 - True : the intersection of any collection of subspaces is a subspace.
 - (g) The union of two subspaces is always a subspace.
 - False: for example, the union of $\{\langle x, 0 \rangle\}$ and $\{\langle 0, y \rangle\}$ in \mathbb{R}^2 is not a subspace.
 - (h) The union of two subspaces is never a subspace.
 - False: for example if we take two subspaces $W_1 \subseteq W_2$ then $W_1 \cup W_2 = W_2$ is still a subspace.
 - (i) The span of the empty set is the empty set.
 - False: the span of the empty set is the zero subspace containing only **0**, which is different from the empty set.
 - (j) The span of the zero vector is the zero subspace.
 - True : the only vector spanned by the zero vector is the zero vector itself.
 - (k) If S is any subset of V, then $\operatorname{span}(S)$ is the intersection of all subspaces of V containing S.
 - True : this is one of the basic facts about spans.
 - (1) If S is any subset of V, then $\operatorname{span}(S)$ always contains the zero vector.
 - True : the span is always a subspace, so it contains the zero vector (even if S is empty).
 - (m) Any set containing the zero vector is linearly independent.

• False : in fact the opposite is true, any set set containing the zero vector is linearly dependent!

- (n) Any subset of a linearly independent set is linearly independent.
 - True : any linear dependence in the subset would give one in the original set.
- (o) Any subset of a linearly dependent set is linearly dependent.
 - False: removing elements from a linearly dependent set could certainly yield a linearly independent set (e.g., the empty set!).

- 2. Determine whether or not each given set S is a subspace of the given vector space V. For each set that is not a subspace, identify at least one part of the subspace criterion that fails.
 - (a) $V = \mathbb{R}^4$, S = the vectors \mathbf{v} in \mathbb{R}^4 with $\mathbf{v} \cdot \langle 1, 0, 1, 1 \rangle = 2$.
 - This set is not a subspace because it does not contain the zero vector. (It also fails the other two parts of the subspace criterion.)
 - (b) V = real-valued functions on [0,1], S = the functions with f''(x) = f(x).
 - This set is a subspace because it contains the zero function and is closed under addition and scalar multiplication.
 - (c) $V = \mathbb{C}^5$, S = the vectors $\langle a, b, c, d, e \rangle$ with e = a + b + c and b = c = d.
 - This set is a subspace because it contains the zero vector and is closed under addition and scalar multiplication.
 - (d) $V = \text{real-valued functions on } \mathbb{R}, S = \text{the functions with } f(x) = f(1-x) \text{ for all real } x.$
 - This set is a subspace because it contains the zero vector and is closed under addition and scalar multiplication.
 - (e) $V = M_{3\times 3}(\mathbb{R}), S = \text{the } 3 \times 3 \text{ matrices with integer entries.}$
 - This set is not a subspace because it is not closed under scalar multiplication (specifically, by non-integer scalars).
 - (f) $V = M_{3\times 3}(\mathbb{R}), S = \text{the } 3 \times 3 \text{ matrices with nonnegative real entries.}$
 - This set is not a subspace because it is not closed under scalar multiplication (specifically, by negative scalars).
 - (g) $V = P_3(\mathbb{C}), S =$ the polynomials in V with p(i) = 0.
 - This set is a subspace because it contains the zero polynomial and is closed under addition and scalar multiplication.
 - (h) $V = M_{2 \times 2}(\mathbb{Q}), S =$ the matrices in V of determinant zero.
 - This set is not a subspace because it is not closed under addition. For example, S contains $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ but not their sum $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. (It does satisfy the other two properties, however.)
 - (i) V = real-valued functions on \mathbb{R} , S = the functions that are zero at every rational number.
 - This set is a subspace because it contains the zero function and is closed under addition and scalar multiplication. (Note that V contains lots of functions, such as the function that is 1 at $x = \sqrt{2}$ and 0 everywhere else.)
- 3. For each set of vectors in each vector space, determine (i) if they span V and (ii) if they are linearly independent:
 - (a) $\langle 1, 2 \rangle$, $\langle 3, 2 \rangle$, $\langle 1, 1 \rangle$ in \mathbb{R}^2 .
 - Some quick calculations will show that these vectors do span, but are not linearly independent.
 - (b) $\langle 1, 2, 4 \rangle$, $\langle 3, 2, 1 \rangle$, $\langle 1, 1, 1 \rangle$ in \mathbb{R}^3 .
 - Since we have 3 vectors in \mathbb{R}^3 we can use the determinant shortcut: the matrix whose columns are the three given vectors has nonzero determinant, so the three vectors do span and are linearly independent

