
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2025 ∼ Homework 2 Solutions

1. Identify each of the following statements as true or false:

(a) Every vector space contains a zero vector.

• True : this is one of the vector space axioms.

(b) In any vector space, αv = αw implies that v = w.

• False : for example we have 0 · v = 0 ·w for any v,w.

(c) In any vector space, αv = βv implies that α = β.

• False : for example we have 1 · 0 = 2 · 0.
(d) If U is a subspace of V and V is a subspace of W , then U is a subspace of W .

• True : this follows from the subspace criterion (or even just the de�nition of subspace).

(e) The empty set is a subspace of any vector space.

• False : subspaces are by de�nition not empty.

(f) The intersection of two subspaces is always a subspace.

• True : the intersection of any collection of subspaces is a subspace.

(g) The union of two subspaces is always a subspace.

• False : for example, the union of {〈x, 0〉} and {〈0, y〉} in R2 is not a subspace.

(h) The union of two subspaces is never a subspace.

• False : for example if we take two subspaces W1 ⊆W2 then W1 ∪W2 =W2 is still a subspace.

(i) The span of the empty set is the empty set.

• False : the span of the empty set is the zero subspace containing only 0, which is di�erent from the
empty set.

(j) The span of the zero vector is the zero subspace.

• True : the only vector spanned by the zero vector is the zero vector itself.

(k) If S is any subset of V , then span(S) is the intersection of all subspaces of V containing S.

• True : this is one of the basic facts about spans.

(l) If S is any subset of V , then span(S) always contains the zero vector.

• True : the span is always a subspace, so it contains the zero vector (even if S is empty).

(m) Any set containing the zero vector is linearly independent.

• False : in fact the opposite is true, any set set containing the zero vector is linearly dependent!

(n) Any subset of a linearly independent set is linearly independent.

• True : any linear dependence in the subset would give one in the original set.

(o) Any subset of a linearly dependent set is linearly dependent.

• False : removing elements from a linearly dependent set could certainly yield a linearly independent
set (e.g., the empty set!).
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2. Determine whether or not each given set S is a subspace of the given vector space V . For each set that is not
a subspace, identify at least one part of the subspace criterion that fails.

(a) V = R4, S = the vectors v in R4 with v · 〈1, 0, 1, 1〉 = 2.

• This set is not a subspace because it does not contain the zero vector. (It also fails the other two

parts of the subspace criterion.)

(b) V = real-valued functions on [0, 1], S = the functions with f ′′(x) = f(x).

• This set is a subspace because it contains the zero function and is closed under addition and scalar

multiplication.

(c) V = C5, S = the vectors 〈a, b, c, d, e〉 with e = a+ b+ c and b = c = d.

• This set is a subspace because it contains the zero vector and is closed under addition and scalar

multiplication.

(d) V = real-valued functions on R, S = the functions with f(x) = f(1− x) for all real x.

• This set is a subspace because it contains the zero vector and is closed under addition and scalar

multiplication.

(e) V =M3×3(R), S = the 3× 3 matrices with integer entries.

• This set is not a subspace because it is not closed under scalar multiplication (speci�cally, by non-

integer scalars).

(f) V =M3×3(R), S = the 3× 3 matrices with nonnegative real entries.

• This set is not a subspace because it is not closed under scalar multiplication (speci�cally, by

negative scalars).

(g) V = P3(C), S = the polynomials in V with p(i) = 0.

• This set is a subspace because it contains the zero polynomial and is closed under addition and

scalar multiplication.

(h) V =M2×2(Q), S = the matrices in V of determinant zero.

• This set is not a subspace because it is not closed under addition. For example, S contains

[
1 0
0 0

]
and

[
0 0
0 1

]
but not their sum

[
1 0
0 1

]
. (It does satisfy the other two properties, however.)

(i) V = real-valued functions on R, S = the functions that are zero at every rational number.

• This set is a subspace because it contains the zero function and is closed under addition and scalar

multiplication. (Note that V contains lots of functions, such as the function that is 1 at x =
√
2 and

0 everywhere else.)

3. For each set of vectors in each vector space, determine (i) if they span V and (ii) if they are linearly independent:

(a) 〈1, 2〉, 〈3, 2〉, 〈1, 1〉 in R2.

• Some quick calculations will show that these vectors do span , but are not linearly independent .

(b) 〈1, 2, 4〉, 〈3, 2, 1〉, 〈1, 1, 1〉 in R3.

• Since we have 3 vectors in R3 we can use the determinant shortcut: the matrix whose columns are the
three given vectors has nonzero determinant, so the three vectors do span and are linearly independent .
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(c) 1 + x, x+ x2 in P2(C).

• These 2 polynomials do not span because P2(C) has dimension 3. They are linearly independent ,

however, because neither is a scalar multiple of the other.

