
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2025 ∼ Homework 1 Solutions

1. Identify each of the following statements as true or false:

(a) If f : A→ A is a one-to-one function, then f must be onto.

• False . There exist one-to-one functions that are not onto, such as f(n) = n + 1 on the positive
integers.

(b) The set of integers Z is not a �eld.

• True . Some elements, like 2 and 5, have no multiplicative inverse in Z.
(c) Every �eld has in�nitely many elements.

• False . There exist �elds with �nitely many elements, like Z/pZ.
(d) It is impossible to have 6 = 0 in a �eld F .

• False . There exist �elds where 6 = 0, like the �elds Z/2Z and Z/3Z.
(e) There is a system of linear equations over R having exactly two di�erent solutions.

• False . Over R the only possibilities are that there are no solutions, exactly 1 solution, or in�nitely
many solutions.

(f) For any n× n matrices A and B, (A+B)2 = A2 + 2AB +B2.

• False . The correct formula would be (A+B)2 = A2 +AB +BA+B2, since matrix multiplication
is not commutative.

(g) For any n× n matrices A and B, (BA)T = BTAT .

• False . The correct formula would be (BA)T = ATBT .

(h) For any invertible n× n matrices A and B, (A+B)−1 = A−1 +B−1.

• False . In fact this formula is almost never correct. An explicit counterexample is A = B = In:

then (A+B)−1 =
1

2
In while A−1 +B−1 = 2In.

(i) For any invertible n× n matrices A and B, (BA)−1 = A−1B−1.

• True . The inverse of a product is the product of the inverses in reverse order.

(j) If A and B are n× n matrices with det(A) = 2 and det(B) = 3, then det(AB) = 6.

• True . The determinant is multiplicative so det(AB) = det(A) det(B) = 6.

(k) If A is an n× n matrix with det(A) = 3, then det(2A) = 3n.

• False . Doubling a matrix doubles each row, so if there are n rows, the correct formula would be
det(2A) = 2n · 3.

(l) For any n× n matrix A, det(A) = −det(AT ).

• False . The determinant of a transpose equals the determinant of the original matrix, so det(A) =
det(AT ).

(m) For any n× n matrices A and B, det(AB) = det(B) det(A).

• True . The determinant is multiplicative so det(AB) = det(A) det(B) = det(B) det(A).

(n) If the coe�cient matrix of a system of 6 linear equations in 6 unknowns is invertible, then the system
has in�nitely many solutions.

• False . If the coe�cient matrix is invertible, in fact there is a unique solution: if the system is
Ax = c, multiplying on the left by A−1 yields the solution x = A−1c.

(o) If p and q are polynomials in F [x] of the same degree n, then p+ q also has degree n.
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• False . The degree could be lower: for example, if p = x2+2 and q = −x2+3x, then p+ q = 3x+2
only has degree 1.

(p) If p and q are polynomials in F [x] of the same degree n, then p · q has degree n2.

• False . In general, deg(pq) = deg(p) + deg(q), so the degree is 2n, not n2.

2. Find the general solution to each system of linear equations:

(a)

 −x− 3y + 5z = 9
3x+ 2y + 2z = 0
2x+ 2y + 3z = 4

.

• By row-reducing, the solution is (x, y, z) = (−2, 1, 2) .

(b)

{
x− 2y + 4z = 4
2x+ 4y + 8z = 0

}
.

• By row-reducing the solution is (x, y, z) = (2− 4z,−1, z) .

(c)


a+ b+ c+ d = 2
a+ b+ c + e = 3
a+ b + d+ e = 4
a + c+ d+ e = 5

b+ c+ d+ e = 6

.

• By row-reducing, the solution is (a, b, c, d, e) = (−1, 0, 1, 2, 3) .

(d)

 x+ 3y + z = −4
−x− 6y + 8z = 10
2x+ 4y + 8z = 0

.

• By row-reducing, there is no solution .

(e)

{
a+ b+ c+ d+ e = 1

a+ 2b+ 3c+ 4d+ 5e = 6

}
.

