
E. Dummit's Math 4527 ∼ Number Theory 2, Spring 2025 ∼ Homework 9 Solutions

1. (a) Express 46, 57, 88, and 114 as the sum of three squares.

• We have 46 = 62 +32 +12, 57 = 72 +22 +22, 88 = 62 +62 +42, and 114 = 82 +72 +12 = 82 +52 +52.

(b) Express 87, 135, 2023, and 2024 as the sum of four squares.

• We have 87 = 72 + 52 + 32 + 22, 135 = 102 + 52 + 32 + 12, 2023 = 342 + 172 + 172 + 172, 2024 =
382 + 202 + 122 + 62. (There are many other possible solutions.)

2. For each quadratic integer ring (i) identify the value given by the Minkowski bound, (ii) �nd the splitting of
all prime ideals up to the Minkowski bound, and (iii) determine the structure of the ideal class group:

(a) Z[
√

3].

• Here ∆ = 12 so µ = 1
2

√
∆ =

√
3 ≈ 1.7321.

• Since µ < 2, there are no prime ideals of norm at most µ, so we see immediately that the class group
is trivial.

(b) O√13.

• Here ∆ = 13 so µ = 1
2

√
∆ = 1

2

√
13 ≈ 1.8028.

• Since µ < 2, there are no prime ideals of norm at most µ, so we see immediately that the class group
is trivial.

(c) Z[
√
−6].

• Here ∆ = −24 so µ = 2
π

√
24 ≈ 3.1188.

• Since µ < 4, the only possible prime ideals of norm less than µ are the ideals of norm 2 and norm 3.

• The minimal polynomial of the generator is x2 − 6.

• For (2) we see the polynomial has a double root at 0 mod 2 so we get (2) = (2,
√
−6)2. This ideal

I2 = (2,
√
−6) is not principal, since any generator would necessarily have norm ±2, but there are

no such elements since there are no solutions to x2 + 6y2 = ±2. Thus, [I2] is an element of order 2
in the class group.

• For (3) we see the polynomial has a double root at 0 mod 3 so we get (3) = (3,
√
−6)2, and as above

the ideal I3 = (3,
√
−6) is not principal since there are no elements of norm ±3. Thus, [I3] is an

element of order 2 in the class group.

• To identify the relationship between I2 and I3 we observe I2I3 = (6, 2
√
−6, 3

√
−6,−6) = (

√
−6) is

principal, so [I2] = [I3]−1 = [I3].

• We therefore have a single nonprincipal ideal class, so the class group is isomorphic to Z/2Z.

(d) Z[
√

14].

• Here ∆ = 56 so µ = 1
2

√
56 ≈ 3.7417.

• Since µ < 4, the only possible prime ideals of norm less than µ are the ideals of norm 2 and norm 3.

• The minimal polynomial of the generator is x2 − 14.

• For (2) we see the polynomial has a double root at 0 mod 2 so we get (2) = (2,
√

14)2. If this ideal
I2 = (2,

√
14) were principal then it would be generated by an element of norm 2, and searching for

solutions to x2 − 14y2 = ±2 reveals that 4 +
√

14 ∈ I2 has norm 2. Thus I2 = (4 +
√

14) is principal
so it is the trivial class.

• For (3) we see that x2 − 14 is irreducible modulo 3, so (3) is inert and has norm 9. Thus there are
no ideals of norm 3.

• We have identi�ed all of the possible prime ideals of norm up to µ and they are all principal, so the
class group is trivial.
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(e) O√−163.
• Here ∆ = 163 so µ = 2

π

√
163 ≈ 8.1278.

• Since µ < 9, the only possible prime ideals of norm less than µ are the ideals of norm 2, 3, 5, and 7.

• The minimal polynomial of the generator is x2 − x+ 41.

• However, it is not hard to check that the polynomial is irreducible modulo (2), (3), (5), and (7) (the
quick way is to note that −163 is 2 mod 3, 2 mod 5, and 6 mod 7, so it is not a quadratic residue
modulo any of these primes).

• Therefore, all of these primes are inert, so there are no nonprincipal prime ideals up to the Minkowski
bound, so the class group is trivial.

(f) O√−23. [Hint: Show I32 and I2I3 are both principal.]