(d)

[
1 2
3 4

]
and

[
0 0
1 1

]
in M2×2(F5). [Note F5 = Z/5Z; the entries of the matrices are considered

modulo 5.]

• These 2 matrices do not span because M2×2 has dimension 4. They are linearly independent ,

however, because neither is a scalar multiple of the other.

(e)

[
1 1
0 0

]
,

[
0 1
0 1

]
,

[
1 0
0 1

]
in M2×2(R).

• These 3 matrices do not span because M2×2 has dimension 4. They are linearly independent ,

because a

[
1 1
0 0

]
+ b

[
0 1
0 1

]
+ c

[
1 0
0 1

]
=

[
0 0
0 0

]
yields a + c = a + b = b + c = 0 which

has only the solution a = b = c = 0.

(f)

[
1 1
0 0

]
,

[
0 1
0 1

]
,

[
1 0
0 1

]
in M2×2(F2).

• These 3 matrices do not span because M2×2 has dimension 4. They are not linearly independent

because their sum is the zero matrix.

4. Suppose A is an m× n matrix with entries from the �eld F .

(a) Show that the set of all vectors x ∈ Fn such that Ax equals the zero vector (in Fm) is a subspace of Fn.

• We simply check the subspace criterion:

• For [S1], clearly A0 = 0.

• For [S2], if Ax = Ay = 0 then A(x+ y) = Ax+Ay = 0+ 0 = 0.

• For [S3], if Ax = Ay = 0 then A(αx) = α(Ax) = α0 = 0.

(b) Deduce that the set of solutions to any homogeneous system of linear equations (i.e., in which all of the
constants are equal to zero) over F is an F -vector space.

• If we take A to be the coe�cient matrix, then the variable vector x is a simultaneous solution to all
of the equations if and only if Ax = 0.

• So by part (a), the space of solutions is a subspace of Fm hence is a vector space.

5. Suppose V is a vector space and let S = {v1,v2,v3} and T = {v1,v1 + v2,v1 + v2 + v3}.

(a) If S is linearly independent, show that T is linearly independent.

• Suppose we had a dependence a(v1) + b(v1 + v2) + c(v1 + v2 + v3) = 0.

• Distributing yields (a + b + c)v1 + (b + c)v2 + cv3 = 0, and so linear independence of S requires
a+b+c = b+c = c = 0, which has only the solution a = b = c = 0. Hence T is linearly independent.

(b) If S spans V , show that T spans V .

• If S spans V then for any w ∈ V we can write w = av1 + bv2 + cv3.

• Then it is not hard to see that w = (a− b)v1+(b− c)(v1+v2)+ c(v1+v2+v3), so T also spans V .
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6. If V is a vector space and W1, W2 are two subspaces of V , their sum is de�ned to be the set W1 +W2 =
{w1 +w2 : w1 ∈W1 and w2 ∈W2} of all sums of an element of W1 with an element of W2.

(a) Prove that W1 +W2 contains W1 and W2, and is a subspace of V .

• For the �rst part, for any w1 in W1 and w2 in W2 we can write w1 = w1 + 0 and w2 = 0 +w2 .
Thus so w1 and w2 are both in W1 +W2, and so W1 +W2 contains W1 and W2.

• For the other part, we check the subspace criterion.

• For [S1], 0 = 0+ 0 so W1 +W2 contains 0.

• For [S2], suppose a1+b1 and a2+b2 are inW1+W2. Then a1+a2 is inW1 (by the subspace criterion
in W1) and b1 + b2 is in W2 (by the subspace criterion in W2). So since (a1 + b1) + (a2 + b2) =
(a1 + a2) + (b1 + b2) we conclude that (a1 + b1) + (a2 + b2) is in W1 +W2.

• For [S3], suppose a+ b is in W1 +W2. Then ca is in W1 and cb is in W2 so c(a+ b) = ca+ cb is
in W1 +W2.

(b) Prove in fact that W1 + W2 is the smallest subspace containing both W1 and W2. [Hint: If W is a
subspace of V containing W1 and W2, show that W must contain W1 +W2.]

• Suppose W is a subspace of V containing both W1 and W2 and let a+b be any vector in W1 +W2.

• Since a is in W1 and b is in W2, both a and b are in W . So by the subspace criterion in W , a+ b
is in W .

• Since a+ b was an arbitrary element of W1 +W2, we conclude that W1 +W2 is contained in W .

• Therefore, every subspace containing W1 and W2 contains W1 + W2. Since W1 + W2 is itself a
subspace by (a), it is the smallest.

(c) For V = F [x], let W1 be the subspace of all even polynomials (i.e., polynomials with all terms of even
degree) andW2 be the subspace of all odd polynomials (polynomials with all terms of odd degree). Show
that V =W1 +W2.