• By row-reducing, the solution is (a, b, c, d, e) = (−4 + c+ 2d+ 3e, 5− 2c− 3d− 4e) .

3. Compute the following things:

(a) If v = (3, 0,−4) and w = (−1, 6, 2) in R3, �nd v + 2w, ||v||, ||w||, ||v + 2w||, and v ·w.

• We have v + 2w = (1, 12, 0) , ||v|| = 5 , ||w|| =
√
41 , ||v + 2w|| =

√
145 , and v ·w = −11 .

(b) The sum and product of the polynomials 2x+ 3 and x2 − 1 in R[x].

• The sum is x2 + 2x+ 2 and the product is 2x3 + 3x2 − 2x− 3.

(c) The reduced row-echelon forms of

 1 2 3
2 3 4
3 4 5

,


2 4 6 8
1 1 1 1
1 0 1 0
4 3 2 1

, and
 0 0 0 2 3

2 1 0 −1 −2
−4 −2 0 3 0

.

• Row-reducing yields the RREFs

 1 0 −1
0 1 2
0 0 0

,


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0

,
 1 1/2 0 0 0

0 0 0 1 0
0 0 0 0 1

.
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(d) The determinants of

 −1 5 2
0 −3 7
2 8 1

 and


1 1 1 1
2 3 4 5
4 9 16 25
8 27 64 125

.
• The determinants are det(A) = 141 and det(B) = 12 .

(e) The inverses of

 1 −2 1
−1 1 −1
1 −3 0

 and

 1 −3 −2
−3 7 8
2 −6 −5

.
• The inverses are

 −3 −3 1
−1 −1 0
2 1 −1

 and
1

2

 13 −3 −10
1 −1 −2
4 0 −2

 respectively.

4. Let v and w be any vectors in Rn.

(a) Prove that ||v +w||2 + ||v −w||2 = 2 ||v||2 + 2 ||w||2.
• Note that

||v +w||2 = (v +w) · (v +w) = v · v + v ·w +w · v +w ·w = ||v||2 + 2v ·w + ||w||2

||v −w||2 = (v −w) · (v −w) = v · v − v ·w −w · v +w ·w = ||v||2 − 2v ·w + ||w||2

and so adding the expressions produces ||v +w||2 + ||v −w||2 = 2 ||v||2 + 2 ||w||2.
(b) Deduce that in any parallelogram, the sum of the squares of the lengths of the diagonals is equal to the

sum of the squares of the lengths of the four sides. [Hint: Suppose the sides are vectors v and w.]

• Suppose that two sides are represented by the vectors v and w emanating from the same vertex.

• From a diagram we can see that the other two sides are also v and w, while the diagonals are v+w
and v −w (with appropriate directions).

• Thus, the sum of the squares of the lengths of the diagonals is ||v +w||2+ ||v −w||2, while the sum
of the squares of the lengths of the four sides is 2 ||v||2 + 2 ||w||2. By part (a), these are equal.

5. Suppose that A and B are n× n matrices with entries from a �eld F .

(a) If AB is invertible, show that A and B are invertible.

• Notice that AB(AB)−1 = In, and so B(AB)−1 is a right inverse of the matrix A. This means A is
invertible.

• Likewise, (AB)−1AB = In, so (AB)−1A is a left inverse of the matrix B. This means B is invertible.

• Alternatively, since AB is invertible, det(AB) = det(A) det(B) is nonzero. This can only happen
when det(A) and det(B) are both nonzero, which is to say, when A and B are both invertible.

(b) If A is invertible, show that AT is invertible and that its inverse is (A−1)T .

• Since det(AT ) = det(A), if A is invertible then AT will also be invertible.

• Furthermore, by using the fact that ATBT = (BA)T with B = A−1, we see that AT (A−1)T =
(A−1A)T = (In)

T = In.

• In the same way, (A−1)TAT = (AA−1)T = (In)
T = In, and so (A−1)T satis�es the inverse matrix

property for AT : this means (AT )−1 = (A−1)T .