• Here ∆ = 24 so µ = 2
π

√
23 ≈ 3.0531.

• Since µ < 4, the only possible prime ideals of norm less than µ are the ideals of norm 2 and norm 3.

• The minimal polynomial of the generator ω = 1+
√
−23
2 is x2 − x+ 6.

• For (2) we see the polynomial has roots 0 and 1 so we get (2) = (2, 1+
√
−23
2 )(2, 1−

√
−23
2 ). If the ideal

I2 = (2, 1+
√
−23
2 ) were principal then it would be generated by an element of norm 2, but there are

no elements of norm 2 since there are no solutions to x2 +23y2 = 8. The ideal I22 cannot be principal
either, since it would have to be generated by an element of norm 4, but the only such elements are
±2 and we already have the ideal factorization (2) = I2I

′
2 and I2 6= I ′2 since 2 is not rami�ed.

• On the other hand, I32 has norm 8, and there are elements of norm 8, namely,
3±
√
−23

2
. Indeed, we

can see that I32 = (8, 2 + 2
√
−23,−11 +

√
−23, −17−5

√
−23

2 ) so this ideal contains 8 + (2 + 2
√
−23) +

−17−5
√
−23

2 = 3−
√
−23
2 . Thus I32 = (3−

√
−23
2 ) is principal, and so [I2] is an element of order 3 in the

class group.

• For (3) we see the polynomial has roots 0 and 1 so we get (3) = (3, 1+
√
−23
2 )(3, 1−

√
−23
2 ). In a similar

way we can see I3 and I23 are not principal, but I33 is. To determine the relationship between [I2]
and [I3] we search for elements of norm equal to a power of 2 times a power of 3. We can see that
1 +
√
−23

2
has norm 6 and is contained in I2 and I3, so in fact I2I3 = (1+

√
−23
2 ) is principal, so

[I3] = [I2]−1.

• Thus the class group is generated by [I2] and is isomorphic to Z/3Z.

3. The goal of this problem is to discuss runs of consecutive integers none of which are the sum of 2 or 3 squares.

(a) For any positive integer k, show that there exist k consecutive positive integers none of which are the
sum of two squares. [Hint: Take N ≡ 3 (mod 9), N + 1 ≡ 7 (mod 49), etc.]

• Let p1, p2, . . . , pk be distinct primes congruent to 3 modulo 4. By the Chinese remainder theorem,
there exists a solution to the simultaneous congruences N ≡ p1 (mod p21), N + 1 ≡ p2 (mod p22), ...
, N + k − 1 ≡ pk (mod p2k), since the moduli are relatively prime.

• Taking N to be a positive solution of this system of congruences, we see that N , N+1, ... , N+k−1
are all divisible by a 3 mod 4 prime to an odd power, meaning that none of them are the sum of two
squares.

(b) Show that of any 3 consecutive positive integers, at least one is the sum of three squares.

• As we showed, the integers that are not the sum of three squares are of the form 4a(8b+ 7) for some
nonnegative integers a, b. Such integers are either 7 mod 8 or 0 mod 4, hence are 0, 4, or 7 mod 8.
Any three consecutive integers necessarily has at least one that is not 0, 4, or 7 mod 8, and that
integer is the sum of three squares.

(c) Find an example of 2 consecutive positive integers neither of which is the sum of three squares.

• From (b) the only way this can happen is if the two integers are 7 and 0 modulo 8, and the 0-modulo-
8 integer is of the form 4a(8b+ 7). This will be the case whenever a ≥ 2, so for instance we can take
a = 2 and b = 0 to obtain the integers 111, 112.
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4. The goal of this problem is to prove the slightly sharper version of Minkowski's theorem for closed sets.

(a) Suppose S is a closed subset of n-measure 1 inside [0, 1]n. Prove that S = [0, 1]n. [Hint: Consider the
complement of S.]

• The complement of S inside [0, 1]n is open (by de�nition).

• Because measure is additive, we also have µ(S) + µ(Sc) = µ([0, 1]n) = 1, so µ(Sc) = 1− 1 = 0.

• If Sc were nonempty, select any point P . Since Sc is open, there exists a ball of positive radius around
P inside Sc. But this ball would have positive measure, contradicting the fact that µ(Sc) = 0.

