
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2025 ∼ Homework 10 Solutions

1. Identify each of the following statements as true or false:

(a) Every real Hermitian matrix is diagonalizable.

• True : by the spectral theorem, Hermitian matrices are diagonalizable.

(b) Every real symmetric matrix is diagonalizable.

• True : real symmetric matrices are Hermitian, so they are diagonalizable.

(c) Every complex Hermitian matrix is diagonalizable.

• True : again by the spectral theorem, Hermitian matrices are diagonalizable.

(d) Every complex symmetric matrix is diagonalizable.

• False : A =

[
1 i
i −1

]
is not diagonalizable: its Jordan form has a 2× 2 block with eigenvalue 0.

(e) If the sum of the entries in all columns of the n× n matrix A equals 1, then 1 is an eigenvalue of A.

• True : if v is the vector of all 1s, then ATv = v, so 1 is an eigenvalue of AT and hence of A.

(f) If the sum of the entries in all columns of a square matrix A with nonnegative real entries equals 1, then
limn→∞An exists.

• False : for example, if A =

[
0 1
1 0

]
then the powers of A alternate between A and I2.

(g) If the sum of the entries in all columns of a square matrix A with positive real entries equals 1, then
limn→∞An exists.

• True : this is a theorem mentioned in class about the convergence of powers of stochastic matrices.

(h) If V = R2 and Φ(v,w) = v ·w is the usual inner product on R2, then Φ is a bilinear form on V .

• True : it is linear in both components, so it is a bilinear form.

(i) If V = C2 and Φ(v,w) = v ·w is the usual inner product on C2, then Φ is a bilinear form on V .

• False : it is not linear in the second component, so it is not a bilinear form.

(j) If V = R and Φ(x, y) = x+ 2y, then Φ is a bilinear form on V .

• False : although this is a linear transformation from R2 to R, it is not a bilinear form because
it doesn't respect addition or scalar multiplication in the individual components. For example,
Φ(1, 1) + Φ(2, 1) 6= Φ(3, 1).

(k) If V = F 2 and Φ(v,w) = det(v,w), the determinant of the matrix whose columns are v and w, then Φ
is a bilinear form on V .

• True : by properties of determinants (or simply by writing it out: Φ((a, b), (c, d)) = ad − bc), we
can see it is linear in both functions, so it is a bilinear form.

(l) If V = Mn×n(F ) and Φ(A,B) = tr(AB), then Φ is a bilinear form on V .

• True : Φ is linear in both A and B, so it is a bilinear form on V . (Indeed, when F = R, this is the
Frobenius inner product.)

(m) If V = Mn×n(F ) and Φ(A,B) = det(AB), then Φ is a bilinear form on V .

• False : note that Φ(A,B) = det(A) det(B), but the determinant is not a linear function on matrices,
so Φ is not linear in either component.

(n) If V = C[0, 1] and Φ(f, g) =
´ 1
0
xf(x)g(x) dx, then Φ is a bilinear form on V .

• True : it is linear in both functions, so it is a bilinear form.

(o) If V = C[0, 1] and Φ(f, g) =
´ 1
0
f ′(x)g′(x) dx, then Φ is a bilinear form on V .

• True : derivatives are linear, so it is still linear in both functions and thus a bilinear form.
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2. Solve the following problems:

(a) Find a formula for the nth power of the matrix A =

[
1 5
2 4

]
.

• We diagonalize this matrix. The characteristic polynomial is p(t) = t2 − 5t − 6 = (t − 6)(t + 1) so
the eigenvalues are λ = 6,−1.

• We can compute that (1, 1) is a basis for the 6-eigenspace and (5,−2) is a basis for the −1-eigenspace,

so if we take Q =

[
1 5
1 −2

]
, Q−1 =

1

7

[
2 5
1 −1

]
, D =

[
6 0
0 −1

]
, then Q−1AQ = D.

• We then have An = QDnQ−1 =
1

7

[
2 · 6n + 5(−1)n 5 · 6n − 5(−1)n

2 · 6n − 2(−1)n 5 · 6n + 2 · (−1)n

]
.