- (c) $1 + x, x + x^2$ in $P_2(\mathbb{C})$.
 - These 2 polynomials do not span because $P_2(\mathbb{C})$ has dimension 3. They are linearly independent however, because neither is a scalar multiple of the other.
- (d) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ in $M_{2\times 2}(\mathbb{F}_5)$. [Note $\mathbb{F}_5 = \mathbb{Z}/5\mathbb{Z}$; the entries of the matrices are considered modulo 5.]
 - These 2 matrices do not span because $M_{2\times 2}$ has dimension 4. They are linearly independent however, because neither is a scalar multiple of the other.
- (e) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ in $M_{2 \times 2}(\mathbb{R})$.
 - These 3 matrices do not span because $M_{2\times 2}$ has dimension 4. They are linearly independent, because $a \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} + c \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ yields a + c = a + b = b + c = 0 which has only the solution a = b = c = 0.
- (f) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ in $M_{2 \times 2}(\mathbb{F}_2)$.
 - These 3 matrices do not span because $M_{2\times 2}$ has dimension 4. They are not linearly independent because their sum is the zero matrix.
- 4. Suppose A is an $m \times n$ matrix with entries from the field F.
 - (a) Show that the set of all vectors $\mathbf{x} \in F^n$ such that $A\mathbf{x}$ equals the zero vector (in F^m) is a subspace of F^n .
 - We simply check the subspace criterion:
 - For [S1], clearly $A\mathbf{0} = \mathbf{0}$.
 - For [S2], if $A\mathbf{x} = A\mathbf{y} = \mathbf{0}$ then $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0}$.
 - For [S3], if $A\mathbf{x} = A\mathbf{y} = \mathbf{0}$ then $A(\alpha \mathbf{x}) = \alpha(A\mathbf{x}) = \alpha \mathbf{0} = \mathbf{0}$.
 - (b) Deduce that the set of solutions to any homogeneous system of linear equations (i.e., in which all of the constants are equal to zero) over F is an F-vector space.
 - If we take A to be the coefficient matrix, then the variable vector \mathbf{x} is a simultaneous solution to all of the equations if and only if $A\mathbf{x} = \mathbf{0}$.
 - So by part (a), the space of solutions is a subspace of F^m hence is a vector space.
- 5. Suppose V is a vector space and let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ and $T = {\mathbf{v}_1, \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3}$.
 - (a) If S is linearly independent, show that T is linearly independent.
 - Suppose we had a dependence $a(\mathbf{v}_1) + b(\mathbf{v}_1 + \mathbf{v}_2) + c(\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3) = \mathbf{0}$.
 - Distributing yields $(a + b + c)\mathbf{v}_1 + (b + c)\mathbf{v}_2 + c\mathbf{v}_3 = \mathbf{0}$, and so linear independence of S requires a+b+c=b+c=c=0, which has only the solution a=b=c=0. Hence T is linearly independent.
 - (b) If S spans V, show that T spans V.
 - If S spans V then for any $\mathbf{w} \in V$ we can write $\mathbf{w} = a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3$.
 - Then it is not hard to see that $\mathbf{w} = (a-b)\mathbf{v}_1 + (b-c)(\mathbf{v}_1 + \mathbf{v}_2) + c(\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3)$, so T also spans V.