• Clearly W1 +W2 ⊆ V .
• Also, if p = a0 + a1x + a2x

2 + · · · + anx
n is an arbitrary element of V , then we can write p =

(a0 + a2x
2 + a4x

4 + · · · ) + (a1x+ a3x
3 + a5x

5 + · · · ).
• Since the �rst polynomial is in W1 and the second is in W2, every element in V is in W1 +W2, so
V =W1 +W2.

7. Suppose that f0, f1, . . . , fn are real-valued functions of x, all of which are n times di�erentiable. TheWronskian

W (f0, f1, . . . , fn) is de�ned to be the determinant W (f0, f1, . . . , fn) =

∣∣∣∣∣∣∣∣∣
f0 f1 · · · fn
f ′0 f ′1 · · · f ′n
...

...
. . .

...

f
(n)
0 f

(n)
1 · · · f

(n)
n

∣∣∣∣∣∣∣∣∣. For exam-

ple, W (x2, x3) =

∣∣∣∣ x2 x3

2x 3x2

∣∣∣∣ = x4 and W (x2, 2x2) =

∣∣∣∣ x2 2x2

2x 4x

∣∣∣∣ = 0.

(a) Show that if f0, f1, . . . , fn are linearly dependent, then their Wronskian is zero.

• Suppose that a0f0 + a1f1 + · · ·+ anfn = 0. Then by taking derivatives we also have a0f
′
0 + a1f

′
1 +

· · ·+ anf
′
n = 0 and similarly for the higher derivatives.

• This means


f0 f1 · · · fn
f ′0 f ′1 · · · f ′n
...

...
. . .

...

f
(n)
0 f

(n)
1 · · · f

(n)
n



a0
a1
...
an

 = 0. But as we have shown, if there is a nonzero

vector v with Mv = 0, then det(M) = 0: hence the Wronskian is zero as claimed.
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(b) Deduce that if functions f0, f1, . . . , fn have a nonzero Wronskian, then they are linearly independent. Is
the converse true? [Hint: No. Try f0 = x2 and f1 = x |x|.]
• The �rst part is just the contrapositive of part (a).

• For the second part, observe that for f0 = x2 and f1 = x |x| we have f ′0 = 2x and f ′1 = 2 |x| (this
is straightforward to check with a graph or the de�nition of the derivative). Then W (f0, f1) =∣∣∣∣ x2 x |x|
2x 2 |x|

∣∣∣∣ = x2 · 2 |x| − 2x · x |x| = 0.

• However, f0 and f1 are linearly independent: if ax2 + bx |x| = 0 then setting x = 1 yields a+ b = 0
and setting x = −1 yields a− b = 0, so that a = b = 0.

(c) Show that {1, sinx, cosx} is a linearly independent set.

• We simply compute the Wronskian: it is W (1, sinx, cosx) =

∣∣∣∣∣∣
1 sinx cosx
0 cosx − sinx
0 − sinx − cosx

∣∣∣∣∣∣ = − cos2 x −

sin2 x = −1. Since this is nonzero, by (b) we conclude that the functions are linearly independent.

8. [Challenge] Let Dn denote the value of the (n− 1)× (n− 1) determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣

3 1 1 1 · · · 1
1 4 1 1 · · · 1
1 1 5 1 · · · 1
1 1 1 6 · · · 1
...

...
...

...
. . .

...
1 1 1 1 · · · n+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Determine whether limn→∞
Dn

n!
exists.

• Subtract the �rst row from the other rows, yielding

∣∣∣∣∣∣∣∣∣∣∣∣∣

3 1 1 1 · · · 1
−2 3 0 0 · · · 0
−2 0 4 0 · · · 0
−2 0 0 5 · · · 0
...

...
...

...
. . .

...
−2 0 0 0 · · · n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

• Now subtract 1/3 of the second row, 1/4 of the third row, 1/5 of the fourth row, ... , 1/nth of the
(n− 1)st row, from the �rst row.

• This yields

∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 0 · · · 0
−2 3 0 0 · · · 0
−2 0 4 0 · · · 0
−2 0 0 5 · · · 0
...

...
...

...
. . .

...
−2 0 0 0 · · · n

∣∣∣∣∣∣∣∣∣∣∣∣∣
where x = 3 +

2

3
+

2

4
+

2

5
+ · · ·+ 2

n− 1
.

• Now the matrix is lower triangular so its determinant is simply x · 3 · 4 · 5 · · · · · n.

• Then
Dn

n!
=
x

2
=

3

2
+

1

3
+

1

4
+

1

5
+ · · ·+ 1

n− 1
=
∑n−1

k=1

1

k
. As n→∞ this series is the harmonic series,

which diverges to ∞ .

• Remark: This was problem B5 from the 1992 Putnam.
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