(b) In Diagonalizistan there are two cities: City A and City B. Each year, 2/5 of the residents of City A
move to City B, and 2/3 of the residents of City B move to City A; the remaining residents stay in their
current city. If in year 0 the populations of Cities A and B are 2000 and 6000 residents respectively, �nd
the populations of the two cities in year n and determine what happens as n→∞.

• Let an be the population in city A in year n and bn be the population in city B in year n.

• Then the given information implies that

[
an
bn

]
=

[
3/5 2/3
2/5 1/3

]n [
2000
6000

]
.

• To compute the matrix power, we diagonalize A =

[
3/5 2/3
2/5 1/3

]
.

• The characteristic polynomial is p(t) = t2− 14

15
t− 1

15
= (t− 1)(t+

1

15
), so the eigenvalues are 1 and

− 1

15
, with respective eigenspaces spanned by

[
5/3
1

]
and

[
−1
1

]
.

• So withQ =

[
5/3 −1
1 1

]
we getAn = Q

[
1 0
0 (−1/15)n

]
Q−1 =

1

8

[
5 + 3(−1/15)n 5− 5(−1/15)n

3− 3(−1/15)n 3 + 5(−1/15)n

]
.

• Then

[
an
bn

]
= An

[
2000
6000

]
=

[
5000− 3000(−1/15)n

3000 + 3000(−1/15)n

]
. Thus as n → ∞, the populations ap-

proach 5000 in city A and 3000 in city B.

3. Solve each system of di�erential equations:

(a) Find the general solution to y′1 = 7y1 + y2 and y′2 = 9y1 − y2.

• The coe�cient matrix is A =

[
7 1
9 −1

]
with characteristic polynomial is p(t) = det(tI − A) =

(t− 8)(t+ 2), so the eigenvalues are λ = −2, 8.

• For λ = 8, the eigenspace is 1-dimensional and spanned by

[
1
1

]
.

• For λ = −2 the eigenspace is also 1-dimensional and spanned by

[
−1
9

]
.

• By the eigenvalue method, the general solution is

[
y1
y2

]
= C1

[
1
1

]
e8x + C2

[
−1
9

]
e−2x .

(b) Find the general solution to y′1 = 3y1 − 2y2 and y′2 = y1 + y2.

• The coe�cient matrix is A =

[
3 −2
1 1

]
with characteristic polynomial is p(t) = det(tI − A) =

t2 − 4t+ 5. By the quadratic formula, the eigenvalues are λ = 2± i.

• For λ = 2 + i, the eigenspace is 1-dimensional and spanned by

[
1 + i

1

]
.

• For λ = 2− i we can take the complex conjugate to get the eigenvector

[
1− i

1

]
.
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• The general solution is

[
y1
y2

]
= C1

[
1 + i

1

]
e(2+i)x + C2

[
1− i

1

]
e(2−i)x .

• With real functions we get

[
y1
y2

]
= C1e

2x

[
cos(x)− sin(x)

cos(x)

]
+ C2e

2x

[
sin(x) + cos(x)

sin(x)

]
.

(c) Find the general solution to y′′ − 4y = 0. [Hint: Set z = y′ and convert to a system of linear equations.]

• Following the hint, if we let z = y′ then z′ = y′′ = 4y, so we obtain the system

{
y′ = z
z′ = 4y

}
with

associated matrix A =

[
0 1
4 0

]
.

• The characteristic polynomial is p(t) = t2 − 4 with roots λ = −2, 2.

• The −2 and 2-eigenspaces are spanned by

[
1
−2

]
and

[
1
2

]
respectively.

• Thus by the eigenvalue method, the general solution is

[
y
z

]
= C1

[
1
−2

]
e−2x + C2

[
1
2

]
e2x.

• In particular, we see y = C1e
−2x + C2e

2x .

(d) Find the general solution to y′1 = 2y2 + sec(2x) and y′2 = −2y1.

• The coe�cient matrix for the homogeneous system is A =

[
0 2
−2 0

]
with eigenvalues λ = ±2i.

Row-reducing to �nd eigenvectors yields the complex-valued solution basis

[
−i
1

]
e2ix,

[
i
1

]
e−2ix

with equivalent real-valued solution basis

[
sin(2x)
cos(2x)

]
,

[
− cos(2x)
sin(2x)

]
.

