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8 Quadratic Integer Rings

Our goal in this chapter is describe various properties of quadratic integer rings, which are essentially the rings
Z[v' D] we have already encountered in our study of Pell’s equation, along with some of their applications to number

theory.

We begin with an overview of some properties of integral domains related to division algorithms and factorization;
these topics are of independent number-theoretic interest since they will allow us to generalize many of the arithmetic
properties of Z (e.g., unique factorization, modular arithmetic, and the Chinese Remainder Theorem) to arbitrary
rings. We then narrow our attention on the quadratic integer rings Op with a goal of studying factorization in
these rings. Although many of these rings do not have unique factorization of elements, we will prove that these
rings do possess unique factorization of ideals (in the sense that every nonzero ideal is a unique product of prime
ideals). We will then give some applications of these facts to classical problems in number theory.



8.1 Arithmetic in Rings and Domains

e In this section we will discuss some basic results from ring theory about Euclidean domains, ideals, and unique
factorization.

8.1.1 Ideals of Commutative Rings

e We start by introducing ideals of commutative rings, which (in the study of general rings) are primarily
motivated by their use in constructing quotient rings.

e Definition: If R is a commutative ring with 1, a subset I is called a (two-sided) ideal of R if it contains 0, is
closed under subtraction, and is closed under arbitrary multiplication by elements of R. Explicitly, I is an
ideal if I contains 0 and for any z,y € I and any r € R, the elements  — y and rz are in I.

o We will mention that if R is a noncommutative ring, there are various other flavors of ideals (left ideals,
right ideals, and two-sided ideals) that are not generally equivalent to one another. We will not deal
with these since we are only interested in commutative rings.

o There are various other ways to describe ideals. For example, I is an ideal of R if and only if [ is a
subgroup of R under addition that is also closed under arbitrary multiplication by elements of R.

e Here are a few basic examples of ideals:

o Example: The subrings nZ are ideals of Z, since they are clearly closed under arbitrary multiplication
by elements of Z.

o Example: If R = F[x] and p is any polynomial, the subring pR of multiples of p is an ideal of F[x], since
it is closed under arbitrary multiplication by polynomials in F'[x].

o Non-example: The subring Z of Q is not an ideal of Q, since it is not closed under arbitrary multiplication
by elements of Q. For example if we take r = 1/3 € Q and x = 4 € Z, the element rz = 4/3 is not in Z.

o Example: For any ring R, the subrings {0} and R are ideals of R. We refer to {0} as the trivial ideal
(or the “zero ideal”) and refer to any ideal I # R as a proper ideal (since it is a proper subset of R).

e Here are a few more examples (and non-examples) of ideals.

e Example: In the polynomial ring Z[z], determine whether the set .S of polynomials with even constant term
(i.e., the polynomials of the form 2ag + a;x + asx? + - - - + a,z™ for integers a;) forms an ideal.

o It is easy to see that 0 € S and that S is closed under subtraction.

o Furthermore, if ¢(z) is any other polynomial, and p(z) € S, then p(x)q(x) also has even constant term,
so it is also in S.

o Thus, S is closed under multiplication by elements of Z[z], so it .

e Example: Determine whether the set S = {0,2,4,6} of “even” residue classes is an ideal of Z/8Z.
o We have 0 € S, and it is a straightforward calculation to see that S is closed under subtraction, since
the sum of two “even” residue classes modulo 8 will still be even.

o Furthermore, the product of any residue class with an even residue class will again be an even residue class
(since 8 is even), so S is closed under multiplication by arbitrary elements of R. Thus, S .

e Example: Determine whether the set S = {(2a,3a) : a € Z} is an ideal of Z x Z.

o We have 0 € S, and (2a,3a) — (2b,3b) = (2(a — b),3(a — b)) so S is closed under subtraction.
o But, for example, we can see that (1,2) - (2,3) = (2,6) is not in S, even though (2,3) is, so S is not
closed under arbitrary multiplication by elements of Z x Z. Thus, S .

e In order to study the structure of ideals, we would like a simpler way to describe them. A convenient way is
to describe ideals as being “generated” by subsets of a ring:



If R is a ring with 1 and A is a subset of R, we would like to define “the ideal generated by A” to be the
smallest ideal containing A.

A vpriori, it is not obvious that there is such a smallest ideal. However, since the intersection of any
nonempty collection of ideals is also an ideal, and since A is contained in at least one ideal (namely the
whole ring R), we can equivalently define (A) to be the intersection of all ideals containing A.

However, although the above analysis clearly indicates that these definitions are well-posed, we have not
actually described what these ideals are.

If I is the ideal generated by A, then if ay,as,...,a, are any elements of A, we see that I must contain
the elements ryaq, r2as, ... , Tha, for any r; € R and hence also contain their sum.

On the other hand, if we let S be the set of elements of the form rya; + rqas + - - - + r,a, for any a; € A
and r; € R (and some n > 0), then it is easy to see that .S is a subring that is closed under multiplication
by elements of R, so S is an ideal.

Furthermore, since R contains 1, S contains A, so S is an containing A hence must actually be the ideal
generated by A.

Our discussion above establishes the following proposition:

Proposition (Generation of Ideals): Let R be a commutative ring with 1 and A be a subset of R. Then the
set (A) = {riay +reas +---+rpa, : 7; € R and a; € A} is the smallest ideal containing A.

The simplest class of ideals are those generated by a finite set, and (in particular) those generated by a single
element:

Definition: If R is a ring with 1, we say an ideal [ is finitely generated if I is generated by a finite set, and
we say I is principal if I is generated by a single element. Thus, a finitely generated ideal has the form
I =(ay,as,...,ay,), while a principal ideal has the form I = (a).

o We emphasize here that the principal ideal (a) is simply the set of R-multiples of a: (a) = {ra : r € R}.
o Example: If R is any commutative ring with 1, then R = (1) is principal. Likewise, the zero ideal 0 = (0)

is also principal.

o Example: In Z, for any integer n we have (n) = nZ. Since every ideal of Z is of the form nZ, we see that

every ideal of Z is principal. We remark that the notation nZ we have already used is consistent with
the definition above.

Remark: If ¢ and b are integers with greatest common divisor d, then (a,b) = (d): this follows from the
pair of observations that a and b are both contained in (d) so that (a,bd) C (d), and that d = xa + yb for
some integers « and y by the Euclidean algorithm, so that d is contained in (a, b). Indeed, as a reflection
of this fact, many authors write (a,b) to denote the greatest common divisor of a and b.

e Since principal ideals are the easiest to describe, it is often useful to try to determine whether a particular

ideal is principal, though this task is not always so easy! We give a few examples illustrating that this can
often be a tricky question.

e Example: Show that the ideal I = (2, z) in Z[z] is not principal.

o Note that I = {2p(x) + zq(x) : p,q € Z|x]} is the collection of polynomials in Z[z] with even constant

term.

o If I were principal and generated by some polynomial r(z), then every polynomial in I would be divisible

by r(x). Hence, in particular, r(z) would divide 2, so since 2 is a constant polynomial and a prime number,
r(z) would have to be one of {£1, £2}.

o However, since r(z) must also divide z, the only possibility is that r(z) would be either 1 or —1. But

it is easy to see that the ideal generated by 1 (or —1) is all of Z[z], so r(x) cannot be 1 or —1, since

I # Z[x].

o Thus, there is no possible choice for r, so I is | not principal | (Of course, it is still finitely generated!)

e Example: Determine whether or not the ideal I = (2,1 + +/—5) in Z[y/—5] is principal.



o Suppose this ideal were principal with generator r = a + by/—5 in Z[/—5].

o Then r would necessarily divide 2, meaning that 2 = rs for some s € Z[+/—5]. By taking norms, we see
that 4 = N(2) = N(r)N(s).

o Likewise, since r divides 14 +/—5, we would have 1+ +/—5 = rt for some ¢ € Z[v/—5], so by taking norms
we would have 6 = N(1++/—5) = N(r)N(t).
o Since N(r) = a® + 5b? is a nonnegative integer, we see that N(r) must divide both 4 and 6, hence is

either 1 or 2. However, it is easy to see that there are no integer solutions to a? + 56> = 2, and the only
elements of norm 1 are 1 and —1.

o As in the examples above, the ideal generated by 1 (or —1) is all of Z[v/—5], but (2,14 +/—5) # Z[/—5]
since every element a + by/—5 in the ideal has a + b even.

o Thus, I is |not principal |.

e As we noted above, we always have (1) = R. We can in fact generalize this statement somewhat:

e Proposition (Ideals and Units): If I is an ideal of the ring R with 1, then I = R if and only if I contains a
unit.
o Proof: If I = R then certainly I contains a unit (namely, 1).
o Conversely, if u € I is a unit with ur = 1, then since I is an ideal we have 1 = ur € I.

o Then for any s € R, the element s = 1s is also in I, and so I = R.

e Since every nonzero element in a field is a unit, we immediately see that the only nonzero ideal of a field is
the full ring. The converse is also true:

e Corollary (Ideals of Fields): A commutative ring R with 1 is a field if and only if the only ideals of R are 0
and R.

o Proof: If I is a field and [ is any nonzero ideal, then I contains some nonzero element r. Since F' is a
field, 7 is a unit, and so by the proposition above, I = R.

o Conversely, if the only ideals of R are 0 and R, let » € R be any nonzero element. Then (r) contains
r # 0 so it cannot be the zero ideal, so we must have (r) = R.

o By the previous proposition, this means (r) contains 1: then rs = 1 for some s € R, so r is a unit. Hence
every nonzero element of R is a unit, so R is a field as claimed.