(c) If In+AB is invertible, show that In+BA is also invertible. [Hint: Consider M = In−B(In+AB)−1A.]

• Let M = In − B(In + AB)−1A. Then M(In + BA) = (In + BA) − B(In + AB)−1A(In + BA) =
(In+BA)−B(In+AB)−1(A+ABA) = (In+BA)−B(In+AB)−1(In+AB)A = (In+BA)−BA = In
and therefore M is the inverse of In +BA.
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6. Let F be a �eld of characteristic not 2 (i.e., in which 2 6= 0). A square matrix A with entries from F is called
symmetric if A = AT and skew-symmetric if A = −AT .

(a) For any n× n matrix B, show that B +BT is symmetric and B −BT is skew-symmetric.

• Observe that (B + BT )T = BT + (BT )T = BT + B so this matrix equals its transpose hence is
symmetric.

• Similarly, (B −BT )T = BT −B, so this matrix is −1 times its transpose hence is skew-symmetric.

(b) Show that any square matrix M can be written uniquely in the form M = S + T where S is symmetric
and T is skew-symmetric. [Make sure to prove that there is only one such decomposition!]

• If M = S + T then MT = ST + TT = S − T . Solving for S, T produces S =
1

2
(M + MT ) and

T =
1

2
(M −MT ), so this is the only possible solution. (Here we are using the fact that 2 6= 0, so we

can divide by 2.)

• By part (a), we see S =
1

2
(M +MT ) is symmetric and T =

1

2
(M −MT ) is skew-symmetric, so these

choices do work. Hence there is a unique decomposition as claimed.

(c) If A is a skew-symmetric n× n real matrix and n is odd, show that det(A) = 0.

• Taking the determinant of both sides of det(A) = det(−AT ) yields det(A) = (−1)n det(AT ) =
(−1)n det(A).

• Since n is odd, this gives det(A) = −det(A), meaning det(A) = 0 since 2 6= 0 (and thus 1 6= −1).

7. Prove the following things via induction (or otherwise):

(a) The Fibonacci numbers are de�ned as follows: F1 = F2 = 1 and for n ≥ 2, Fn = Fn−1 + Fn−2. (Thus
F3 = 2, F4 = 3, F5 = 5, and so forth.) Prove that F1 + F3 + F5 + · · · + F2n−1 = F2n for every positive
integer n.

• We use induction on n. For the base case n = 1, we have F1 = 1 = F2 which is true.

• For the inductive step suppose that F1 + F3 + F5 + · · ·+ F2n−1 = F2n. Then F1 + F3 + F5 + · · ·+
F2n−1 + F2n+1 = [F1 + F3 + F5 + · · ·+ F2n−1] + F2n+1 = F2n + F2n+1 = F2n+2 as required.

(b) Prove that the nth power of the matrix

[
−1 4
−1 3

]
is

[
1− 2n 4n
−n 1 + 2n

]
for each positive integer n.

• Induction on n. The base case n = 1 follows as

[
1− 2n 4n
−n 1 + 2n

]
=

[
−1 4
−1 3

]
for n = 1.

• For the inductive step, suppose

[
−1 4
−1 3

]n
=

[
1− 2n 4n
−n 1 + 2n

]
. Then

[
−1 4
−1 3

]n+1

=

[
−1 4
−1 3

] [
−1 4
−1 3

]n
=

[
−1 4
−1 3

] [
1− 2n 4n
−n 1 + 2n

]
=

[
1− 2(n+ 1) 4(n+ 1)
−(n+ 1) 1 + 2(n+ 1)

]
.

(c) Let Mn be the n×n matrix with 1s on the diagonal and directly below the diagonal, −1s directly above
the diagonal, and 0s elsewhere. Prove that det(Mn) is the (n+ 1)st Fibonacci number Fn+1.

• We use strong induction on n. The base cases n = 1 and n = 2 follow by observing that M1 = [1] so

det(M1) = 1 = F2 and that M2 =

[
1 −1
1 1

]
so det(M2) = 2 = F3, as required.

