E. Dummit’s Math 4527 ~ Number Theory 2, Spring 2025 ~ Homework 8 Solutions

1.

Do:

(a) Calculate the cubic residue symbols [

[ 7

—————| . Which elements are
T4 2 —3] 3
cubic residues and which are not?

|:4+1\1/j3:| = (4+\/j3)(N(11)—1)/3 — (4+\/j3)40 = w? (mod 11) S0 |:4+1\1/j3:| _ .
3

e We have
3

Thus 4 + /-3 ’is not a cubic residue ‘ modulo 11.

e Also [42;/\7373]3 = (2\/—73)([\[(4%/?3)_1)/3 = (2¢/=3)° =1 (mod 4 + v/=3) so [41\/\7373}3 = .

Thus 2v/—3 ’is a cubic residue ‘ modulo 4 + +/—3.

2 — . .
e Finally [‘4‘\/73} = (2 + V=3)WIH2V=3)-1)/3 — (2 4 /=3)2 = w (mod 7 + 2y/=3) so
7+2V=-3],4
24++v-3
[7_:_2\/3} \ =[w] Thus 243 ’is not a cubic residue ‘ modulo 7 + 2v/—3.

(b) Find the primary associates of the primes 2 + v/—3 and 7 + 2/—3 in O =3, and then verify cubic
reciprocity for these associates.

e Since 2 + /=3 = 3 + 2w, we see that —w?(2 + /-3) = is primary. Likewise, since
7+ 2v/—3 =9 + 4w we see that —w?(7 +2y/=3) = is primary.

11—

e Then {5—&—93(;0] = (=1 — 3w)NVOH)-1/3 = (1 — 30))%0 = w? (mod 9 + 5w).
3

5+9
e Also, [l—i_—;u} = (54 Jw) V(1730173 = (5 4+ 9u)? = w? (mod —1 — 3w).
e These are equal, as cubic reciprocity dictates they should be.

5 -2
¢) Calculate the quartic residue symbols Al , +,Z Which elements are quartic
7

residues? Which elements are quadratic residues7
e We have [TL = (544)NM=D/4 = (5 4+ )12 = —i (mod 7) so [5J7FZL = . Thus 5 + i is

’is not a quadratic or quartic residue ‘ modulo 7.

e Also [ 2 } = (20)V(E+I=1/4 = (2§)? = —1 (mod 6 + i) so [22
4

6+1 6+ J 4
means that 2¢ ’is a quadratic residue but not a quartic residue ‘ modulo 6 + .

-2+ . ) —2414
e Finally +'z (=24 )WN=20-D/4 — (92 4+ )13 =1 (mod 7 — 2i) so Jr,z =[1]. Thus
7T—2i], 7T—2i],

—2+1 ’is a quartic (hence also a quadratic) residue ‘ modulo 7 — 2i.

= . Therefore, this

(d) Find the primary associates of the primes 11 and 7 4 2¢ in Z[i], and then verify quartic reciprocity for
these associates.

e We have —11 =1 (mod 2+ 2¢) and also 7+ 2i = 1 (mod 2 + 2i), so the desired associates are
ond [T21]

We h —
) € nave |:7+2

2 .
s l] = (7+20)WOD=D/4 — (7 4 2{)30 =1 (mod 11) so {

N(=11) =1 N(7+2i) -1
4 4

; —11
} = ( 11)(N(7+21)—1)/4 _ (_11)13 =1 (mod 7+ 2i) . { ] —1
4 T+ 2i],

7—5—21}
4

e Also {

e This agrees with quartic reciprocity since is even, so the quartic residue

symbols should be equal.




2. Find all solutions (x,%, z) to the Diophantine equation x> + y? = 27 where x and y are relatively prime.

Since squares are 0 or 1 modulo 4, one of x,y must be odd and the other is even, and also z is odd.
Now factor the equation inside the UFD Z[i] as (x + iy)(z — iy) = 2°.

We now claim that x + iy and x — iy are relatively prime inside Z[i]: this follows the same way as
the argument in class for 22 4+ 32 = 2°: any common divisor must necessarily divide the sum 2z and
the difference 2iy, but since x and y are relatively prime integers, this means that the gecd must divide
2 = —i(1 + )%, Then the only possible Gaussian prime divisor of the ged is 1 + i, but 1 + 4 does not
divide = + iy because x and y have opposite parity.

Thus, x + iy and = — iy are relatively prime inside Z[¢]. Since their product is a seventh power (namely,
27) and Z[i] is a UFD, this means that each term must be a seventh power up to a unit factor.