8.1.2 Quotient Rings

e Now that we have discussed ideals, we can use them to study residue classes, and thereby discuss construct
quotient rings.

e Definition: If I is an ideal of the ring R, then we say a is congruent to b modulo I, written a = b (mod I), if
a—bel.

o As in Z and Fz], congruence modulo I is an equivalence relation that respects addition and multi-
plication. The proofs are the same as in Z and F[z], once we make the appropriate translations from
“divisibility” to “containment in I”.

e Proposition (Ideal Congruences): Let I be an ideal of R and a,b,c,d € R. Then the following are true:

1. a =a (mod I).
o Proof: Since a —a = 0 € I, the statement is immediate.
2. a=b (mod I) if and only if b = a (mod I).

o Proof: If a—b € I then —(a—b) = b—a € I since I is closed under additive inverses, and conversely
ifb—aelthensois —(b—a)=a—b.

3. If a=b (mod I) and b = ¢ (mod I), then a = ¢ (mod I).



4.

5.

o Proof: We are given a—b € I and b—c € I, so since [ is closed under addition, we see (a—b)+(b—c) =
a—cel.

If a=0b (mod I) and ¢ =d (mod I), then a + ¢ =b+ d (mod I).

o Proof: We are given a—b € I and ¢—d € I, so since [ is closed under addition, we see (a—b)+(c—d) =
(a+c¢c)—(b+d) el
If a =0 (mod I) and ¢ = d (mod I), then ac = bd (mod I).
o Proof: We are given a —b € I and ¢ —d € I. Then since I is closed under arbitrary left and right
multiplication, we see that (a — b)c and b(c — d) are also in I. Hence ac — bd = (a — b)c+ b(c —d) is
also in I since I is closed under addition.

e Now we can define residue classes:

e Definition: If I is an ideal of the ring R, then for any a € R we define the residue class of a modulo [ to be
theset @ =a+1 ={a+x : x € I}. This set is also called the coset of I represented by a.

o

(¢]

We will use the notations @ and a + I interchangeably. (The latter is intended to evoke the idea of
“adding” a to the set I.)

We observe, as with our previous examples of residue classes, that any two residue classes are either
disjoint or identical and that they partition R: specifically, @ = b if and only if a = b (mod I) if and only
ifa—bel.

e All that remains is to verify that the residue classes form a ring, in the same way as in Z and F[z]:

e Theorem (Quotient Rings): Let I be an ideal of the ring R. Then the collection of residue classes modulo I
forms a ring, denoted R/I (read as “R mod I”), under the operations @+ b = a + b and @- b = ab. (This ring
is called the quotient ring of R by I.) If R is commutative then so is R/I, and likewise if R has a 1 then so
does R/I.

o

Remark: The notation R/I is intended to emphasize the idea that I represents a single element (namely,
0) in the quotient ring R/I, and the other elements in R/I are “translates” of I. In this way, R/I is the
ring obtained from R by “collapsing” or “dividing out” by I, whence the name “quotient ring”.

The proof of this fact is exactly the same as in the cases of Z and F'[z], and only requires showing that
the operations are well-defined.

Proof: First we must show that the addition and multiplication operations are well-defined: that is, if
we choose different elements o’ € @ and b’ € b, the residue class of @’ + ' is the same as that of a + b,
and similarly for the product.

To see this, if @’ € @ then a’ = a (mod I), and similarly if ¥’ € b then b’ = b (mod I).
Then @’ +V =a+b (mod I), so a’ + b = a + b. Likewise, a’t/ = ab (mod I), so a’b’ = ab.
Thus, the operations are well-defined.

For the ring axioms [R1]-[R6], we observe that associativity, commutativity, and the distributive laws
follow immediately from the corresponding properties in R: the additive identity in R/I is 0 and the
additive inverse of @ is —a.

Finally, if R is commutative then so will be the multiplication of the residue classes, and if R has a 1
then the residue class 1 is easily seen to be a multiplicative identity in R/I.

e This general description of “quotient rings” generalizes the two examples we have previously discussed: Z/mZ
and R/pR where R = F[x].

(¢]

e}

To be explicit, Z/mZ is the quotient of Z by the ideal mZ, while F[x]/p is the quotient of the polynomial
ring F'[z] by the principal ideal (p) consisting of all multiples of p.

It is not hard to see that the integer congruence a = b (mod m), which we originally defined as being
equivalent to the statement m|(b — a), is the same as the congruence a = b (mod I) where I is the ideal
mZ, since b — a € mZ precisely when b — a is a multiple of m.



e Here are some additional examples of quotient rings:

e Example: If R is any ring, the quotient ring of R by the zero ideal, namely R/0, is (isomorphic to) R itself,
while the quotient ring of R by itself, namely R/R, is (isomorphic to) the trivial ring {0}.

e Example: In R = Z[z], with I consisting of all multiples of 22 + 1, describe the structure of the quotient ring
R/I.

o It is easy to see that I is an ideal of R, since it is a subring that is closed under arbitrary multiplication
by elements of R.

o From our discussion of polynomial rings, we know that the residue classes in R/I are represented uniquely
by residue classes of the form a + bx where a,b € Z. Note that in this quotient ring, we have 72+ 1 = 0,
which is to say, 72 = —1.

o The addition in this quotient ring is given by a + bx+c + dx = (a + ¢) 4+ (b + d)x while the multiplication

is given by a + bx - ¢ + dx = (ac — bd) + (ad + be)x, which follows from the distributive law and the fact
that 72 = —1.

o In this case, the quotient ring is isomorphic (see below) to the ring of Gaussian integers Z[i], with the
isomorphism ¢ : R/I — Z[i] given by ¢(a + bz) = a + bi.

e Example: In R = Z/8Z, with I = {0,4}, describe the structure of the quotient ring R/I.

o It is easy to see that I is an ideal of R, since it is a subring that is closed under arbitrary multiplication
by elements of R. (Indeed, it is the principal ideal generated by 4.)

o Since each residue class contains 2 elements, and R has 8 elements in total, there are four residue classes.
With this observation in hand, it is not hard to give a list: 0 = I = {0,4}, 1 = 1+ I = {1,5},
2=2+1={2,6},and 3=3+1={3,7}.

o Notice, for example, that in the quotient ring R/I, we have 1+3 =0,2-2 =0, and 2 -3 = 2: indeed,
we can see that the structure of R/I is exactly the same as Z/4Z (the labelings of the elements are even
the same).

e We also require the notion of a ring homomorphism: these are structure-preserving maps from one ring to
another.

e Definition: A function ¢ : R — S is a ring homomorphism if ¢(r; + r2) = ©(r1) + ¢(r2) and @(r1 - r2) =
o(r1) - @(re) for all elements r; and 73 in R. A homomorphism ¢ : R — S that is a bijection is called a
ring isomorphism.

o Example: The map ¢ : Z — Z/mZ defined by ¢(a) = @ is a ring homomorphism.
o Example: If R is any ring, the map ¢ : R — R x R given by ¢(r) = (r,r) is a ring homomorphism.
o Example: The map ¢ : Z/6Z — (Z/2Z) x (Z/3Z) given by ¢(a) = (a mod 2,a mod 3) is a ring

isomorphism.

e Associated to a homomorphism are two fundamental objects: the kernel and image.

e Definition: If ¢ : R — S is a ring homomorphism, the kernel of ¢, denoted ker ¢, is the set of elements in R
mapped to Og by . In other words, kerp = {r € R : ¢(r) = 0}.

o Intuitively, the kernel measures how close ¢ is to being the zero map: if the kernel is large, then ¢ sends
many elements to zero, while if the kernel is small, ¢ sends fewer elements to zero.

o Example: The kernel of the reduction homomorphism ¢ : Z — Z/mZ with p(a) = a is mZ.
e Definition: If p : R — S is a ring homomorphism, the image of ¢, denoted im ¢, is the set of elements in S
of the form ¢(r) for some r € R.

o In the context of general functions, the image is often called the range of .

o Intuitively, the image measures how close ¢ is to being surjective: indeed (by definition) ¢ is surjective
if and only if imp = S.



e One of the fundamental results about quotient rings is a relationship between homomorphisms and quotients:

e Theorem (First Isomorphism Theorem): If ¢ : R — S is a homomorphism of rings, then R/ ker ¢ is isomorphic
to im .

o Intuitively, ¢ is a surjective homomorphism ¢ : R — im¢p. To turn it into an isomorphism, we must
“collapse” its kernel to a single element: this is precisely what the quotient ring R/ ker ¢ represents.

o Proof: Let I = kery. We use ¢ to construct a map ¢ : R/I — im ¢, and then show that it is injective
and surjective.

o The map is defined as follows: for any residue class 7 € R/I, we define ¢(7) = ¢(r).

o We must verify that this map v is well-defined, so suppose that ' is some other representative of the
residue class 7: then ' —r € I, so p(r’ — r) = 0 and thus o(r') = p(r).

o Thus, ¥(r") = ¢(1") = p(r) = ¥(F), so the map 1 is well-defined.

o It is then easy to see 1 is a homomorphism, since (7 +3) = o(r + s) = p(r) + p(s) = ¥(T) + ¥(3) and
likewise ¢(7 - 5) = p(r - 5) = @(r) - p(s) = »(T) - ().

o Next, we see that ¢(7) = 0 precisely when ¢(r) = 0, which is to say r € ker(p), so that 7 = 0. Thus, the
only element in ker is 0, so 1 is injective.

o Finally, if s is any element of im ¢, then by definition there is some r € R with ¢(r) = s: then ¥(7) = s,
meaning that 1 is surjective.

o Since 1 is a homomorphism that is both injective and surjective, it is an isomorphism.