• We want ỹ = c1(x)

[
sin(2x)
cos(2x)

]
+ c2(x)

[
− cos(2x)
sin(2x)

]
where

[
sin(2x) − cos(2x)
cos(2x) sin(2x)

] [
c′1(x)
c′2(x)

]
=[

0
sec(2x)

]
.

• Left-multiplying by

[
sin(2x) − cos(2x)
cos(2x) sin(2x)

]
yields

[
c′1(x)
c′2(x)

]
=

[
sin(2x) − cos(2x)
cos(2x) sin(2x)

] [
0

sec(2x)

]
=[

−1
tan(2x)

]
and now taking antiderivatives yields c1(x) = C1 − x and c2(x) = C2 +

1

2
ln(sec(2x)).

• The solution is

[
y1
y2

]
= (C2 +

1

2
ln(sec 2x))

[
sin(2x)
cos(2x)

]
+ (C1 − x)

[
− cos(2x)
sin(2x)

]
.

(e) Solve the system y′(t) =

 2 1 0
0 2 0
0 0 3

y, where y(0) =

 2
3
−1

.
• The coe�cient matrix is A =

 2 1 0
0 2 1
0 0 3

, which is already in Jordan canonical form. Using the

matrix exponential formula, we compute eAx =

 e2x xe2x 0
0 e2x 0
0 0 e3x

.
• Then desired solution is

 y1
y2
y3

 = eAxy(0) =

 e2x xe2x 0
0 e2x 0
0 0 e3x

 2
3
−1

 =

 2e2x + 3xe2x

3e2x

−e3x

 .

4. For each bilinear form on each given vector space, compute [Φ]β for the given basis β:

(a) The pairing Φ((a, b, c), (d, e, f)) = ad+ ae− 2be+ 3cd+ cf on V = F 3 with β the standard basis.
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• We evaluate Φ(βi, βj) to compute the (i, j)-entry, where β1 = (1, 0, 0), β2 = (0, 1, 0), β3 = (0, 0, 1).

• For example, Φ(β1, β2) = Φ((1, 0, 0), (0, 1, 0)) = 1, while Φ(β2, β2) = Φ((0, 1, 0), (0, 1, 0)) = −2.

• The end result is [Φ]β =

 1 1 0
0 −2 0
3 0 1


(b) The pairing Φ(p, q) = p(−1)q(2) on V = P3(R) with β = {1, x, x2, x3}.

• We simply evaluate Φ(βi, βj) to compute the (i, j)-entry, where β1 = 1, β2 = x, β3 = x2, β4 = x3.

• For example, Φ(β1, β2) = 1 · 2 = 2, while Φ(β2, β2) = (−1) · 2 = −2 and Φ(β4, β3) = (−1)322 = −4.

• The end result is [Φ]β =


1 2 4 8
−1 −2 −4 −8
1 2 4 8
−1 −2 −4 −8

 .

(c) The pairing Φ(A,B) = tr(AB) on V = M2×2(C) with β =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

• As above we just compute the 16 possible values Φ(βi, βj) for basis elements βi, βi.

• For example, Φ(β1, β2) = tr

([
1 0
0 0

] [
0 1
0 0

])
= 0, Φ(β2, β3) = tr

([
0 1
0 0

] [
0 0
1 0

])
= 1.

• The end result is [Φ]β =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

5. The goal of this problem is to give two proofs of Binet's formula for the Fibonacci numbers de�ned by the
recurrence F0 = 0, F1 = 1, and for n ≥ 1, Fn+1 = Fn + Fn−1; the next few terms are 1, 1, 2, 3, 5, 8, 13, 21,

34, .... Explicitly, for ϕ =
1 +
√

5

2
and ϕ =

1−
√

5

2
, Binet's formula says that Fn =

ϕn − ϕn√
5

.

(a) Show that

[
Fn+1

Fn

]
=

[
1 1
1 0

] [
Fn
Fn−1

]
and deduce that

[
Fn+1

Fn

]
=

[
1 1
1 0

]n [
F1

F0

]
.