But since the only units are 1, +i and these are all seventh powers (of their reciprocals), we must have
z+iy = (a+bi)" = (a” — 21a°b? + 35a3b* — 7ab®) + (7ab — 35a*b> + 21a?b® — b7)i. Then the conjugate
z—iyis (a—bi)7, and 27 = (z +iy)(z — iy) = (a® + b?)".

Since all such tuples work, the solutions are of the form

(z,y,2) = ’ (a” — 21a°b* + 35a%b* — 7ab®, 7a5b — 35a*b® + 21a%0° — b7, a® + b?) | for relatively prime in-
tegers a and b.

3. Prove that the only solution to the Diophantine equation y? = x® — 8 is (x,y) = (2,0). [Hint: There are two
different cases according to whether y is even or odd.]

If y is even, say with y = 2p, then x must also be even, say with £ = 2¢. Then the equation becomes
p? = 2¢> — 2, s0 p is even, say p = 2r. Then we get 47> = 2¢> — 2 so that 2r? = ¢® — 1.

Rearrange the equation and factor in Z[v/—2] to obtain ¢* = (1 + r/=2)(1 — r/=2). Since 1 + /-2
and 1 — ry/—2 are relatively prime (their sum is 2, and the only irreducible factor v/—2 of 2 does not
divide either term) this means 1+ rv/—2 must be a cube up to a unit factor, hence it actually is a cube.
Then 1+ rv/=2 = (a+by/—2)? = (a® — 6ab?) + (3a*b — 2b%)y/—2, so that a® — 6ab? = 1. Factoring yields
a(a® —6b%) = 1 and so a = +1. The only possibility that yields a valid b is a = 1 with b = 0, which gives
r =0 hence y = 0 and x = 2. Thus we get the solution (2,0) in this case.

Otherwise, if y is odd, rearrange the equation and factor in Z[v/—2] to obtain 2 = (y+2v/—=2)(y—2v/-2).
Then y+2+v/—2 and y —2+/—2 are relatively prime since their difference is 41/—2 and the only irreducible
factor /—2 of 44/—2 does not divide either term since y is odd.

This means y + 2v/—2 must be a cube up to a unit factor, hence it actually is a cube.

Then y + 2v/-2 = (a + by/=2)3 = (a® — 6ab?) + (3a®b — 2b%)/—2 so that 3a®b — 2b® = 2. Factoring
yields b(3a? — 2b%) = 2 and so b divides 2. But b = —2 gives a? = 7/3, b = —1 gives a = 0, b = 1 gives
a? =4/3, and b = 2 gives a® = 3, so the only solution comes from a = 0, b = —1, but this yields y = 0
which does not have y odd.

Thus we get the unique solution (z,y) = (2,0) as claimed.

4. If R is a (commutative) ring with 1, the characteristic of R is defined to be the smallest positive integer n for
which 14+ 1+ ---+1 =0, or 0 if there is no such positive integer n.
—_——

()

(b)

n terms

Find the characteristics of Z, R, Z/mZ, Z[i)/(7), Z[i]/(2 + i), and (Z/AZ) x (Z/6Z). |Note that (1,1) is
the multiplicative identity in the last ring.]

e The characteristic of Z is @, the characteristic of R is @, the characteristic of Z/mZ is [m], the
characteristic of Z[i]/(7) is , the characteristic of Z[i]/(2+ ) is | 5 | (note that 5 = 0 mod 2+ but
no smaller integer is), and the characteristic of (Z/4Z) x (Z/6Z) is , since it is straightforward
to see that 12 (1,1) = (0,0) but no smaller multiple will suffice.

If R is an integral domain, prove that its characteristic is always either 0 or a prime number.



e If the characteristic is 0 we are done, and the characteristic cannot be 1 (since then 1 = 0) so suppose
the characteristic is n > 1.
e If n = ab for positive integers a and b, then wehave0 =1+ 1+ ---+1=(1414+---+ 1)1 +14---+1).

n terms a terms b terms

e But since R is an integral domain, it has no zero divisors, so one of the terms on the right must be

zero. By minimality of n, we conclude that either a = n or b = n, meaning that n has no nontrivial
factorization hence must be prime.