- 6. If V is a vector space and W_1 , W_2 are two subspaces of V, their sum is defined to be the set $W_1 + W_2 =$ $\{\mathbf{w}_1 + \mathbf{w}_2 : \mathbf{w}_1 \in W_1 \text{ and } \mathbf{w}_2 \in W_2\}$ of all sums of an element of W_1 with an element of W_2 .
 - (a) Prove that $W_1 + W_2$ contains W_1 and W_2 , and is a subspace of V.
 - For the first part, for any \mathbf{w}_1 in W_1 and \mathbf{w}_2 in W_2 we can write $\mathbf{w}_1 = \mathbf{w}_1 + \mathbf{0}$ and $\mathbf{w}_2 = \mathbf{0} + \mathbf{w}_2$. Thus so \mathbf{w}_1 and \mathbf{w}_2 are both in $W_1 + W_2$, and so $W_1 + W_2$ contains W_1 and W_2 .
 - For the other part, we check the subspace criterion.
 - For [S1], 0 = 0 + 0 so $W_1 + W_2$ contains 0.
 - For [S2], suppose $\mathbf{a}_1 + \mathbf{b}_1$ and $\mathbf{a}_2 + \mathbf{b}_2$ are in $W_1 + W_2$. Then $\mathbf{a}_1 + \mathbf{a}_2$ is in W_1 (by the subspace criterion in W_1) and $\mathbf{b}_1 + \mathbf{b}_2$ is in W_2 (by the subspace criterion in W_2). So since $(\mathbf{a}_1 + \mathbf{b}_1) + (\mathbf{a}_2 + \mathbf{b}_2) =$ $(a_1 + a_2) + (b_1 + b_2)$ we conclude that $(a_1 + b_1) + (a_2 + b_2)$ is in $W_1 + W_2$.
 - For [S3], suppose $\mathbf{a} + \mathbf{b}$ is in $W_1 + W_2$. Then $c\mathbf{a}$ is in W_1 and $c\mathbf{b}$ is in W_2 so $c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$ is in $W_1 + W_2$.
 - (b) Prove in fact that $W_1 + W_2$ is the smallest subspace containing both W_1 and W_2 . [Hint: If W is a subspace of V containing W_1 and W_2 , show that W must contain $W_1 + W_2$.]
 - Suppose W is a subspace of V containing both W_1 and W_2 and let $\mathbf{a} + \mathbf{b}$ be any vector in $W_1 + W_2$.
 - Since **a** is in W_1 and **b** is in W_2 , both **a** and **b** are in W. So by the subspace criterion in W, $\mathbf{a} + \mathbf{b}$ is in W.
 - Since $\mathbf{a} + \mathbf{b}$ was an arbitrary element of $W_1 + W_2$, we conclude that $W_1 + W_2$ is contained in W.
 - Therefore, every subspace containing W_1 and W_2 contains $W_1 + W_2$. Since $W_1 + W_2$ is itself a subspace by (a), it is the smallest.
 - (c) For V = F[x], let W_1 be the subspace of all even polynomials (i.e., polynomials with all terms of even degree) and W_2 be the subspace of all odd polynomials (polynomials with all terms of odd degree). Show that $V = W_1 + W_2$.
 - Clearly $W_1 + W_2 \subseteq V$.
 - Also, if $p = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$ is an arbitrary element of V, then we can write p = $(a_0 + a_2x^2 + a_4x^4 + \cdots) + (a_1x + a_3x^3 + a_5x^5 + \cdots).$
 - Since the first polynomial is in W_1 and the second is in W_2 , every element in V is in $W_1 + W_2$, so $V = W_1 + W_2.$
- 7. Suppose that f_0, f_1, \ldots, f_n are real-valued functions of x, all of which are n times differentiable. The Wronskian

Suppose that f_0, f_1, \dots, f_n is defined to be the determinant $W(f_0, f_1, \dots, f_n) = \begin{vmatrix} f_0 & f_1 & \cdots & f_n \\ f'_0 & f'_1 & \cdots & f'_n \\ \vdots & \vdots & \ddots & \vdots \\ f_0^{(n)} & f_1^{(n)} & \cdots & f_n^{(n)} \end{vmatrix}$. For exam-

ple,
$$W(x^2, x^3) = \begin{vmatrix} x^2 & x^3 \\ 2x & 3x^2 \end{vmatrix} = x^4$$
 and $W(x^2, 2x^2) = \begin{vmatrix} x^2 & 2x^2 \\ 2x & 4x \end{vmatrix} = 0.$

- (a) Show that if f_0, f_1, \ldots, f_n are linearly dependent, then their Wronskian is zero.
 - Suppose that $a_0f_0 + a_1f_1 + \cdots + a_nf_n = 0$. Then by taking derivatives we also have $a_0f'_0 + a_1f'_1 + \cdots + a_nf_n = 0$. $\cdots + a_n f'_n = 0$ and similarly for the higher derivatives.