• Note that

[
1 1
1 0

] [
Fn
Fn−1

]
=

[
Fn + Fn−1

Fn

]
=

[
Fn+1

Fn

]
by the recurrence.

• Thus, by a trivial induction, we see that

[
Fn+1

Fn

]
=

[
1 1
1 0

]n [
F1

F0

]
.

(b) Find a formula for the nth power of

[
1 1
1 0

]
and use the result to deduce Binet's formula.

• We diagonalize this matrix. The characteristic polynomial is p(t) = t2 − t− 1 so the eigenvalues are

λ =
1±
√

5

2
.

• Letting ϕ =
1 +
√

5

2
and ϕ =

1−
√

5

2
, we can compute that (ϕ, 1) is a basis for the ϕ-eigenspace

and so (ϕ, 1) is a basis for the ϕ-eigenspace, so if we take Q =

[
ϕ ϕ
1 1

]
, Q−1 =

1√
5

[
1 −ϕ
−1 ϕ

]
,

D =

[
ϕ 0
0 ϕ

]
, then A = QDQ−1.

• We then haveAn = QDnQ−1 =

[
ϕ ϕ
1 1

] [
ϕn 0
0 ϕn

]
1√
5

[
1 −ϕ
−1 ϕ

]
=

1√
5

[
ϕ ϕ
1 1

] [
ϕn ϕn−1

−ϕn −ϕn−1
]

=

1√
5

[
ϕn+1 − ϕn+1 ϕn − ϕn
ϕn − ϕn ϕn−1 − ϕn−1

]
.
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• Then by (a), we see

[
Fn+1

Fn

]
=

1√
5

[
ϕn+1 + ϕn+1 −ϕn−1 − ϕn+1

−ϕn+1 − ϕn−1 ϕn−1 − ϕn−1
] [

1
0

]
=

1√
5

[
ϕn+1 − ϕn+1

ϕn − ϕn
]
,

yielding Fn =
ϕn − ϕn√

5
as claimed.

(c) Let W be the space of all real sequences {an}n≥0 such that an+1 = an + an−1 for all n ≥ 1. Show that
W is a 2-dimensional vector space over R.

• To show W is a vector space, simply verify the subspace criterion:

• [S1] W contains the zero sequence.

• [S2] If {an}n≥0 and {bn}n≥0 are in W , then for cn = an + bn we have cn+1 = an+1 + bn+1 =
(an + an−1) + (bn + bn−1) = cn + cn−1 so {cn}n≥0 is in W .

• [S3] If {an}n≥0 is in W , then for dn = ran we have dn+1 = r(an + an−1) = dn + dn−1 so {dn}n≥0 is
in W .

• Furthermore, any such sequence is completely characterized by its 0th and 1st terms by the recur-
rence, and these values can be chosen freely. Thus, the map T : W → R2 with T ({an}n≥0) = (a0, a1)
is an isomorphism, and so W is 2-dimensional.

(d) With notation as in (c), show that the sequences {ϕn}n≥0 and {ϕn}n≥0 are a basis for W . Deduce that
there exist constants C and D such that Fn = Cϕn +Dϕn and then deduce Binet's formula.

• Note that ϕ and ϕ are the two roots of the quadratic x2 − x − 1 = 0 as calculated in (a): thus,
ϕ2 = ϕ+ 1 and ϕ2 = ϕ+ 1, so multiplying by ϕn−1 and ϕn−1 respectively yields ϕn+1 = ϕn +ϕn−1

and ϕn+1 = ϕn + ϕn−1.

• Thus, {ϕn}n≥0 and {ϕn}n≥0 are both elements of W . Since they are linearly independent (since
both sequences start with 1 at n = 0 but are di�erent for n = 1) and W is 2-dimensional, they are
a basis.

• Thus, there exist constants C and D such that Fn = Cϕn +Dϕn.

• We can compute them by setting n = 0, 1 to see 0 = C + D and 1 = Cϕ + Dϕ, which yields

C =
1

ϕ− ϕ
=

1√
5
and D = −C = − 1√

5
, again giving Binet's formula Fn =

ϕn − ϕn√
5

.