8.1.3 Maximal and Prime Ideals

e An important class of ideals are those that are maximal under inclusion (i.e., which are not contained in any
other ideal except the full ring):

e Definition: If R is a ring, a maximal ideal of R is an ideal M # R with the property that the only ideals of
R containing M are M and R.

o Example: If F is a field, then since the only ideals of F' are 0 and F', the zero ideal is a maximal ideal
of F.

o Example: In Z, the ideal mZ is contained in nZ precisely when n divides m. Accordingly, the maximal
ideals of Z are precisely the ideals of the form pZ, where p is a prime.

o Non-example: The ideal (z) is not a maximal ideal of Z[z] because it is contained in the proper ideal
(2,z).

e A commutative ring with 1 must have maximal ideals:

e Theorem (Existence of Maximal Ideals): If R is a commutative ring with 1, then any proper ideal of R is
contained in a maximal ideal.

o Like a number of other general existence theorems (e.g., the proof that every vector space has a basis),
this proof requires the (in)famous axiom of choice from set theory. The version of the axiom of choice
typically used in algebra is known as Zorn’s lemma: if S is a nonempty partially ordered set with the
property that every chain in S has an upper bound, then S contains a maximal element'.

o Proof: Suppose R is a ring with 1 and I is a proper ideal of R.

o Let S be the set of all proper ideals of R containing I, partially ordered under inclusion. Since I € S, S
is nonempty.

o If C is any nonempty chain in S, let J be the union of all ideals in C: then 0 € J since 0 is contained in
any ideal in C.

LA partial ordering on a set S a relation < such that for any z,y,z € S, (i) # < z (ii) z < y and y < x implies z = y, and (iii) z < y
and y < z implies z < z. If S is a partially-ordered set, a subset C' is a chain if for any =,y € C, either x < y or y < x, an upper bound
for a subset B is an element w € B such that b < w for all b € B, and a maximal element of a subset B is an element m € B such that
if x € B has m < x then m = x.



o Furthermore, if z,y € J and r € R, then by definition = € I; and y € I; for some I; and I; in C. Since
I; C Ij or I; C I; since C is a chain, it follows that  — y, 7, and zr are all in one of I; or I;, hence in
J. Thus, J is an ideal.

o Also, if it were true that J = R, then the element 1 would be in J. But this is impossible, since by
definition J is the union of a collection of proper ideals of R, none of which therefore contains 1.

o Therefore, J is an upper bound for S. Hence, by Zorn’s lemma, J contains a maximal element, which is
therefore a maximal ideal of R that contains 1.

e It might seem to be difficult to determine whether a particular ideal is maximal. However, by using quotient
rings, we can eagsily detect whether a given ideal is maximal:

e Proposition (Maximal Ideals and Quotients): If R is a commutative ring with 1, then the ideal M is maximal
if and only if R/M is a field.

o We will remark that this result is not true if we drop either of the assumptions on R (i.e., that it is
commutative and has a 1).

o Proof: It can be verified that there is a correspondence between ideals of R containing I and the ideals
of R/I: if J is an ideal of R, then J = {j + I : j € J} is easily seen to be an ideal of R/I. Conversely,
if we have any ideal J/I = {j+ 1 : j € J} of R/I, it is straightforward to check that the collection of
all elements j € R such that j + I € J is an ideal of R.

o This means the ideals of R/M are in bijection with the ideals of R containing M: therefore, M is maximal
precisely when the only ideals of R/M are 0 and R/M.

o Furthermore, if R is commutative with 1, then R/M is also a commutative ring with 1, so R/M is a field
if and only if the only ideals of R/M are 0 and R/M. Putting these two statements together yields the
proposition.

e Corollary: If F is a field, the maximal ideals of F'[z] are precisely the principal ideals (p) where p is irreducible.

o Proof: Every ideal of F[z] is principal, and the quotient ring F[z]/(p) is a field if and only if p is
irreducible.

e Example: Determine whether the ideal I = (2, z) is a maximal ideal of R = Z[z].

o As we have already shown, the quotient ring R/(2, x) is isomorphic to Z/2Z, which is a field. Thus, I is
a maximal ideal of R.

e Example: Determine whether the ideal I = (2) is maximal in R = Z[/2].

o In the quotient ring R/I, the residue class v/2 + I is nonzero, but has the property that (v2 + I)? =
2+ I =0+ 1 is equal to zero.

o Thus, the quotient ring R/T has zero divisors hence is not a field, meaning that I is not a maximal ideal
of R.

e In addition to maximal ideals, we have another important class of ideals in commutative rings:

e Definition: If R is a commutative ring with 1, a prime ideal of R is an ideal P # R with the property that
for any a,b € R with ab in P, at least one of @ and b is in P.

o As naturally suggested by the name, prime ideals are a generalization of the idea of a prime number
in Z: for n > 1, the ideal nZ is a prime ideal of Z precisely when ab € nZ implies a € nZ or b € nZ.
Equivalently (in the language of divisibility) this means n|ab implies n|a or n|b, and this is precisely the
condition that n is either a prime number (or zero).

o Example: The prime ideals of Z are (0) and the ideals pZ where p is a prime number.

o A similar statement holds in R = F[z]: the ideal (p) is prime precisely when p is not a unit and p|ab
implies p|a or p|b, and the latter condition is equivalent to saying that p is either irreducible or zero.

o Example: The prime ideals of F[z] are (0) and the ideals (p) where p is an irreducible polynomial of
positive degree.



e Like with maximal ideals, there is an easy way to test whether an ideal is prime using quotient rings:

e Proposition (Prime Ideals and Quotients): If R is a commutative ring with 1, then the ideal P is prime if and
only if R/P is an integral domain.

o This proof is essentially just a restatement of the definition of a prime ideal using residue classes in the
quotient ring using the observation that r € P if and only if 7 = 0 in R/P.

o Proof: If R is commutative with 1 and P # R, then R/P is also commutative with 1, so we need only
test for zero divisors.

o If P is a prime ideal, then ab € P implies a € P or b € P. In the quotient ring, this says that ab =0
implies @ = 0 or b = 0, which is precisely the statement that R/P has no zero divisors.

o Conversely, if R/P has no zero divisors, then ab = 0 implies @ = 0 or b = 0, which is to say, ab € P
implies a € P or b € P. Furthermore, since R/P is not the zero ring (since this possibility is excluded
by the definition of integral domain), we see P # R, and therefore P is a prime ideal of R.

e Corollary: A commutative ring with 1 is an integral domain if and only if 0 is a prime ideal.
o Proof: 0 is prime if and only if the quotient R/0 2 R is an integral domain.
e Corollary: In a commutative ring with 1, every maximal ideal is prime.

o Proof: If M is a maximal ideal, then R/M is a field. Every field is an integral domain, so M is a prime
ideal.

e Example: Determine whether the ideals (z) and (22) in Z[x] are prime ideals.

o By the division algorithm, the residue classes in Z[z]/(x) are of the form @ for a € Z. Clearly, a+b=a+b
and @ - b = ab, so the arithmetic of the residue classes is the same as the arithmetic of Z. (Equivalently,
the map ¢ : Z[z]/(z) — Z with ¢(p) = p(0) is an isomorphism.) This means Z[z]/(z) is an integral
domain, so (z) is a prime ideal.

o On the other hand, also by the division algorithm, we see that the residue classes in Z[x]/(2?) are of the

form a + bz where a,b € Z. Since T-7 = 0 but T # 0, we see that Z[z]/(x?) has zero divisors, and so
(2?) is not a prime ideal.

8.1.4 Arithmetic in Integral Domains

e We now discuss some properties of arithmetic in integral domains.

e Definition: Suppose that R is an integral domain and a,b,d € R.

1. We say that d divides a, written d|a, if there exists some r € R such that a = rd.
2. We say d is a common divisor of a and b if d|a and d|b.

3. We say that a common divisor d € R is a greatest common divisor of a and b if d # 0 and for any other
common divisor d’, it is true that d’|d.

4. If 1 is a greatest common divisor of @ and b, then we say a and b are relatively prime.

5. If a = ub for some unit u, then we say a and b are associates.

o Observe that every ring element divides each of its associates, and that “being associate” is an equivalence
relation.

o Two elements in an integral domain may not possess a greatest common divisor. If ¢ and b do have a
greatest common divisor d, then the collection of greatest common divisors of a and b is precisely the set
of associates of d.

e Here is an explicit example of elements in an integral domain that do not possess a greatest common divisor:

e Example: Show that 2 + 24/—5 and 6 do not possess a greatest common divisor in Z[y/—5].



First, observe that 2 and 1 + 1/—5 are both common divisors of 2 + 24/—5 and 6.

Now suppose that 2 + 2v/—5 and 6 had a gcd d: then d would divide 2(1 + v/—5) and 6, and also be
divisible by 2 and 1+ +/—5.

By taking norms, we see that N(d) divides both N(2 + 2v/—5) = 24 and N(6) = 36, hence divides 12.

Also, N(d) would also necessarily be a multiple of N(2) =4 and N (1 + +/—5) = 6, hence be a multiple
of 12.

The only possibility is N(d) = 12, but there are no elements of norm 12 in Z[\/—5], since there are no
integer solutions to a? + 5b? = 12. This is a contradiction, so 2 + 2v/—5 and 6 do not possess a greatest
common divisor in Z[/=5].

e Proposition (Properties of Divisibility): Let R be an integral domain. Then for any elements a,b,d € R, the
following are true:

1.