• For the inductive step, suppose det(Mn−1) = Fn and det(Mn−2) = Fn−1 and consider expanding
det(Mn) along the �rst row. Only the terms from the �rst and second entries contribute, since all
other entries in the �rst row are zero. Deleting the �rst row and column of Mn yields Mn−1, while
deleting the �rst row and second column of Mn yields a matrix whose �rst column has a 1 and then
all zeroes, so its determinant is the same as the determinant obtained by deleting its �rst row and
column, which results in the matrix Mn−2.

• Thus via expansion by minors we see det(Mn) = 1·det(Mn−1)−(−1)·det(Mn−2) = Fn+Fn−1 = Fn+1.
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8. [Challenge] Let F be a �eld and suppose x1, . . . , xn are elements of F . The goal of this problem is to evaluate

the famous Vandermonde determinant V (x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

∣∣∣∣∣∣∣∣∣.
(a) Show that if any of the xi are equal to one another, then V (x1, . . . , xn) = 0.

• If xi = xj then the ith and jth rows of the matrix are equal, so its determinant is zero.

(b) Show that as a polynomial in the variables x1, . . . , xn, V (x1, . . . , xn) has degree
n(n−1)

2 and is divisible
by xj − xi for any i 6= j. [Hint: Use (a) and the remainder theorem.]

• For the degree, observe that when we expand the determinant by minors, each term will be a product
of one term from the �rst column, one from the second column, ... , and one from the last column,

so the resulting product will have degree 0 + 1 + 2 + · · ·+ (n− 1) = n(n−1)
2 .

• Now dividing V (x1, . . . , xn) by xi− xj (where we think of xi as the variable) leaves some remainder
term. When we set xi = xj then the remainder term vanishes by part (a), so the remainder must
be the zero polynomial.

(c) Deduce that V (x1, . . . , xn) is divisible by the product
∏

1≤i<j≤n(xj − xi) and that this product is a

polynomial of degree n(n−1)
2 .

• By (b) applied to all possible pairs (i, j) with 1 ≤ i < j ≤ n we see that xj−xi divides V (x1, . . . , xn).
Since these terms are all relatively prime, their product must divide V (x1, . . . , xn).

• Furthermore, the number of possible pairs (i, j) is simply
(
n
2

)
= n(n−1)

2 since we may pick any

unordered pair of values {xi, xj}, so the product of these terms has degree n(n−1)
2 .

(d) Show in fact that V (x1, . . . , xn) =
∏

1≤i<j≤n(xj − xi). [Hint: Compare degrees and coe�cients of

x0
1x

1
2 · · ·xn−1

n on both sides.]

• By (b) and (c) we see that dividing V by the product yields a polynomial of degree 0 (in other words,
a constant). But since the coe�cient of x0

1x
1
2 · · ·xn−1

n in V is equal to 1 (it comes from the product
of terms on the diagonal of the matrix) and the coe�cient in the product is also equal to 1 (it comes
from the product of the all the �rst terms xj with j > i in each pair), the constant must equal 1.

• Thus, V (x1, . . . , xn) =
∏

1≤i<j≤n(xj − xi) as claimed.

(e) Suppose that x1, . . . , xn ∈ F are distinct and y1, . . . , yn ∈ F are arbitrary. Prove that there exists a
unique polynomial p(x) = a0+a1x+ · · ·+an−1x

n−1 in F [x] of degree at most n− 1 such that p(xi) = yi
for each 1 ≤ i ≤ n. [Hint: Write down the corresponding system of linear equations.]

• We have the equations a0+a1x1+ · · ·+an−1x
n−1
1 = y1, ... , a0+a1xn+ · · ·+an−1x

n−1
n = yn, which

in matrix form is


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n




a0
a1
...
an

 =


y0
y1
...
yn

.
• The coe�cient matrix is precisely the Vandermonde matrix we have been analyzing. By the formula
in part (d), its determinant is nonzero (as all of the xi are distinct) and therefore it is invertible, so
the system has a unique solution.

• This means there is a unique solution to the system, which is to say, there is a unique polynomial
p(x) with the desired properties.
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