Remark: Both of these methods extend generally to solve general linear recurrences of the form an+1 =
C1an + C2an−2 + · · · + Ckan−k for constants C1, . . . , Ck. Additionally, the matrix formula in (a) is a
good source of other Fibonacci identities.

6. Suppose V is �nite-dimensional with scalar �eld F and T : V → V is linear. We say the polynomial q(x) ∈ F [x]
annihilates T if q(T ) = 0.

(a) Show that the set of polynomials in F [x] annihilating T is a vector space.

• Simply check the subspace criterion:

• [S1] Clearly the zero polynomial annihilates T for any T .

• [S2] If p(x) and q(x) annihilate T , then (p+q)(T ) = p(T )+q(T ) = 0+0 = 0 so p+q also annihilates
T .

• [S3] If p(x) annihilates T , then (αp)(T ) = αp(T ) = α0 = 0 so αp also annihilates T .

We de�ne the minimal polynomial of T to be the monic polynomial m(t) ∈ F [t] of smallest positive degree
annihilating T . For example, the minimal polynomial of the identity transformation is m(t) = t− 1.

(b) Show that every polynomial that annihilates T is divisible by the minimal polynomial. [Hint: Use
polynomial division.]

• Suppose a(t) annihilates T and write a(t) = q(t)m(t) + r(t) with deg r < degm.

• Then r(T ) = a(T )− q(T )m(T ) = 0 since a(T ) = m(T ) = 0.

• Since deg r < degm and m has minimal positive degree, we must have r = 0.

(c) Conclude that the minimal polynomial divides the characteristic polynomial.
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• The Cayley-Hamilton theorem says that the characteristic polynomial annihilates T , so by (b), it is
divisible by the minimal polynomial.

(d) Suppose λ is an eigenvalue of T . Prove that λ is a root of the minimal polynomial of T , and deduce that
the minimal polynomial and the characteristic polynomial have the same set of roots. [Hint: Consider
the Jordan form of an associated matrix A.]

• Consider the Jordan canonical form of any associated matrix A to T . Since λ is an eigenvalue of A,
it appears on the diagonal of the Jordan form. Then the corresponding diagonal entry of m(J) will
be m(λ).

• But since m(J) = m(PAP−1) = p ·m(A) · P−1 = 0, this means m(λ) = 0 so λ is a root of m.

• Since the roots of the characteristic polynomial are the eigenvalues, all its roots are roots of m, and
since m divides p, all its roots are roots of p. Thus m and p have the same roots.

(e) Parts (c) and (d) gives a moderately e�ective way to �nd the minimal polynomial, namely, test divisors
of the characteristic polynomial that have all of the same roots (though not necessarily the same mul-

tiplicities). Using this method or otherwise, �nd the minimal polynomials of the matrices

[
−5 9
−4 7

]
, 1 1 −1

−2 3 −2
−1 0 1

, and
 0 −1 1

0 2 0
−2 −1 3

.
•
[
−5 9
−4 7

]
: The characteristic polynomial is (x− 1)2 and x− 1 does not annihilate this matrix, so

the minimal polynomial must be (x− 1)2.

•

 1 1 −1
−2 3 −2
−1 0 1

: The characteristic polynomial is (x − 1)(x − 2)2 and (x − 1)(x − 2) does not

annihilate this matrix, so the minimal polynomial must be (x− 1)(x− 2)2.

•

 0 −1 1
0 2 0
−2 −1 3

: The characteristic polynomial is (x−1)(x−2)2 and (x−1)(x−2) annihilates this

matrix, so the minimal polynomial must be (x− 1)(x− 2).

(f) Show that similar matrices have the same minimal polynomial.

• If p(A) = 0 then conjugating yields p(PAP−1) = 0, and conversely if p(PAP−1) = 0 then conjugating
by P−1 yields p(A) = 0.

• Thus the polynomials annihilating A and PAP−1 are the same, and so the minimal polynomials are
also the same.

(g) Show that the minimal polynomial of the k × k Jordan block with eigenvalue λ is m(t) = (t− λ)k.

• Note that J − λIk is the matrix N with 1s directly above the diagonal.