The element d divides a if and only if the principal ideal (a) is contained in the principal ideal (d).
o Proof: Note (a) C (d) if and only if a € (d) if and only if a = dk for some k € R.
The elements a and b are associate if and only if a|b and b|a, if and only if (a) = (b).

o Proof: Note (a) = (b) if and only if (a) C (b) and (b) C (a), which is equivalent to alb and bla by
(1). Furthermore, ¢ = ub for some unit u clearly implies a|b and bla. Conversely, if a|b and bla,
then a = rb and b = sa for some r, s, and then a = rsa. If a = 0 then b = 0 also and we are done;
otherwise we may cancel to see rs = 1 and so r is a unit.

If @ and b have a ged d, then the collection of greatest common divisors of a and b is precisely the set of
associates of d.

o Proof: If d is a ged of @ and b and w is any unit, then (ud)|a and (ud)|b, and also if d’'|d then d'|(ud)
so ud is also a gcd. Furthermore, if d and e are both geds of a and b, then d|e and e|d so that d and
e are associates by (2).

The element d is a ged of a and b if and only if (d) is the smallest principal ideal containing (a,b). In
particular, if (a,b) is a principal ideal, then any generator is a ged of a and b.

o Proof: By (1) above, d is a common divisor of a and b if and only if (d) contains both (a) and (b),
which is equivalent to saying (a,b) C (d).

o Then by (1) again, if d is a ged of a and b and d’ is any other common divisor, we must have
(d) C (d'): thus, d is a ged of @ and b if and only if (d) is the smallest principal ideal containing
(a,b).

o Finally, if (a,b) = (d) is itself principal, then clearly (d) is the smallest principal ideal containing
(a,b).

o Remark: The fact that (a,b) = (d) if d is a ged of a and b is the reason that the greatest common
divisor is often denoted by the symbol (a,b).

e Now that we have established some basic properties of divisibility, we can talk about factorizations.

o Definition: Let R be an integral domain. A nonzero element r € R is irreducible if it is not a unit and, for
any “factorization” r = bc with b, ¢ € R, one of b and ¢ must be a unit. A ring element that is not irreducible
and not a unit is called reducible: it can be written as r = ab where neither a nor b is a unit.

[¢]

e}

(¢]

Example: The irreducible elements of Z are precisely the prime numbers (and their negatives).
Example: The irreducible elements of F'[z] are the irreducible polynomials of positive degree.

Example: The element 5 is reducible in Z[i], since we can write 5 = (2 +4)(2 — ¢) and neither 2 + 4 nor
2 — i is a unit in Z[i]. However, the element 2 + 7 is irreducible: if 2 + i = be for some z,w € Z[i], then
taking norms yields 5 = N(2 4 i) = N(b)N(c), and since 5 is a prime number, one of N(b) and N(c)
would necessarily be +1, and then b or ¢ would be a unit. Likewise, 2 — ¢ is also irreducible.

Example: The element 2 is irreducible in Z[\/=5]: if 2 = bc then taking norms yields 4 = N(2) =
N(b)N(c), and since there are no elements of norm 2 in Z[/=5], one of N(b) and N (c) would necessarily
be +1, and then b or ¢ would be a unit.

10



e Inside Z, the irreducible elements are the prime numbers. However, we have a different notion of a prime
element in an arbitrary integral domain:

e Definition: Let R be an integral domain. A nonzero element p € R is prime if p is nonzero and not a unit,
and for any a,b € R, if p|ab then pla or p|b. Equivalently, p is prime if p is nonzero and the ideal (p) is a
prime ideal of R.

o

(e}

o

[¢]

Example: The prime elements of 7 are precisely the prime numbers (and their negatives).
Example: The prime elements of F'[x] are the irreducible polynomials of positive degree.

Example: The element 2 + 4 is prime in Z[i]: by the calculation above, if ab € (2 +¢) then 2 + i = be for
some z,w € Z[i], then taking norms yields 5 = N(2+4) = N(b)N(c), and since 5 is a prime number, one
of N(b) and N(c¢) would necessarily be +1, and then b or ¢ would be a unit.

Non-Example: The element 2 is not prime in Z[/—5]: note that 6 = (1 +/—5)(1 — +/=5) is divisible by
2, but neither 1 + /=5 nor 1 — /=5 is divisible by 2.

e As suggested by the examples above, prime elements are always irreducible, but irreducible elements are not
necessarily prime (we will later discuss under what conditions irreducible elements will be prime):

e Proposition (Primes are Irreducible): In an integral domain, prime elements are always irreducible.

o

e}

Proof: Suppose p € R is a prime element. If p = be then since p|be, we conclude that p|b or p|c; without
loss of generality suppose b = pr.

Then p = pre, so since p # 0 we may cancel to conclude rc¢ = 1, so that ¢ is a unit. Thus, p is irreducible.

8.1.5 Quadratic Fields and Quadratic Integer Rings

e We can now discuss some facts about the rings that we will be analyzing in this chapter. First, we need to
mention quadratic fields:

e Definition: Let D be a squarefree integer not equal to 1. The quadratic field Q(v/D) is the set of complex
numbers of the form a + bv/D, where a and b are rational numbers.

e}

Remark: An integer is squarefree if it is not divisible by the square of any prime, and not equal to 1. We
lose nothing here by assuming that D is a squarefree integer, since two different integers differing by a
square factor would generate the same set of complex numbers a + bv/' D.

The arithmetic in Q(v/D) is as follows: (a+bv D)+ (c+dvD) = (a+c¢)+ (b+d)v/D, and (a+bvVD)(c+
dv/D) = (ac + Dbd) + (ad + be)V/D.

Since Q(v/ D) is clearly closed under subtraction and multiplication, and contains 0 = 0 + 0VD, it is a
subring of C and hence an integral domain, since it contains 1.

a—b/D
a? — Db?’
and a? — Db? # 0 provided that a and b are not both zero because v/D is irrational by the assumption
that D is squarefree and not equal to 1.

It is in fact a field (justifying the name “quadratic field”) because we can write (a+byv/D) ™! =

We will also remark that Q(v/D) is isomorphic to the quotient ring Q[z] modulo the principal ideal
(2 — D), with the isomorphism given explicitly by mapping p(z) € Q[z] to p(v/D) € Q(v/D).

e Definition: The field norm N : Q(v/D) — Q is defined to be the function N(a 4 bv/D) = a?> — Db? =

(a +bVD)(a — bV/D).

[¢]

o

The fundamental property of this field norm is that it is multiplicative: N(xy) = N(x)N(y) for two
elements = and y in Q(\/E), as can be verified by writing out both sides explicitly and comparing the
results.

The field norm provides a measure of “size” of an element of Q(v/'D), in much the same way that the
complex absolute value measures the “size” of a complex number. In fact, if D < 0, then the field norm
of an element a + bv/ D is the same as the square of its complex absolute value.

11



e A fundamental subring of the quadratic field Q(v/D) is its associated “quadratic integer ring”.

o The most obvious choice for an analogy of the integers Z inside Q(v/D) would be the set Z[v/D] =
{a+b/D: a,bec Z}.

) 1+VD
: .

o However, notice that if D = 1 (mod 4), then the slightly larger subset Z[ ]={a+0 5

a,b € Z} is actually also a subring: closure under subtraction is obvious, and for multiplication we can

L +2‘/5)(c+ e +2‘/5) — (ac+ %bd) + (ad + be + bd) +2‘/5.

o One reason that this slightly larger set turns out to give a better analogy for the integers Z when D =1

write (a + b

1
(mod 4) is that the number satisfies a polynomial with integer coefficients and leading coefficient

1-D
1: explicitly, it is a root of 22 — x + = 0.

e Definition: The ring of integers O /5, in the quadratic field Q(v/D) is defined as Z[v/D] if D = 2 or 3 (mod

1++vD
2

4) and as Z] ]if D=1 (mod 4). Each of these rings is an integral domain.

o For D = 2,3 (mod 4), observe that N(a + bv/D) = a? — Db? is an integer for every a + bv/D € O /5.

1 D
o Likewise, if D =1 (mod 4), we have N(a + b +2\F

1+vD o
5 €YDy

o Thus, the field norm N is always integer-valued on OQ( VD)

-D
) =a%+ab+ Tb2 is also an integer for every

a+b

e The units in the quadratic integer rings are the elements of norm +1:

e Proposition (Characterizing Units in OQ(\/ﬁ))5 An element r in the ring Og(vp) is @ unit if and only if
N(r) = +1.

o Proof: Suppose r = a + bv/D and let 7 = a — bv/D, so that N(r) = r7. (Note that 7 = 2a — r, so that
even when D =1 (mod 4), so that a and b are possibly half-integers, we see that 7 is still in OQ(\/B)')

o If N(r) = £1, then we see that »7 = +1, so (by multiplying by —1 if necessary) we obtain a multiplicative
inverse for 7.

o Conversely, suppose 7 is a unit and rs = 1. Taking norms yields N(r)N(s) = N(rs) = 1. Since N(r)
and N(s) are both integers, we see that N(r) must either be 1 or —1.
e Example: Find the units in Z[i] and Z[(1 + v/—3)/2].

o For Z[i], we have D = —1, so if r = a + bi we see N(r) = a® + b?>. We must therefore solve a? + b* = 1

in Z: there are clearly four solutions, corresponding to r = .

14++v-3
o For Z[(1 ++/—3)/2], we have D = —3, so if r = a + b%

therefore solve a? + ab + b?> = 1 in Z: by multiplying by 4 and completing the square, this equation is

equivalent to (2a + b)? + 3% = 4, which has six solutions corresponding to r = ’ 1, -1, w, —w, w?, —w?|,

14+v-3
2

we see N(r) = a? + ab + b*>. We must

where w = is seen to be a sixth root of unity satisfying w® = 1.

e In general, determining the full set of units in OQ( VD) is a nontrivial computation that essentially reduces to
solving Pell’s equation.

o When D < 0 it is not too difficult to see by completing the square in a similar way to above when D =1
(mod 4) that if D # —1, -3, then the only units in Og /5, are £1.

o When D > 0 and D = 2,3 (mod 4), solving N («) = =41 is equivalent to solving Pell’s equation 2 — Dy? =
+1, which we have already described at length.