(c) Let R be a commutative ring of prime characteristic p. Prove that for any a,b € R, the “freshman’s
binomial theorem” (a 4+ b)? = a? + b? is actually correct. Deduce that the map ¢ : R — R given by
p(a) = a? is actually a ring homomorphism (this map is called the Frobenius endomorphism and turns
out to be quite important in many contexts).

o From the (correct) binomial theorem, we know that (a+b)? = a?+ (})a?~'b+---+ (7, )ab?~" + b7,
so it is sufficient to prove that each of the binomial coeflicients (2) for 1 < k <p—1 is divisible by
p, since by the assumption on the characteristic we know that p = 0 in R.

|
e For this, observe that (Z) = ﬁ, and notice that the numerator is divisible by p but the
I(p—k)!
denominator is not (since there is a factor of p in p! but not in any smaller factorial). Thus, the
integer quotient is divisible by p, as claimed.

e Finally, we see p(a+b) = (a+p)? = a? +b” = p(a)+ ¢(b) and also ¢(ab) = (ab)? = aPb? = p(a)p(b)

S0 ¢ is a ring homomorphism as claimed.

(d) Let p be an integer prime congruent to 3 modulo 4. If z = a + bi € Z[i], prove that z? = Z (mod p).
[Note that this was mentioned but not proven in class.]
e Since p is an odd prime, Z[i]/(p) has characteristic p, as suggested in part (a).
Then by (c), we have 2P = (a + bi)? = o + (bi)? (mod p).
e By Fermat’s little theorem we know that a? = a and b = b (mod p), and also since p = 3 (mod 4)
we have ¥ = —i.
Putting all of this together yields 2P = (a + bi)P = aP + (bi)P = a — bi = Z (mod p), as claimed.

5. Suppose I is a nonzero ideal of R = O /5. The goal of this problem is to show that R/I is finite and its
cardinality is N(I). (Indeed, N(I) is often just defined to be the cardinality of R/I, rather than as the
nonnegative generator of I -1.)

(a) Suppose I has prime ideal factorization I = P;"* --- P%~. Show that R/I is isomorphic to (R/P}"*) x
-+ X (R/P%) and that N(I) = N(Py')--- N(P%).

e First, if P and @ are distinct nonzero prime ideals, then P* and Q® are comaximal: any ideal
containing both necesssarily divides both, but by the uniqueness of prime ideal factorizations, the
only such ideal is (1) = R.

e Thus P, Py?, ... , P are pairwise comaximal , so the Chinese remainder theorem immediately
gives that R/I is isomorphic to (R/Pj"*) X -+ x (R/P%n).

e Finally, we have N(I) = N(P{"*)--- N(Pg") because the norm of ideals is multiplicative.

(b) Suppose a is any positive integer. Show that the cardinality of R/(a) is a®.

e Observe that (a) = {ap + aga : p,q € Z} where « is the generator of O, 5.
e Then the elements of R/(a) are uniquely represented as residue classes p’ + ¢’ where 0 < p’ <a—1
and 0 < ¢’ < a—1, and there are a - a = a? of these.

(c) Suppose @@ = P" is a power of a prime ideal. If P = (p) for a prime integer p, show that #(R/Q) = N(Q).

e We have Q = (p)" = (p") and also N(Q) = (p")(p") = p*".
e So by (b) we have #(R/Q) = (p")? = p*" = N(Q) as claimed.

(d) Suppose Q = P™ for some prime ideal P with PP = (p) and p prime; note that we are not assuming that
P # P. Show that all of the quotients R/P, P/P?, ..., P"~1/P" P"/(P"P), ... , (P"P" )/(P"P")
have cardinality greater than 1, and that the product of their cardinalities is the cardinality of R/ (P”Pn).
Conclude that all of these cardinalities must equal p and deduce that #(R/Q) = N(Q).



e First, the ideals R, P, P2, ... , p»—1 pn pnpP .. | P"P’jl, P"P" must all be distinct by the
uniqueness of prime ideal factorizations, since both P and P are prime ideals and each factoriza-
tion has a different number of terms. Therefore, all of the quotients R/P, P/P?, ... , P"~1/P"

P"/(P"P), ... , (P”Pn_l)/(P"?n) have cardinality greater than 1.

e For the product of the cardinalities we simply apply the following fact about cosets: in any group
with subgroups Ho < H; we have [G : Hy] = [G : H1] - [H1 : Hs], which follows simply by noting
that each coset of Hy splits into [H; : Hs] cosets of Hs. (One can also deduce this fact from the
third isomorphism theorem R/J = (R/I)/(J/I) whenever J contains I. )

e Applying this fact repeatedly shows that #(R/P)-#(P/P?)-- . - #((P"P""
#(R/(p"))-

e But by (b), #(R/(p")) = p®", and so each of the 2n cardinalities of the quotients must be a power
of p. But since none of them can equal 1, the only way the product can equal p?” is if all of them
are p (otherwise the product would be too large).

e Then by our coset fact again, we have #(R/Q) = #(R/P) - #(P/P?) - --- - #(P""1/P") = p" =
N(P)" = N(Q).