• Therefore, Sc is empty so S = [0, 1]n.

(b) Suppose S is a closed, bounded, measurable set in Rn whose n-measure is equal to 1. Show that there
exist two points x and y in S such that x− y has integer coordinates.

• As in class, write down the union of translates of S by lattice vectors inside [0, 1]n. If any of these
translates intersect, then we get the desired points x and y.

• Otherwise, these translates are disjoint, so the union is a closed subset of [0, 1]n that has measure 1
(since measure is additive). Then by (a) the union equals [0, 1]n, which again has two points that
di�er by integer coordinates (namely, any two vertices of the box).

(c) Suppose B is a convex closed set in Rn that is symmetric about the origin and whose n-measure is ≥ 2n.
Prove that B contains a nonzero point all of whose coordinates are integers.

• The regular version of Minkowski's theorem applies if the measure is > 2n. If the measure equals
2n, then 1

2B has measure 1, so by (b) it contains points x, y with x − y ∈ Zn. Then 2x, 2y ∈ B so
2x,−2y ∈ B by symmetry, so x− y ∈ B by convexity, as required.

5. Suppose that α and β are real numbers and that N > 1.

(a) Find the volume of the region (x, y, z) ∈ R3 with |x| ≤ N , |αx− y| ≤ 1/
√
N , |βx− z| ≤ 1/

√
N .

• The region is described by the inequalities−N ≤ x ≤ N , αx−1/
√
N ≤ y ≤ αx+1/

√
N , βx−1/

√
N ≤

z ≤ βx+ 1/
√
N so its volume is

´ N
−N
´ αx+1/

√
N

αx−1/
√
N

´ βx+1/
√
N

βx−1/
√
N

1 dz dy dz = 8.

• Alternatively, it is a skew box, so its volume is the determinant of the spanning vectors 2N 〈1, 0, 0〉,
2√
N
〈α,−1, 0〉, 2√

N
〈β, 0,−1〉, and this determinant is 2N · (− 2√

N
)2 = 8.

(b) Show there exist integers p, q, r with 1 ≤ r ≤ N such that |α− p/r| and |β − q/r| are both at most
1

r3/2
.

• The region from part (a) is centrally symmetric, convex, closed, and has measure 23.

• Therefore by Minkowski's theorem, it contains a nonzero lattice point (r, p, q), meaning that |r| ≤ N ,
|αp− r| ≤ 1/

√
N , and |βq − r| ≤ 1/

√
N . If we had r = 0 then the other conditions would force

p = q = 0, contrary to the assumption that (r, p, q) is nonzero.

• Now rescaling the triple by −1 if needed to make r positive, we see that 1 ≤ r ≤ N and that

|α− p/r| ≤ 1

r
√
N

and |β − q/r| ≤ 1

r
√
N

as well.

• Finally since r ≤ N we see that
1

r
√
N
≤ 1

r3/2
, so the required estimates hold as claimed.

Remark: The idea of (b) is that we can provide simultaneous approximations to the real numbers α and β
using a shared denominator r such that the approximation error is small relative to r.
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6. The goal of this problem is to give a geometric method for analyzing Z[i]/(β) for a nonzero β ∈ Z[i].

(a) Show that the ideal (β) forms a sublattice of the Gaussian integer lattice inside C, and compute the area
of its fundamental domain. [Hint: It is spanned by β and iβ.]

• Notice that (β) = {βx+ iβy : x, y ∈ Z} so the underlying lattice is spanned by β and iβ.

• These vectors are perpendicular so the fundamental domain is simply a square of side length |β|, so
the area is |β|2 = N(β).

(b) Let β = 3 + i. Draw a fundamental region for Z[i]/(β), and use it to �nd an explicit list of residue class
representatives for Z[i]/(β).

• Here is the resulting fundamental region with the inequivalent points marked in red:

• The representatives are 0, i, 2i, 3i, 1 + i, 1 + 2i, 1 + 3i, 2 + i, 2 + 2i, 2 + 3i.

(c) Show that the number of residue classes in Z[i]/(β) is equal to the total number of interior points I,
plus half of the number of boundary points B, minus one, inside the fundamental domain. [Hint: The
boundary points come in pairs, except for the four corners.]