12



bv' D
o For D > 0 with D = 1 (mod 4), we see N(CH_T\F

+4, whose solutions (per our analysis) can also be found using continued fractions.

) = +1 is equivalent to the Pell’s equation a? — Db? =

o In particular, the same sort of analysis we gave for x2 — Dy? = %1 will show that the solutions are of
the form +u™ where u is the fundamental unit.

e By using norms, we can also study possible factorizations and establish the irreducibility of elements. The
following special case is often helpful:

e Proposition (Some Irreducibles in Og/5)): If r € Oy /) has N(r) = £p where p is a prime number, then
r is irreducible in Oy /).

o Proof: Suppose N(r) = +p and we had a factorization r = s;s5. Taking norms yields +p = N(s152) =
N(s1)N(s2).

o But since p is prime and N(s1) and N(sg) are integers, the only possibility is to have one of N(s;) and
N (s2) equal to £1, which by our result earlier means that s; or s is a unit. Then r is indeed irreducible,
as claimed.

e Here are some examples of how we can establish irreducibility by computing norms:
o Example: The elements 1+ ¢ and 2+ ¢ in Z[i] are irreducible, since their norms are 2 and 5 respectively.

+5
2

5
o Example: The elements

and 4 4+ /5 in (’)Q( J5) are irreducible since their norms are 5 and 11
respectively.

o We remark that the proposition is not an if-and-only-if, as there can exist irreducible elements of non-
prime norm as well.

o Example: The element 3 € Z[i] has N(3) = 9, but 3 is irreducible because any factorization 3 = 212,
would require 9 = N(3) = N(z1)N(z2), but since there are no elements of norm 3 in Z[i], the only
possible factorizations require N(z1) or N(z3) to equal 1.

o Example: The element 1+ /=5 € Og(/=5) has N1+ +/-5) =6, but 1+ /=5 is irreducible because
any factorization would have to be into a product of an element of norm 2 and an element of norm 3,
but there are no such elements in Og, /=)

e We will discuss more about factorization in these rings after we have developed some additional results about
ideals and factorizations in general rings. For notational convenience, we will often write O,z as shorthand

for OQ(\/E) .

8.1.6 Euclidean Domains

e Our next goal is to discuss what it means for an integral domain to possess a division algorithm:

e Definition: If R is an integral domain, any function N : R — {0,1,2,...} such that N(0) = 0 is called a
norm on R.

o Observe that this is a rather weak property, and that any given domain may possess many different
norms.

e Definition: A Euclidean domain (or domain with a division algorithm) is an integral domain R that possesses
a norm N with the property that, for every a and b in R with b # 0, there exist some ¢ and 7 in R such that
a = ¢b+ r and either r = 0 or N(r) < N(b).

o The purpose of the norm function is to allow us to compare the size of the remainder to the size of the
original element. Note that the quotient and remainder are not required to be unique!

o Example: Any field is a Euclidean domain, because any norm will satisfy the defining condition. This
follows because for every a and b with b # 0, we can write a = gb+ 0 with g =a - b~ 1.

o Example: The integers Z are a Euclidean domain with N(n) = |n|.

13



o

Example: If F' is a field, then the polynomial ring F[z] is a Euclidean domain with norm given by
N(p) = deg(p) for p # 0.

e Before we give additional examples, we will remark that the reason Euclidean domains have that name is that
we can perform the Euclidean algorithm in such a ring, in precisely the same manner as in Z and F[z]:

e Definition: If R is a Euclidean domain, then for any a,b € R with b # 0, the Euclidean algorithm in R consists
of repeatedly applying the division algorithm to a and b as follows, until a remainder of zero is obtained:

o

a = qb+nr
b = gri+r
TL = @32+ 73
Thk—1 = QkTk + Tkt
Tk = qk+1Tk+1-
By the construction of the division algorithm, we know that N(r1) > N(rg) > ---, and since N(r;) is a

nonnegative integer for each ¢, this sequence must eventually terminate with the last remainder equalling
zero (else we would have an infinite decreasing sequence of nonnegative integers).

e The Gaussian integers provide another important example of a Euclidean domain:

e Proposition (Z[i] is Euclidean): The Gaussian integers Z[i] are a Euclidean domain, under the norm N(a+bi) =
a? + b2

(¢]

Explicitly, given a + bi and ¢ + di in Z][i], we will describe how to produce ¢,r € Z[i] such that a + bi =
1

q(c+di)+r,and N(r) < §N(c + di). This is even stronger than is needed (once we note that the only

element of norm 0 is 0).

Proof: We need to describe the algorithm for producing ¢ and r when dividing an element a + bi by an
element ¢+ di.

bi
a+dz' = x+iy where x = (ac+bd)/(c* +d?) and y = (bc — ad)/(c* + d?)
i

If ¢+ di # 0, then we can write n
c

are real numbers.
Now we define ¢ = s + ti where s is the integer closest to x and ¢ is the integer closest to y, and set
r = (a+bi) — q(c+ di). Clearly, (a + bi) = q(c+ di) +r.

1 r a+ bi
All is show N(r) < =N i): fi h = —q=(x— —t)i.
we need to do now is show N (r) < 5 (c+di): first observe that v d ot a @ (x—s)+(y \?z
2

<
-2

1 1
Then because |z — s| < 3 and |y —t| < 3 by construction, the triangle inequality implies i
c+di

1
Squaring both sides and rearranging yields N(r) < §N (¢ + di), as desired.

Remark: For other quadratic integer rings O /5, the function N(a + bW/D) = |a® — Db?| is a norm, but
it does not in general give a division algorithm. The proof given above can, however, be adapted fairly
easily to show that O /5 is a Euclidean domain for certain other small values of D, such as D = -7, —3,
—2, and 2.

e Asin Z and F[x], we may also use the Euclidean algorithm to compute geds:

e Theorem (Bézout): If R is a Euclidean domain and a and b are arbitrary elements with b # 0, then the last
nonzero remainder d arising from the Euclidean Algorithm applied to a and b is a greatest common divisor of a
and b. (In particular, any two elements in a Euclidean domain always possess at least one ged.) Furthermore,
there exist elements x,y € R such that d = za + yb.

o

(e}

The ideas in the proof are the same as for the proofs over Z and F[z].

Proof: By an easy induction (starting with 7 = qr+17%+1), d = g1 divides r; for each 1 < i < k. Thus
we see d|a and d|b, so the last nonzero remainder is a common divisor.
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o Suppose d’ is some other common divisor of a and b. By another easy induction (starting with d’|(a —
¢1b) = r1), it is easy to see that d’ divides r; for each 1 < i < k + 1, and therefore d’|d. Hence d is a
greatest common divisor.

o For the existence of « and y with d = za + yb, we simply observe (by yet another easy induction starting
with 71 = a — ¢1b) that each remainder can be written in the form r; = z;a + y;b for some z;,y; € R.

e Example: Find a greatest common divisor of 50 — 50¢ and 43 — 4 in Z[i], and write it in the form d =
x(50 — 507) 4+ y(43 — 7) for some z,y € Z]i].

50 —50i 44 42

43—i 37 37
the nearest Gaussian integer yields the quotient ¢ = 1—i. The remainder is then 50—50i— (1—¢)(43—i) =
(8 — 6i).

o We use the Euclidean algorithm. Dividing 43 — ¢ into 50 — 50i yields i, so rounding to

43 -3 7 5
o Next, dividing 8 — 6¢ into 43 — ¢ yields 3 61' =3 + 51’, so rounding to the nearest Gaussian integer
— 6i
(there are four possibilities so we just choose one) yields the quotient ¢ = 3 + 2i. The remainder is then

43 —i— (34 2i)(8 — 6i) = (7 +1).

8 —6i
o Finally, dividing 7 + ¢ into 8 — 67 yields T o1 i, so the quotient is 1 — ¢ and the remainder is 0.
(3

o The last nonzero remainder is so it is a gcd. To express the ged as a linear combination, we solve
for the remainders:

8—6i = 1-(50—50i)— (1—1)-(43 —1)

THi = (43—1i)— (3 +2i)(8 — 60)
= (43— i) — (3+2i)- (50 — 50i) + (3 + 2i)(1 —4) - (43 — 4)
= (=3—2i)- (50 — 50i) + (6 — i) - (43 — i)

and so we have 7+ = | (=3 — 2i) - (50 — 50i) + (6 — 7) - (43 — 7) |

e The ideals of Euclidean domains are particularly simple:

e Theorem (Ideals of Euclidean Domains): Every ideal of a Euclidean domain is principal.

o Proof: Clearly the zero ideal is principal, so suppose [ is a nonzero ideal of the Euclidean domain R
and let d be a nonzero element of I of smallest possible norm. (Such an element must exist by the
well-ordering axiom.)

o Since d € T we have (d) C I. If a € I is any other element, by the division algorithm we can write
a = qd + r for some r where either r =0 or N(r) < N(d).

o However, since r = a — qd € I since both a and ¢d are in I, and N(d) is minimal, we must have r = 0.
Therefore, a = gqd and thus a € (d), so I C (d). Hence I = (d) is principal, as claimed.

e Corollary: Every ideal of Z, F[z], and Z[i] is principal, for any field F.
o Proof: Each of these rings is a Euclidean domain.