• It follows by a simple induction that Nk−1 is not the zero matrix (it is the matrix with a single 1 in
the upper right corner) but Nk is.

• Thus, (t− λ)k−1 does not annihilate J , so by (c) and (d) the minimal polynomial must be (t− λ)k.

(h) Show that the exponent of t − λ in the minimal polynomial m(t) of A is the size of the largest Jordan
block of eigenvalue λ in the Jordan canonical form of A.

• By (f), the minimal polynomial of a k × k Jordan block is (t− λ)k.

• By (g), the minimal polynomial of A is the same as the minimal polynomial of its Jordan form.

• Now we simply observe that for a block-diagonal matrix, the minimal polynomial of the full matrix
is the least common multiple of the minimal polynomial of each block on the diagonal, since each
block must individually be annihilated by the minimal polynomial.

• Putting all of this together shows immediately that the exponent of t−λ in the minimal polynomial
m(t) of A is the size of the largest Jordan block of eigenvalue λ.

(i) Show that a matrix is diagonalizable over C if and only if its minimal polynomial has no repeated roots.

• A matrix is diagonalizable if and only if all of the blocks in its Jordan form have size 1.
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• But by (h), the exponent of t− λ in the minimal polynomial is the size of the largest Jordan block.

• Thus, A is diagonalizable if and only if the exponent of t − λ is 1, for every eigenvalue λ. Since all
eigenvalues are roots of the minimal polynomial by (d), the result follows immediately.

(j) Show that the minimal polynomial of a 2 × 2 matrix uniquely determines its Jordan canonical form.
Illustrate by �nding the Jordan canonical forms of the 2× 2 matrices with minimal polynomials m(t) =
t2 + t, t2 + 1, and t− 3 over C.

• If m = (t−λ)2 then there is a 2× 2 Jordan λ-block. If m = (t−λ)(t−µ) then there is a 1× 1 block
for both λ and µ. And if m = t−λ then there are only 1× 1 λ-blocks. In each case the Jordan form
is determined completely.

• The Jordan forms are

[
−1 0
0 0

]
,

[
i 0
0 −i

]
, and

[
3 0
0 3

]
.

(k) Show the minimal and characteristic polynomials of a 3×3 matrix together uniquely determine its Jordan
canonical form. Illustrate by �nding the Jordan canonical forms of the 3 × 3 matrices with (m(t), p(t))
equal to (t, t3), (t2, t3), (t3, t3), (t2 − t, t3 − t2), (t2 − t, t3 − 2t2 + t).

• If the minimal and characteristic polynomials are given, then all of the eigenvalues are known and
the smallest and largest Jordan block sizes are also known. Since the only possible lists of sizes are
{3}, {2, 1}, {2}, {1, 1, 1}, {1, 1}, {1}, knowing the total number of eigenvalues and the smallest and
largest block sizes uniquely determines which sizes appear for each eigenvalue.

• The Jordan forms are

 0
0

0

,
 0 1

0
0

,
 0 1

0 1
0

,
 0 1

0
1

,
 0

1 1
1

.

7. [Challenge] The goal of this problem is to characterize when the limit of matrix powers limn→∞An converges.

(a) Suppose limn→∞An = B exists. Show that every column of B lies in the 1-eigenspace of A. [Hint: Why
is AB = B?]

• If limn→∞An = B, multiplying by A yields limn→∞An+1 = AB. But the limit on the left is also
B, by shifting the index of the variable n, so B = AB.

• If the ith column of B is vi, then since the ith column of AB is the matrix product of A with the
ith column of B, we see that Avi = vi: thus, vi is in the 1-eigenspace of A.

Now let J be a d× d Jordan block matrix with eigenvalue λ ∈ C and let N = J − λId be the matrix with 1s
directly above the diagonal and 0s elsewhere.

(b) Show that Jn = λnId +
(
n
1

)
λn−1N +

(
n
2

)
λn−2N2 + · · ·+

(
n
d

)
λn−dNd for each n ≥ 1.

• Note that Jn = (λId+N)n = λnId+
(
n
1

)
λn−1N+

(
n
2

)
λn−2N2 + · · ·+

(
n
n

)
Nn by the binomial theorem

and the fact that NIn = InN .