• We are simply counting inequivalent lattice points inside the square spanned by β and iβ.

• Each interior point is not equivalent to any other point in the square. All four of the corner points
are equivalent, and all of the boundary points that are not at corners come in pairs (the left edge
and right edge, or the top edge and bottom edge).

• Thus, the total number of inequivalent points is equal to I + (B − 4)/2 + 1 = I +B/2− 1.

(d) Deduce that the number of distinct residue classes in Z[i] modulo β is equal to N(β). [Hint: Use Pick's
theorem to put (a) and (b) together.]

• By (a) the area of the fundamental domain is N(β). By (b), the number of residue classes is equal
to I + B/2 − 1, which by Pick's theorem also equals the area. Thus, the number of residue classes
equals N(β).

(e) Does this method also work for O√D/I for a general nonzero ideal I of O√D? [Hint: Yes, with the right
way to view I as a lattice.]

• Yes, it does, assuming we use the Minkowski embedding when D > 0: as we have already seen, I
will form a sublattice whose index is the cardinality of O√D/I, and so picking out the inequivalent
points from the fundamental domain will yield unique residue class representatives.

• One can use an a�ne change of variables to convert to the case of the Gaussian lattice, in which
case we can invoke the results above.
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7. The goal of this problem is to show that O√−19 is a PID that is not Euclidean. If R is an integral domain, we
say an element u ∈ R is a universal side divisor if it is not zero, not a unit, and every x ∈ R can be written
in the form x = qu+ z where z is either zero or a unit. Equivalently, u is a universal side divisor when every
nonzero residue class modulo u is represented by a unit of R.

(a) Suppose R is a Euclidean domain that is not a �eld. If u is a nonzero nonunit of R having minimal norm
among nonzero nonunits in R (with respect to the norm function on R), show that u is a universal side
divisor.

• Since R is not a �eld, it has at least one nonzero element that is not a unit. Then there exists such
a u by the well-ordering axiom.

• Let x ∈ R and divide x by u: we see that x = qu + z where z = 0 or N(z) < N(u). But because
u has minimal norm among all nonzero nonunits, and N(z) < N(u), the only possibility is that z is
either 0 or a unit. Thus, u satis�es the condition for being a universal side divisor.

(b) If u is a universal side divisor in O√−19, show that u must divide one of x− 1, x, x+ 1 for any x ∈ R.
• By de�nition, any universal side divisor u must divide x− z for z = 0 or z a unit.

• Since the only units in O√−19 are ±1, this means u must divide one of x− 1, x, x+ 1.

(c) Show that O√−19 has no universal side divisors and conclude that O√−19 is not Euclidean. [Hint: Apply
(b) when x = 2 and x = (1 +

√
−19)/2, and compute norms.]

• Suppose u is a universal side divisor in O√−19. By (b) applied to x = 2 we see that u divides 1, 2,
or 3, hence has norm dividing 1, 4, or 9.

• By (b) applied to x = (1 +
√
−19)/2 we see that u divides (−1 +

√
−19)/2 or (1 +

√
−19)/2 or

(3 +
√
−19)/2 hence has norm dividing 5, 5, or 7.

• But the only elements satisfying both of these conditions are those of norm 1, but that would imply
u is a unit, contradiction. Hence O√−19 has no universal side divisors so by (a), O√−19 is not
Euclidean.

(d) Show that O√−19 has trivial class group. Deduce that O√−19 is a PID that is not Euclidean.

• Since −19 ≡ 1 (mod 4), we have ∆ = −19, and so Minkowski's bound says that every ideal class of

R contains an ideal of norm at most
2

π

√
19 ≈ 2.7750 < 3, so the only nontrivial ideals we need to

consider are ideals of norm 2.

• The minimal polynomial of the generator ω = 1+
√
−19
2 is x2 − x+ 5.

• For (2) we see the polynomial is irreducible modulo 2, so (2) is inert and does not yield a nontrivial
element of the class group. Hence the class group is trivial, so O√−19 has trivial class group, hence
is a PID. By (c), O√−19 is not Euclidean, so it is a PID that is not Euclidean.