e By the result above, we can deduce that any ring containing a non-principal ideal is not Euclidean (with
respect to any norm):

o Example: The ring Z[z] is not a Euclidean domain, since the ideal (2, ) is not principal.
o Example: The ring Z[/—5] is not a Euclidean domain, since the ideal (2,1 + +/—5) is not principal.
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8.1.7 Principal Ideal Domains

e We have seen that every ideal in a Euclidean domain is principal. We now expand our attention to the more
general class of rings in which every ideal is principal.

e Definition: A principal ideal domain (PID) is an integral domain in which every ideal is principal.

o Example: As we have shown, every Euclidean domain is a principal ideal domain, so Z, Z[i], and F[x]
are principal ideal domains.

o Non-Example: The ring Z[z] is not a principal ideal domain, since the ideal (2, x) is not principal.

o Non-Example: The ring Z[v/—5] is not a principal ideal domain, since the ideal (2,1 + +/—5) is not
principal.

o There exist principal ideal domains that are not Euclidean domains (although this is not so easy to
prove). One example is the quadratic ring O —5 = Z[(1 + v—19)/2].

e Like in Euclidean domains, we can show that any two elements in a PID have a greatest common divisor.

o The substantial advantage of a Euclidean domain over a general PID is that we have an algorithm for
computing greatest common divisors in Euclidean domains, rather than merely knowing that they exist.

e Proposition (Divisibility in PIDs): If R is a principal ideal domain and a, b € R are nonzero, then any generator
d of the principal ideal (a,b) is a greatest common divisor of a and b. (In particular, any two elements in a
principal ideal domain always possess at least one gcd.) Furthermore, there exist elements x,y € R such that
d = za + yb.

o Proof: We showed already that if (a, b) is principal, then any generator is a ged of @ and b. Furthermore,
if (a,b) = (d) then d € (a,b) implies that d = za + yb for some z,y € R.

e QOur ultimate goal is to show that these rings (like the prototypical examples Z and F[z]) have the property
that every nonzero element can be written as a finite product of irreducible elements, up to associates and
reordering.

o To show this, we will use essentially the same argument as in Z and F[z]: first we will prove that every
element can be factored into a product of irreducibles, and then we will prove that the factorization is
unique.

o For the existence, if r is a reducible element then we can write » = r1ro where neither r{ nor ry is a unit.
If both 71 and ro are irreducible, we are done: otherwise, we can continue factoring (say) r1 = r1,171,2
with neither term a unit. If r; ; and r; o are both irreducible, we are done: otherwise, we factor again.

o We need to ensure that this process will always terminate: if not, we would obtain an infinite ascending
chain of ideals () C (r1) C (r1,1) C -- -, so first we will prove that this cannot occur.

o Then to establish uniqueness, we use the same argument as in Z and F'[z]: this requires showing that if
p is irreducible, then p|ab implies p|a or p|b: in other words, that p is prime.

e First we establish the necessary result about ascending chains of ideals:

e Theorem (Ascending Chains in PIDs): If R is a principal ideal domain and the ideals I; C I C I3 C --- C
I, C --- form an ascending chain, then there exists some positive integer N after which the chain is stationary:
I, = Iy for alln > N.

o Remark: A ring satisfying this “ascending chain condition” is called Noetherian.

o Proof: Let J be the union of the ideals in the chain. We have shown already (in the course of proving
that a ring with 1 always possesses maximal ideals) that the union of an ascending chain of ideals is also
an ideal, so J is an ideal.

o Since R is a PID, we see J = (a) for some a € R. But since J is a union, this means a € Iy for some
N. But then for each n > N we see (a) = Iy C I,, € J = (a): we must have equality everywhere, so
I, =1y foralln> N.
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e Next, we show that irreducible elements are prime:

e Proposition (Irreducibles are Prime in a PID): Every irreducible element in a principal ideal domain is prime.

o

e}

e}

(¢]

Proof: Suppose that p is an irreducible element of R: to show that p is prime, we may equivalently show
that the ideal (p) is a prime ideal.

So suppose (a) is an ideal containing (p): then p € (a) so p = ra for some r € R. But since p is
irreducible, we either have p|r or p|a, which is to say, either r € (p) or a € (p).

p = ra implies p = spa, so since p # 0 we see sa = 1 and therefore a is a unit, and so (a) = R.

If a € (p) then (a) C (p) and so (a) = (p). Otherwise, if » € (p) then r = sp for some s € R, and then

Thus, (a) is either (p) or R, meaning that (p) is a maximal hence prime ideal.

e In the proposition above, notice that we actually established that the prime element p generated a maximal
ideal. This argument in fact shows that nonzero prime ideals are maximal in PIDs:

e Proposition (Prime Implies Maximal in a PID): Every nonzero prime ideal in a principal ideal domain is
maximal.

e}

(¢]

(¢]

Proof: Suppose that I = (p) is a nonzero prime ideal of R, and suppose that (a) is an ideal containing I.

Since p € (a), we see that p = ra for some r € R. But then ra € (p), so since (p) is a prime ideal we
either have r € (p) or a € (p).

By the same argument as in the proposition above, we conclude that (a) is either (p) or R, meaning that
(p) is a maximal ideal.

e Now we can establish that principal ideal domains have unique factorization:

e Theorem (Unique Factorization in PIDs): If R is a principal ideal domain, then every nonzero nonunit r» € R
can be written as a finite product of irreducible elements. Furthermore, this factorization is unique up to
associates: if 7 = pi1p2---pa = qiq2 - - - qi for irreducibles p; and g;, then d = k and there is some reordering
of the factors such that p; is associate to ¢; for each 1 <i < k.

o

e}

Proof: Suppose r € R is not zero and not a unit.

If r is irreducible, we already have the required factorization. Otherwise, r = riry for some nonunits
r1 and r9. If both r; and 7o are irreducible, we are done: otherwise, we can continue factoring (say)
r1 = r1,171,2 With neither term a unit. If 1 ; and r; 2 are both irreducible, we are done: otherwise, we
factor again.

We claim that this process must terminate eventually: otherwise (as follows by the axiom of choice), we
would have an infinite chain of elements x4, 3, 23, ... , such that z1|r, 22|21, 23|22, and so forth, where
no two elements are associates, yielding an infinite chain of ideals (r) C (z1) C (z2) C --- with each
ideal properly contained in the next. But this is impossible, since every ascending chain of ideals in R
must become stationary.

Thus, the factoring process must terminate, and so 7 can be written as a product of irreducibles.
We establish uniqueness by induction on the number of irreducible factors of r = p1ps - - - pp.

If n =1, then r is irreducible. If » had some other nontrivial factorization r = gc¢ with ¢ irreducible, then
g would divide r hence be associate to r (since irreducibles are prime). But this would mean that c is a
unit, which is impossible.

Now suppose n > 2 and that r = p1p2 - - - pqg = q1¢2 - - - qx has two factorizations into irreducibles.

Since p1|(q1 - - qr) and p; is irreducible hence prime, repeatedly applying the fact that p irreducible and
plab implies pla or p|b shows that p; must divide ¢; for some i.

By rearranging we may assume g; = pyu for some u: then since ¢ is irreducible (and p; is not a unit),
u must be a unit, so p; and ¢g; are associates.

Cancelling then yields the equation ps - - pg = (uga) - - - g, which is a product of fewer irreducibles. By
the induction hypothesis, such a factorization is unique up to associates. This immediately yields the
desired uniqueness result for r as well.
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8.1.8 Unique Factorization Domains

We have shown that principal ideal domains have unique factorization. We now study the more general class
of integral domains having unique factorization:

Definition: An integral domain R is a unique factorization domain (UFD) if every nonzero nonunit r € R can
be written as a finite product r = pyps - - - pg of irreducible elements, and this factorization is unique up to
associates: if 7 = pi1pa---pa = qiq2 - - - qx for irreducibles p; and g;, then d = k and there is some reordering
of the factors such that p; is associate to ¢; for each 1 <i < k.

o Example: As we proved in the previous section, every principal ideal domain is a unique factorization
domain: thus Z, F[z], and Z[i] are unique factorization domains.

o Example: As we essentially proved already (and will formally prove later) the polynomial ring Z[z] is a
unique factorization domain, even though it is not a principal ideal domain.

o There are two ways an integral domain can fail to be a unique factorization domain: one way is for some
element to have two inequivalent factorizations, and the other way is for some element not to have any
factorization.

o Non-Example: The ring Z[v/—5] is not a unique factorization domain because we can write 6 = (1 +
V=5)(1—+/=5) = 2-3. Note that each of 14+/=5, 2, and 3 is irreducible in Z[/—5] since their norms are
6, 4, and 9 respectively and there are no elements in Z[y/—5] of norm 2 or 3, and none of these elements
are associate to one another. Thus, 6 has two inequivalent factorizations into irreducibles in Z[v/=5].

o Non-Example: The ring Z[2i] is not a unique factorization domain because we can write 4 = 2 -2 =
(24)-(2i). Note that both 2 and 2¢ are irreducible since their norms are both 4 and there are no elements in
Z[2i] of norm 2, and 2 and 2i are not associate since i ¢ Z[2i]. Thus, 4 has two inequivalent factorizations
into irreducibles in Z[24].

o Non-Example: The ring Z + zQ|z] of polynomials with rational coefficients and integral constant term is
not a unique factorization domain because not every element has a factorization. Explicitly, the element

1 1
x is not irreducible since x = 2 - —x and neither 2 nor —x is a unit, but z cannot be written as a finite

product of irreducible elements: any such factorization would necessarily consist of a product of constants
times a rational multiple of z, but no rational multiple of x is irreducible in Z + zQ|x].