(e) Show that R/I has cardinality N(I) for any nonzero ideal I.

e By (a), R/I is isomorphic to (R/P{"™*) x -+ x (R/P%) and N(I) = N(P")--- N(P%). Then (c)

and (d) show #(R/P/") = N(P{") for each prime power P;. Taking the product over all i yields

2

N(I) =1L NE") =1L #(R/P") = # [1L(R/P)) = #(R/1).

1

)/(P"P")) = #(R/(P"P")) =

6. The goal of this problem is to formulate a general dth-power residue symbol in Z/pZ, for a prime p (indeed,
the construction works in any finite field). So let p be a prime.

(a) Suppose p =2 (mod 3). Show that every residue class is a cube modulo p. [Hint: The map x — 22 is a
homomorphism on the unit group (Z/pZ)*: what is its kernel?]

e Per the hint, we observe that the cubing map ¢(r) = 2% is a homomorphism on the unit group

(Z/pZ)*, since it is clearly multiplicative. The kernel of this map consists of the elements with
2% =1 (mod p), which is to say, the elements of order dividing 3.

e But since the unit group has order p — 1 = 1 (mod 3), we see that there are no elements of order 3
in this group, so the only element of order dividing 3 is the identity.

e Hence the kernel of ¢ is trivial, so by the first isomorphism theorem (for groups) we see that the
image of ¢ has cardinality p — 1, and so ¢ is onto: this means every residue class is a cube, as
claimed.

(b) Suppose p = 3 (mod 4). Show that every square modulo p is a fourth power modulo p. [Hint: Consider
the squaring map on the group of nonzero squares, which has order (p —1)/2.]

e Per the hint, we observe that the squaring map o(x) = 22 is a homomorphism on the group of

squares in (Z/pZ)*, which has order (p — 1)/2. The kernel of this map consists of the elements of
order dividing 2.

e But since this group has order (p — 1)/2 = 1 (mod 2), we see that there are no elements of order 2
in this group, so the only element of order dividing 2 is the identity.

e Hence the kernel of ¢ is trivial, so just as in part (a) that means ¢ is onto, so that every square
residue class is the square of another square, which is to say, a fourth power.

We can see from (a) and (b) that for cubes the only interesting case is when p = 1 (mod 3) and for fourth
powers the only interesting case is when p = 1 (mod 4). So we now study the more general situation of dth
powers when p =1 (mod d). So let d > 2 and let p =1 (mod d).

(c) Let u be a primitive root modulo p. Show that the dth powers modulo p are u?,v?¢,..., and uP~! =1,
and also that there are d solutions to % = 1 (mod p), given by u(P~1/d 42@e-1/d _— 4dp—1)/d — 1
e Since u is a primitive root, the units are u', u2, ... , uP~' = 1 and so the dth powers are u¢, u??, ...

, ud®=1D/d =1 and after this the powers begin repeating again.



e For the second part, we can see that each of the given elements u(P—1/d 2(p=1/d = 4 dp-1)/d — |
are clearly solutions to ¢ = 1 (mod p) by Euler’s theorem. But they are all distinct and there are
d of them, so since the polynomial ¢ — 1 has at most d roots by unique factorization in F,[z], they
are all of the roots.

Now define the dth-power residue symbol (a) to be the residue class of q(P—1)/d (mod p).
P/ g

(d) Show that (Z)
(mod p).

a
= 0 only when p divides a, and otherwise <) is one of the d solutions to z?¢ = 1
p

d d

e Obviously a?~1/4 = 0 only when a = 0 (mod p). Otherwise, we see that [a(P~1)/4)? = gP—1 = 1

[
(mod p) by Euler’s theorem, and so (a> is one of the d solutions to ¢ = 1 (mod p).
p

o (0 -() (),

b b
e We have <a> = (ab)P—1/d = g(P=1)/dp(p=1)/d — (a> <) as residue classes modulo p.
D /g P/a\P/a

(f) Let u be a primitive root modulo p. Show that <u> is a primitive dth root of unity modulo p (i.e., its
P/a
order modulo p is exactly d).

e Suppose the order of <u> equals k; then k < d by part (d).
P/a

e By definition we would have u*(*—1/d = 1 (mod p), so by properties of order this means the exponent
k(p — 1)/d must be a multiple of the order of u, which is p — 1.

e This means k/d is an integer and thus that k > d, so we must have k = d.

