
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2025 ∼ Homework 11, due Fri Apr 11th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Let V be a vector space with scalar �eld F and Φ : V × V → F be a bilinear form. Identify each of the
following statements as true or false:

(a) If Φ is a symmetric bilinear form, then [Φ]β is a symmetric matrix for any basis β.

(b) If [Φ]β is a symmetric matrix for some basis β, then Φ is a symmetric bilinear form.

(c) If B(V ) is the space of all bilinear forms on V and dimF (V ) = n, then dimF B(V ) = 2n.

(d) Congruent matrices have the same eigenvalues.

(e) Congruent matrices have the same eigenvectors.

(f) Every n× n symmetric matrix over R is congruent to a diagonal matrix.

(g) Every n× n symmetric matrix over an arbitrary �eld F is congruent to a diagonal matrix.

(h) The function Q(x, y) = xy on R2 is a quadratic form.

(i) The function Q(x, y, z) = x2 − 4xy + xyz + z2 on R3 is a quadratic form.

(j) The function Q(f) =
´ 1
0
x f(x)2 dx on R[x] is a quadratic form.

(k) Every quadratic form over R is a bilinear form.

(l) Every quadratic form over an arbitrary �eld is a bilinear form.

(m) The second derivatives test classi�es any critical point as a local minimum, local maximum, or saddle.

(n) If both eigenvalues of the 2×2 real symmetric matrix S are positive, then the graph of (x, y)·S ·(x, y)T = 1
in R2 will be an ellipse.

(o) If one eigenvalue of the 2 × 2 real symmetric matrix S is zero and the other is nonzero, then the graph
of (x, y) · S · (x, y)T = 1 in R2 will be a hyperbola.

2. For each symmetric matrix S, �nd an invertible rational matrixQ and diagonal matrixD such thatQTSQ = D
(for emphasis, the entries in D and Q must be rational numbers!):

(a) S =

[
1 9
9 7

]
. (b) S =

 1 1 −2
1 3 6
−2 6 7

. (c) S =

 0 2 0
2 5 2
0 2 5

. (d) S =


1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

.

3. Consider the bilinear form Φ[(a, b), (c, d)] = 4ac− 2ad− 2bc+ 7bd on R2 with associated quadratic form Q.

(a) Write down Q explicitly and also �nd [Φ]β for β = {(1, 0), (0, 1)}.
(b) Find an orthonormal basis γ for R2 such that [Φ]γ is diagonal, and compute the diagonalization [Φ]γ .

(c) Describe the shape of the quadratic variety Q(x, y) = 1 in R2 as one of the 3 standard conic sections.

(d) Classify the critical point of Q(x, y) at (0, 0) as a local minimum, local maximum, or saddle point.

(e) Calculate the signature and index of Q, and determine the de�niteness of Q.
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4. Consider the quadratic form Q(x, y, z) = 11x2 + 40xy − 16xz − 16y2 − 16yz + 5z2 on R3.

(a) Find the symmetric matrix S associated to the underlying bilinear form forQ with respect to the standard
basis β = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

(b) Give an explicit orthonormal change of basis that diagonalizes Q, and �nd the resulting diagonalization.

(c) Describe the shape of the quadratic variety Q(x, y, z) = 1 in R3 as one of the 9 standard quadric surfaces.

(d) Classify the critical point of Q(x, y, z) at (0, 0, 0) as a local minimum, local maximum, or saddle point.

(e) Calculate the signature and index of Q, and determine the de�niteness of Q.

Part II: Solve the following problems. Justify all answers with rigorous, clear explanations.

5. For A,B ∈ Mn×n(F ), recall that we say A is congruent to B when there exists an invertible matrix Q ∈
Mn×n(F ) such that B = QTAQ. Prove that congruence is an equivalence relation on Mn×n(F ).

6. Suppose T : V → V is a linear operator on the real inner product space V with inner product 〈·, ·〉. De�ne
the map Φ : V × V → F by setting Φ(v,w) = 〈T (v),w〉.

(a) Show that Φ is a bilinear form on V .

(b) Show that Φ is symmetric if and only if T is Hermitian.

(c) If V is �nite-dimensional, prove that Φ is an inner product on V if and only if T is positive-de�nite and
Hermitian. [Hint: Show that [I3] requires all eigenvalues of T to be positive.]

7. In multivariable calculus, the following more explicit version of the second derivative test is often taught1:

• Theorem (Second Derivatives Test in R2): Suppose P is a critical point of f(x, y), and let D be the value
of the discriminant fxxfyy − f2xy at P . If D > 0 and fxx > 0, then the critical point is a minimum. If
D > 0 and fxx < 0, then the critical point is a maximum. If D < 0, then the critical point is a saddle
point. If D = 0, then the test is inconclusive.

Using our general version of the second derivatives test, prove this variation. [Hint: Note that D = det(H) =
λ1λ2; then examine what information the sign of D yields about the eigenvalues λ1, λ2.]

8. [Challenge] Let A be a Hermitian matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. The goal of this problem is
to prove the Courant-Fischer theorem: that λi = mindimW=i−1 max||v||=1,v∈W⊥(v∗Av) for each 1 ≤ i ≤ n.
This characterization of the eigenvalues in terms of a min-max property is useful in practical computations,
particularly the i = 1 case: λ1 = max||v||=1(v∗Av).

(a) Show that it su�ces to prove the Courant-Fischer theorem when the matrix A is diagonal.

Per (a), we now assume that A is diagonal and that for v = (x1, . . . , xn) we have v∗Av = λ1x
2
1 + · · ·+ λnx

2
n.

(b) Show that λi ≥ mindimW=i−1 max||v||=1,v∈W⊥(v∗Av). [Hint: Take W to be the subspace spanned by
the �rst i− 1 coordinate vectors.]

(c) Prove that λi ≤ mindimW=i−1 max||v||=1,v∈W⊥(v∗Av). [Hint: For any W of dimension i − 1, let Vi be
the subspace spanned by the �rst i coordinate vectors and take v ∈ Vi ∩W .]

(d) Deduce that λi = mindimW=i−1 max||v||=1,v∈W⊥(v∗Av) for each i.

1The statement of this theorem is copied directly from my multivariable calculus course notes, in fact!
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