Like in principal ideal domains, irreducible elements are the same as prime elements in unique factorization
domains (and thus, we may interchangeably refer to “prime factorizations” or “irreducible factorizations” in a
UFD):

Proposition (Irreducibles are Prime in a UFD): Every irreducible element in a unique factorization domain is
prime.

o Proof: Suppose that p is an irreducible element of R and that p|ab for some elements a,b € R: we must
show that p|a or pl|b.

o Since R is a unique factorization domain, we may write a = q1g2---qq and b = 7179 -1 for some
irreducibles ¢; and r;: then giga---qqri72 - - -7 = ab. But since the factorization of ab into irreducibles
is unique, p must be associate to one of the irreducibles g; or r;.

o If p is associate to one of the g; then p|a, while if p is associate to one of the r; then p|b. Since at least
one of these two must occur, pla or p|b, as required.

Like in Z, we can also describe greatest common divisors in terms of prime factorizations:

Proposition (Divisibility in UFDs): If a and b are nonzero elements in a unique factorization domain R,
then there exist units v and v and prime elements pq,ps, ..., pr no two of which are associate so that a =

upl'py? - - pp and b = vpl{1 pgz e pz,fv,’“ for some nonnegative integers a; and b;. Furthermore, a divides b if and

only if a; < b; for all 1 < < k, and the element d = p‘f‘i“(al’bl) . -pkmi“(“’“’b’“) is a greatest common divisor of
a and b.

o Proof: Since R is a UFD, we can write a as a product of irreducibles. As follows from a trivial induction,
we can then “collapse” these factorizations by grouping together associates and factoring out the resulting
units to obtain a factorization of the form a = up]'p5? - - - p§?.
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o We can repeat the process with b, and then add any further irreducibles that appear in its factorization
to the end of the list, to obtain the desired factorizations a = up{'ps* - - - p&* and b = vp? p%? - - - pb* for
nonnegative integers a; and b;.

o For the statement about divisibility, if a|b then we have b = ar for some r € R, so that vplilpg2 . ~pZ’€ =

up(p5? - - - ppFr. But since p; divides the right-hand side at least a, times, we see that p; must also divide
the left-hand side at least a; times: furthermore, since each of the terms excluding p; is not associate to
pi, by a trivial induction we conclude that b; must be at least as large as a;, for each 1.

o For the statement about the gcd, it is easy to see by the above that d divides both a and b. If d’ is any other
common divisor, then since d’ divides a we see that any irreducible occurring in the prime factorization
of d’ must be associate to those appearing in the prime factorization of a, hence (by collapsing the
factorization as above) we can write d’ = wp’f1 pgz e p‘,ﬁ" for some nonnegative integers d; and some unit
w.

o Then since d’ is a common divisor of both a and b we see that d; < a; and d; < b;, whence d; < min(a;,b;)
for each i: then d’ divides d, so d is a greatest common divisor as claimed.

e We also recover one of the other fundamental properties of relatively prime elements and geds:

e Corollary (Relatively Prime Elements and GCDs): In any unique factorization domain, d is a gcd of a and b
if and only if a/d and b/d are relatively prime. Furthermore, if a and b are relatively prime and a|bc, then alc.

o Proof: Apply the previous proposition to write a = up{*p5?---p;* and b = vpll’lpg2 . ~pZ’“ for some
nonnegative integers a; and b;, irreducibles p;, and units v and v.

o Then d = prlnin(al’bl) . -pznn(a’”"’b’“) is a ged of @ and b, and it is easy to see that the exponent of p; in a/d
or b/d is zero for each i: thus, the only common divisors of a/d and b/d are units, so a/d and b/d are
relatively prime.

o Inversely, if d' = wp‘flpg2 . -pz’c is any other common divisor of a and b, and d; < min(a;, b;) for some i,
then p; is a common divisor of a/d" and b/d" and thus the latter are not relatively prime.

o For the second statement, consider the irreducible factors of bc: since a and b have no irreducible factors
in common, every irreducible factor of ¢ must divide a.

8.1.9 The Chinese Remainder Theorem

e As alast preliminary result, we give a general formulation of the Chinese remainder theorem. We first require
a few preliminary definitions:

e Definition: If R is commutative with 1 and I and J are ideals of R, then the sum I+J = {a+b : a€ I, be J}
is defined to be the set of all sums of elements of I and J, and the product I.J = {a1b1 + -+ + apby, : a; €
I, b; € J} is the set of finite sums of products of an element of I with an element of .J.

o It is not difficult to verify that I + J and IJ are both ideals of R, and that I.J contains the intersection
IndJ.

o If I and J are finitely generated, with I = (a1, az,...,ay) and J = (b1,ba,...,by,), it is also not hard to
see that I +J = (a1,aa,...,an,b1,b,...,by) and IJ = (a1by, a1ba, ..., a1bm, asb1, ..., a2b;m, ..., anby).

o Example: If T = (a) and J = (b) inside Z, then I + J = (a,b) = (d) where d = gcd(a,b) and I.J = (ab).

o We can also speak of the product I1 15 --- I,, of more than two ideals, defined as the set of finite sums of
products of an element from each of I, I, ..., I,.

e Definition: If R is commutative with 1, the ideals I and J are comaximal if I + .J = R.

o Note that aZ + bZ = Z precisely when a and b are relatively prime. (The appropriate notion in general
rings is not “primality” but “maximality”, so we use the term comaximal rather than coprime.)

e We can now state the general Chinese remainder theorem:
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e Theorem (Chinese Remainder Theorem): Let R be commutative with 1 and I, Io, ..., I,, be ideals of R. Then
the map ¢ : R = (R/I) x (R/I3) x --- x (R/I,) defined by ¢(r) = (r + I, r+ I, ..., r+ I,) is a ring
homomorphism with kernel I; NI, N---NI,. If all of the ideals I, I, ..., I,, are pairwise comaximal, then
is surjective and Iy NIo N ---N I, = 113+ I, and thus R/(I1I5---I,) =2 (R/I1) x (R/I3) X - -+ X (R/I).

o

Proof: First, ¢ is a homomorphism since p(a +b) = (a+b+I1,...,a+b+1,)=(a+I1,...,a+ I,) +
(b+IL,...,b+1,) = ¢(a) + ¢(b) and similarly ¢(ab) = (ab+I1,...,ab+ 1) = (a+11,...,a+ 1,) - (b+
Ily' . 'ab+In) = Qp(a)@(b)

The kernel of ¢ is the set of elements r € R such that ¢(r) = (0+ I1,...,0+ I,), which is equivalent to
requiring r € Iy, r € I, ... ,and r € I,: thus, kerp =11 NI N---NI,.

For the second statement, we will prove the results for two ideals and then deduce the general statement
via induction.

So suppose I and J are ideals of R and ¢ : R — (R/I) x (R/J) has ¢(r) = (r+ 1,7+ J). We must show
that if I +J = R, then I N J = IJ and ¢ is surjective.
If I + J = R then by definition there exist elements x € [ and y € J with z +y = 1.

Then for any r € I N J, we can write r = r(z + y) = rz + yr, and both rz and yr are in IJ: hence
INJ CIJ,andsince IJ CINJ weconclude IJ=1InNJ.

Furthermore, for any a,b € R we can write ay + bz = a(l —x)+bzx =a+ (b—a)x soay+bx € a+1,
and likewise ay + bz =ay+b(1 —y) =b+ (a —b)y € b+ J.

Then ¢(ay +bx) = (ay+bx+ 1, ay+br+J) = (a+ I, b+ J), and therefore ¢ is surjective as claimed.
Finally, the statement that R/IJ = (R/I) x (R/J) then follows immediately by the first isomorphism
theorem. This establishes all of the results for two ideals.

For the general statement, we use induction on n: the base case n = 2 was done above, and for the
inductive step, it is enough to show that the ideals I; and I, --- I, are comaximal, since then we may
write R/(I115---I,) = (R/I1) x (R/Iy---I,) and apply the induction hypothesis to R/I5--- I,.

If Iy and I; are comaximal for 2 < ¢ < n, then there exist elements x; € I; and y; € I; such that
x; +y; = 1. Then 1 = (x2 + y2)(z3 + y3) -+ (Tn + Yn) = Y2uys - - - Yy, modulo I;. But since yoys - -y, is
in IrI3---1I,, this means that I; 4+ Is13--- I, contains 1 and is therefore all of R, as required.

e The name of this theorem comes from its application inside Z to solving simultaneous modular congruences.

(¢]

(¢]

Explicitly, if mq, ms,...m, are relatively prime positive integers, then ¢ : Z — (Z/m1Z) x (Z/moZ) %
<+« X (Z/m,2Z) given by ¢(a) = (a mod m1, a mod may,...,a mod m,,) is a surjective homomorphism
with kernel myms - --m,,Z.

The fact that this map is surjective says that the system of simultaneous congruences z = a; mod mq,
T = ag mod mo, ... , T = a, mod m, always has a solution in Z. Furthermore, the characterization of
the kernel says that the solution is unique modulo mims - - - m,,.

Systems of congruences of this form were studied by the ancient Chinese, whence the theorem’s name.

e A useful application of the Chinese remainder theorem is to decompose Z/mZ as the direct product of other
rings when m is composite. This particular application is the generalization of the classical version of the
Chinese remainder theorem as applied to integer congruences:

e Corollary (Chinese Remainder Theorem for Z): If m is a positive integer with prime factorization m =
piips? - plr, then Z/mZ = (Z/p{*Z) x --- x (Z/p2r 7).