• However, Nd is the zero matrix, which follows by noting that N(ei) = ei+1 where {e1, . . . , ed} is
the standard basis, and we view ek = 0 for k > d. Then Nd(ei) = ei+d = 0 for all i, so Nd is zero
on all vectors.

• Thus, the terms past Nd are all zero, so we may ignore them. Thus we get Jn = λnId+
(
n
1

)
λn−1N +(

n
2

)
λn−2N2 + · · ·+

(
n
d

)
λn−dNd as claimed.

(c) Show that limn→∞ Jn exists if and only if |λ| < 1 or if λ = 1 and d = 1.

• From (a) we see that Jn =


λn nλn−1

. . .
(
n
d−1
)
λn−d+1

λn
. . .

. . .

. . . nλn−1

λn

.
• Clearly Jn = [1] if λ = 1 and d = 1 so Jn converges in that case, and if |λ| < 1 then every entry in
Jn converges to zero so Jn converges as well.
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• Conversely, in order for limn→∞ Jn to exist, we require λn to converge as n → ∞. This clearly
requires |λ| ≤ 1 since otherwise |λn| → ∞, and if |λ| = 1 then if λ = eiθ then λn = einθ, which does
not converge as n→∞ unless λ = 1. Furthermore, if λ = 1 and d > 1, then the entries immediately
above the diagonal in Jn are equal to n, which does not converge.

• Therefore, if limn→∞ Jn exists, then we must have |λ| < 1 or λ = 1 and d = 1, as claimed.

(d) Let A be a square complex matrix. Show that limn→∞An exists if and only if 1 is the only eigenvalue
of A of absolute value ≥ 1 and the dimension of the 1-eigenspace equals its multiplicity as a root of the
characteristic polynomial.

• If J is the Jordan canonical form of A with J = PAP−1, then Jn = PAnP−1 and An = P−1JnP ,
so limn→∞An exists if and only if limn→∞ Jn exists.

• Since J is block-diagonal, limn→∞ Jn exists if and only if the limit of the nth power of each Jordan
block in J exists. But by part (b), this is the case if and only if each Jordan block either has |λ| < 1,
or if λ = 1 and d = 1.

• Equivalently, this means that the only eigenvalue of absolute value ≥ 1 is λ = 1, and if each Jordan
block with λ = 1 has size 1. This is equivalent to saying that every generalized 1-eigenvector is a
1-eigenvector, which is in turn equivalent to saying that the dimension of the 1-eigenspace equals its
multiplicity as a root of the characteristic polynomial, as claimed.

(e) Suppose M is a stochastic matrix (i.e., with nonnegative real entries and columns summing to 1) such
that some power of M has all positive entries. Show that limn→∞Mn converges to a matrix whose
columns are all 1-eigenvectors of M . [Hint: Use the results of the challenge problem from homework 9
applied to an appropriate power of M .]

• Suppose Mn has all positive entries. Then Mn is still a stochastic matrix, so by the challenge
problem from homework 9, we know that all eigenvalues of Mn satisfy |λ| < 1 or λ = 1, and the
1-eigenspace has dimension 1.

• By the spectral mapping theorem, if µ is an eigenvalue of M then µn is an eigenvalue of Mn, so
either |µn| < 1 or µn = 1, and the total dimension of all the eigenspaces with µn = 1 is 1.

• But since 1 is an eigenvalue of M as well, it must be the only eigenvalue with µn = 1, and then the
remaining eigenvalues have |µ| < 1.

• Hence by (c), the matrix limit limn→∞Mn converges. More speci�cally, if J is the Jordan canonical
form of M with M = P−1JP , where the (1,1)-entry of J is 1 and the �rst column of P is a 1-
eigenvector of M , then limn→∞ Jn is the matrix with (1,1)-entry equal to 1 and other entries equal
to zero. It is then straightforward to compute that the product limn→∞Mn = P−1[limn→∞ Jn]P
has all columns proportional to the �rst column of P , as claimed.

• Finally, by (a), since limn→∞Mn converges, all of the columns are 1-eigenvectors of M .
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