8. [Challenge] The goal of this problem is to give a proof using Minkowski's theorem of the Diophantine approx-
imation theorem we established using continued fractions: that for any irrational real number α there exist
in�nitely many rationals p/q with |α− p/q| < 1

2q
−2.

(a) Suppose A = {ai,j}1≤i,j≤n is a real n × n matrix whose determinant is not zero. If λ1, λ2, . . . , λn are
positive real numbers such that λ1λ2 · · ·λn ≥ |detA|, prove that there exist integers x1, x2, . . . , xn, not
all zero, such that |a1,1x1 + a1,2x2 + · · ·+ a1,nxn| ≤ λ1, |a2,1x1 + a2,2x2 + · · ·+ a2,nxn| ≤ λ2, ... , and
|an,1x1 + an,2x2 + · · ·+ an,nxn| ≤ λn.
• Let Λ be the lattice spanned by the columns of A, whose fundamental domain has volume |detA| as
we discussed in class.

• Also let B be the convex, centrally-symmetric, closed region in Rn de�ned by |xi| ≤ λi for each
1 ≤ i ≤ n. This region is simply a box with side lengths 2λi so its n-measure is 2nλ1λ2 · · ·λn ≥
2n |detA|.

• Since the measure of B is ≥ 2n times the volume of the fundamental domain of Λ, we conclude that
there is a nonzero element of Λ in B.

• If this vector is x1 〈a1,1, a2,1, . . . , an,1〉+ x2 〈a1,2, a2,1, . . . , an,2〉+ · · ·+ xn 〈a1,n, a2,n, . . . , an,n〉, then
the ith component of this sum has absolute value ≤ λi, and this is exactly the desired condition.
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(b) Suppose that a, b, c, d are real numbers such that ad−bc 6= 0. Show that there exist integers p, q not both

zero such that |ap+ bq| · |cp+ dq| ≤ 1

2
|ad− bc| and |ap+ bq| , |cp+ dq| ≤

√
2 |ad− bc|. [Hint: Apply (a)

to the forms (ax + by) ± (cx + dy), then use the triangle inequality and the arithmetic-geometric mean
inequality.]

• Following the hint, consider the two forms (a+ c)x+ (b+d)y and (a+ c)x+ (b+d)y, of determinant
2(ad− bc).
• Then by (a) with λ1 = λ2 =

√
2 |ad− bc|, there exist integers p, q not both zero such that X =

|(ap+ bq) + (cp+ dq)| and Y = |(ap+ bq)− (cp+ dq)| are at most
√

2 |D|.
• By the triangle inequality, we have |ap+ bq|+ |cp+ dq| ≤ max(X,Y ) ≤

√
2 |D|, so in particular each

term is at most that value.

• Finally by AM-GM we have |ap+ bq| · |cp+ dq| ≤
[
|ap+ bq|+ |cp+ dq|

2

]2
=

1

2
|ad− bc| as required.

(c) Let α be a real number and �x a positive real number t. Show that there exist integers p, q not both

zero such that
∣∣pq − αq2∣∣ ≤ 1

2
and with |tp− αtq| ≤

√
2. [Hint: Use (b) with a = t, b = −αt.]

• We apply (b) with a = t, b = −αt, c = 0, d = 1/t with ad − bc = 1: then (b) yields that

|tp− αtq| ≤
√

2 and that |tp− αtq| · |q/t| ≤ 1

2
which is equivalent to the desired

∣∣pq − αq2∣∣ ≤ 1

2
.

(d) Let α be an irrational real number. Show that there exist in�nitely many rational numbers p/q such

that |α− p/q| < 1

2
q−2. [Hint: For any �nite N , choose t large enough so that |p− αq| >

√
2/t whenever

q ≤ N .]

• Since α is irrational, for any �nite bound N , the minimum value M of |p− αq| among all q ≤ N is
nonzero, since there is only one value of p that makes the value less than 1/2 in absolute value.

• Take t large enough such that
√

2/t is less than M . Applying (c) for this value of t yields that there
exists p, q such that |α− p/q| < 1

2q
−2 and |p− αq| ≤

√
2/t < M , but this requires q > N by the

above.

• We conclude that there exists such a p/q with q > N for any N , so there are in�nitely many such
p/q.

6