(¢]

[¢]

Remark: By counting the number of units in the Cartesian product, we see that the number of units in
Z/mZis m(1—1/p1)(1—1/p2)--- (1 —1/p,): this gives us an alternate derivation of the formula for the
Euler ¢-function ¢(m).

Proof: This statement follows from the Chinese remainder theorem along with the observation that if p
and ¢ are distinct primes, then the ideals p®Z and ¢*Z are comaximal in Z.
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8.2 Factorization In Quadratic Integer Rings®

e We now turn our attention to the question of factorization in quadratic integer rings.

8.2.1 Unique Factorization of Elements in Op

e As we have seen, some of the quadratic integer rings (like Z[i]) are unique factorization domains, while others

(like Z[v/—5]) are not.

o More specifically, by extending the argument used for Z[i], it can be shown that the quadratic integer
vine On — O _ Z|V/D] for D = 2,3 (mod 4)
& YD = FovD) T \z(1+ vD)/2] for D=1 (mod 4)
field norm) for a known list of negative D = —1,—2,—3, -7, —11 and for various positive D, including
D=23,506,7,11,....

o We would like to know whether it is possible to recover some sort of “unique factorization” property in
the quadratic integer rings, even when they are not unique factorization domains.

is Euclidean (with norm given by the

e The question of when Op is a UFD was (and is) of substantial interest in applications to solving equations in
number theory, since we may use properties of integer rings (e.g., Z[i]) to characterize the solutions to such
equations, as we saw earlier in the case of the equation a2 + b? = 2.

o For example, if p is an odd prime, we may study the Fermat equation 27 + y? = 2P in the ring Z[(,] =
{ao+a1lp+ - +a,1C27" : a; € Z} where ¢, = e?™i/P = cos(27 /p) + i sin(27/p) is a nonreal pth root
of unity (satisfying ¢} = 1).

o We may rearrange the equation as zP — y? = zP and then factor the left-hand side as the product
(z=y)(z = Gy)(z = Gy) -+ (z — (& 'y) of linear terms inside Z[(,).

o If Z[(,] were a unique factorization domain, then since the terms on the left-hand side are essentially
relatively prime, each of them would have to be a pth power in Z[(,], up to some small factors. But
this can be shown not to be possible unless y = 0, and so we would be able to conclude that Fermat’s
equation zP 4 yP = zP has no nontrivial integer solutions.

o Unfortunately, the ring Z[(,] is not always a unique factorization domain. But the study of Diophan-
tine equations in number theory, and associated questions about unique factorization, were (historically
speaking) the impetus for much of the development of modern algebra, including ring theory.

e We will restrict our attention to quadratic integer rings, since we can give concrete arguments in these cases.
For example, we can show that every element does possess at least one factorization (and thus, the failure to
be a UFD lies entirely with non-uniqueness):

e Proposition (Element Factorizations in Op): If R = Op is a quadratic integer ring, then every nonzero
nonunit in R has at least one factorization as a product of irreducible elements.

o Proof: We show the result by (strong) induction on the absolute value of the norm N(r). If N(r) =0
then r = 0, while if N(r) = £1 then r is a unit.

o For the base case we take |N(r)| = 2: then r is irreducible, since the absolute value of its norm is a
prime. (This follows by the same argument used in Z[i].)

o For the inductive step, suppose that |N(r)| = n for n > 3. If r is irreducible we are done: otherwise we
have r = ab for some a,b with 1 < |N(a)|, |N(b)| < n.

o By the inductive hypothesis, both a and b have factorizations as a product of irreducibles, so r does too.
e It would appear that we are essentially at an impasse regarding factorization of elements. However, if we shift

our focus instead to ideals, it turns out that these rings do possess unique prime factorizations on the level of
ideals, rather than elements.

2The treatment of some of the material in this section is adapted from notes of Keith Conrad: http://www.math.uconn.edu/ kconrad/
blurbs/gradnumthy/quadraticgrad.pdf.
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In fact, this is where the name “ideal” originally arose: in Kummer’s study of unique factorization, he
constructed “ideal numbers” (essentially as sets of linear combinations of elements of Op) and proved that
they did possess unique prime factorization. These “ideal numbers”’ were the prototype of the modern
definition of an ideal.

To illustrate using an example we have already discussed, the element 6 € Z[/—5] has two different
factorizations into irreducibles, as 2-3 =6 = (1 4+ +/=5) - (1 — v/=5).

This yields the equivalent ideal factorization (6) = (2)-(3) = (1++v/—5) - (1 — /-=5).

However, as ideals, we can factor further: explicitly, one can verify that (2) = (2,1 + +/=5)?, that
(1£v-5)=(2,1++v-5)-(3,1£+/-5), and that (3) = (3,1 ++v/-5) - (3,1 — v/—5).

For an example of one of these calculations: we have (2,1 ++/=5) - (3,1 ++v/—5) = (6,2 + 24/-5,3 +
3v—5,—4+42+/—5). We can reduce the generating set by observing that this ideal contains (3+3v/— )

(2+2\/ 5) = 14++/—5, and that each of the four generators of the product ideal is a multiple of 14 +/—5:
thus, in fact, (2,14 +/-5)-(3,1+ +v/—5) = (1 + v/—5), as claimed. The other calculations are similar.

On the level of ideals, therefore, we see that these two factorizations are really “the same”: both of them
reduce to the factorization (6) = (2,1 +/=5)%- (3,1 4+ v/=5) - (3,1 — v/=5).

Furthermore, each of the ideals (2,1 + +/—5), (3,14 +/—5), and (3,1 — v/—5) can be shown to be prime
(the quotient ring of Z[v/—5] by each is isomorphic to Z/2Z, 7./3Z, and Z/3Z respectively).

Thus, we have found a factorization of the ideal (6) as a product of prime ideals of Z[v/—5].

e QOur goal is to show that the behavior in the example above holds in general: namely, that we can write any
nonzero ideal in a quadratic integer ring as a product of prime ideals, and that this factorization is unique up
to rearrangement.

(¢]

(¢]

After first establishing some important properties of prime ideals, our model will be similar to our proofs
that Z and F'[z] have unique factorization: we will discuss some properties of divisibility, show that every
nonzero ideal can be written as a product of prime ideals, and then show that the factorization is unique.

We will then give some applications of unique factorization into prime ideals, and in particular describe
how to compute the prime ideals of Op.

8.2.2 Ideals in Op

e To begin, we show that every ideal in Op is generated by at most 2 elements:

e Proposition (Ideal Generators in Op): If R = Op is a quadratic integer ring, then every ideal in R is of the

form (n,a+b-

) for some a,b,n € Z.

1+vD
2

Proof: Let I be an ideal of Op, and define Iy = I NZ and I; to be the set of r € Z such that there exists

1++vD

someseZwiths—i—r-TGI.

Observe that Iy and I; are both ideals of Z since they clearly contain 0, are closed under subtraction,
and are closed under arbitrary Z-multiplication. So suppose Iy = (n) and I; = (b): then n € I, and by

1++vD
2

definition of I, there exists a € Z such that a + b - el.

1 D 1 D
+vD generate I, so suppose s+ r - i is an arbitrary element of I.

We claim that n and a + b -
By definition of I; we see that r € I, whence r = yb for some y € Z.

1 D 1 D
Then <s+r- +2\/>> —y- <a+ b- T)] =s—ayisin I NZ = Iy, so this quantity is equal
to zn for some = € Z.
1 D 1 D 1 D
Thus, s+ 7 - +2\F =an+y (a +b- +2\F>, andsonand a+b- %ﬁ generate I as claimed.
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e As a corollary, we can deduce that nonzero prime ideals of Op are maximal:

e Corollary (Quotients of Op): If R = Op is a quadratic integer ring and I is a nonzero ideal, then Op/I is
finite. In particular, every nonzero prime ideal of Op is maximal.

o Proof: For the first statement, if I is a nonzero ideal in Op, then I NZ is nonzero (since if r € I is any

1+\/5)

nonzero element, N(r) € I is a nonzero integer) and so by the proposition above, I = (n,a+b- 5

where n # 0 is a generator of I N Z.

o There are finitely many residue classes in Op/(n), since each residue class has (exactly) one representative

by an element of the form s-+t¢-

for some integers 0 < s,t < n—1. Then by the third isomorphism
theorem, we know that Op/I = [Op/(n)]/[I/(n)] is a quotient of a finite ring, hence also finite.

o For the second statement, if P is a nonzero prime ideal of Op, then Op/P is a finite integral domain,
hence is a field.

e We also require a few additional properties about the “conjugation” map in Op:

e Definition: If a + bv/D is an element of Op, its conjugate is a + bv/D = a — bv/D. For any r € Op, we have
N(r) =r-7, and we also define the trace of r as tr(r) =r + 7.

o It is not hard to see that both N(r) and tr(r) are elements of Z for any r € Op.

o Conversely, the elements r € Q(v/D) with the property that N(r) and tr(r) are both in Z are precisely
the elements of Op.

o To see this, if 7 = a 4+ bv/D € Q(v/D), then N(r) = a®> — Db? and tr(r) = 2a. If both of these values are
integers, then 2a is an integer, and then 4N (r) — (2a)? = —4Db? is also an integer. Since D is squarefree,
this means 4b hence 2b is an integer as well.

o Finally, if D = 2,3 (mod 4) then N(r) will only be an integer when a and b are themselves integers,
while if D =1 (mod 4) then N(r) will be an integer when 2a and 2b are integers of the same parity. In
both cases, we see r € Op as claimed.

e Definition: If I is an ideal of Op, then its conjugate is the ideal I = {F : r € I}.

o It is easy to see that if I = (r,s), then I = (7,3), so for example in Z[/—5]