• This means $\begin{bmatrix} f_0 & f_1 & \cdots & f_n \\ f'_0 & f'_1 & \cdots & f'_n \\ \vdots & \vdots & \ddots & \vdots \\ f_0^{(n)} & f_1^{(n)} & \cdots & f_n^{(n)} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \mathbf{0}.$ But as we have shown, if there is a nonzero

vector **v** with M**v** = **0**, then det(M) = 0: hence the Wronskian is zero as claimed.

- (b) Deduce that if functions f_0, f_1, \ldots, f_n have a nonzero Wronskian, then they are linearly independent. Is the converse true? [Hint: No. Try $f_0 = x^2$ and $f_1 = x |x|$.]
 - The first part is just the contrapositive of part (a).
 - For the second part, observe that for $f_0 = x^2$ and $f_1 = x |x|$ we have $f'_0 = 2x$ and $f'_1 = 2 |x|$ (this is straightforward to check with a graph or the definition of the derivative). Then $W(f_0, f_1) = \begin{vmatrix} x^2 & x |x| \\ 2x & 2 |x| \end{vmatrix} = x^2 \cdot 2 |x| 2x \cdot x |x| = 0.$
 - However, f_0 and f_1 are linearly independent: if $ax^2 + bx |x| = 0$ then setting x = 1 yields a + b = 0 and setting x = -1 yields a b = 0, so that a = b = 0.
- (c) Show that $\{1, \sin x, \cos x\}$ is a linearly independent set.

•	We simply compute the Wronskian: it is $W(1, \sin x, \cos x) =$	$\begin{vmatrix} 1\\0 \end{vmatrix}$	$\frac{\sin x}{\cos x}$	$\cos x - \sin x$	$= -\cos^2 x -$
		0	$-\sin x$	$-\cos x$	

 $\sin^2 x = -1$. Since this is nonzero, by (b) we conclude that the functions are linearly independent.

8.	[Challenge] Let D_n denote the value of the $(n-1) \times (n-1)$	1) de	eter	min	ant	$ 3 \\ 1 \\ 1 \\ 1 \\ . $	1 4 1 1	1 1 5 1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 6 \\ \vdots \end{array} $	· · · · · · · · · ·	1 1 1 :	
	Determine whether $\lim_{n\to\infty} \frac{D_n}{n!}$ exists.					1	1	1	1		n+1	
	• Subtract the first row from the other rows, yielding	$3 \\ -2 \\ -2 \\ -2 \\ \vdots \\ -2$	$ \begin{array}{c} 1 \\ 3 \\ 0 \\ 0 \\ \vdots \\ 0 \end{array} $	$ \begin{array}{c} 1 \\ 0 \\ 4 \\ 0 \\ \vdots \\ 0 \end{array} $	$egin{array}{c} 1 \\ 0 \\ 0 \\ 5 \\ \vdots \\ 0 \end{array}$	· · · · · · · · · · · ·	$egin{array}{c} 1 \\ 0 \\ 0 \\ \vdots \\ n \end{array}$					

- Now subtract 1/3 of the second row, 1/4 of the third row, 1/5 of the fourth row, ..., 1/nth of the (n-1)st row, from the first row.
- This yields $\begin{vmatrix} x & 0 & 0 & 0 & \cdots & 0 \\ -2 & 3 & 0 & 0 & \cdots & 0 \\ -2 & 0 & 4 & 0 & \cdots & 0 \\ -2 & 0 & 0 & 5 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -2 & 0 & 0 & 0 & \cdots & n \end{vmatrix}$ where $x = 3 + \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \dots + \frac{2}{n-1}$.
- Now the matrix is lower triangular so its determinant is simply $x \cdot 3 \cdot 4 \cdot 5 \cdots n$.
- Then $\frac{D_n}{n!} = \frac{x}{2} = \frac{3}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n-1} = \sum_{k=1}^{n-1} \frac{1}{k}$. As $n \to \infty$ this series is the harmonic series, which diverges to ∞ .
- <u>Remark</u>: This was problem B5 from the 1992 Putnam.