(g) Show that (Z) = 1 if and only if a is a nonzero dth power modulo p.
d

d
e Let u be a primitive root modulo p. If a = b% for a nonzero b, then (a> = () = 1 by
p p

b
multiplicativity from (e) and the fact that () is a dth root of unity by (d).
P/g

k
e Conversely, suppose (a) =1and a = u*. Then 1 = (a) = (u) and so since (u> is a
P/g P/ P/g P/a

primitive dth root of unity, this means k is divisible by d, and so a = (u*/%)? is a dth power, as
desired.

Remark: As is, we cannot formulate any sort of dth-power reciprocity law, since we cannot compare the dth
roots of unity modulo different primes in any sensible way except in the case where d = 2. Unfortunately,
there is no easy way to fix this problem, since there is no canonical way to identify the roots of unity
modulo p with those in C (if d > 2, taking the conjugate gives an equally valid identification). Ultimately,
this is why we must work in O, =5 for cubic residue symbols and in Z[i] for quartic residue symbols, as
these rings do possess the necessary complex roots of unity to allow us to compare residue symbols for
different primes.

7. [Challenge| In class, we proved cubic and quartic reciprocity using properties of Gauss sums. The goal of this
problem is to give a self-contained proof of quadratic reciprocity using Gauss sums. So let p, ¢ be distinct

odd integer primes and let x,(a) = <a> be the Legendre symbol modulo p. Recall that the Gauss sum of a
p

multiplicative character y is defined to be gq(x) = S-0—; x(t)e*™@4/? ¢ C.



(a) Show that g,(xp) = (a) 91(xp) for any integer a. [Hint: If p|a, count the number of quadratic residues.
p

For other a, reindex the sum.]

1 (t
o If pla then g,(xp) = Zlel <p> This sum is zero because there are (p — 1)/2 quadratic residues,

where the Legendre symbol is +1, and (p — 1)/2 quadratic nonresidues, where the Legendre symbol
is —1.
e Otherwise if p does not divide a, by changing variables s = at and noting that s also runs over all

1 (t . .
nonzero residue classes modulo p, we have g,(x) = Zlel () emiat/p — P (s/a) e2mis/p =
p

() = ()= (oo e (3) - (5)

-1
(b) Let S = Zz;é 9a(Xp)g—a(Xp). Show that S = () (p — 1)g1(x)?. [Hint: Use (a), making sure to
p
separate a = 0 and a # 0.]

o By (a) we can write § = 320 ga(Xp)9-a (Xp) = L (Z) gl(x)(;l) X) = as ( pz)gl(x) :

—a? -1
e Since < ; ) = <p> for any a # 0, the given sum is simply (p

) (p —1)g1(x)?, as claimed.

_ . ifs=t d
(c) Show that Y 7—g e2mia(s=0)/p = {p o (mod p) for any integers s and t.

0 if s#t (mod p)

e If s =t then the sum is just Zi;é 1=np.

. . . . . 11— [ezm'(s—t)/p]p 1 — e2mi(s—t) .
e Otherwise, if s # t, the sum is a geometric series and is e Tr ey — Ty — 0 since
627Tia(57t) -1,
i i i -1 mia(s—
(d) Show that the sum S from part (b) is equal to p(p—1). [Hint: Write S = ZZ:O Z Z ) 2mia(s—t)/p,

then change summation order to sum over a first, move the Legendre symbol out, and use (c) ]
o We have go(xp) = SP21 x(£)e2™5/7 and g_o(x,) = S277; x(£)e2™@/P so multiplying these to-
gether yields ga(Xp)g—a(Xp) = ZZ; Zf;ll () e?ma(s=t)/p  Now summing over a gives S =
p
—1p—1p—1 [ St rials—
ST sl (3 e,
_ _ _ t .
e Changing the summation order to sum over a first then gives § = SP_1 P~ s~ (S) e2mials=t)/p —
p
_ — t — .
S () S e,
e Now by (c) we see that the inner sum is equal to p when s =t and is 0 when s # ¢, so the sum S

2
reduces to Z’;i (S) p = p(p — 1) since the Legendre symbol is always 1.
p



(e) Let p* = p. Show that the Gauss sum g1 (,) has g1(x,)?> = p*. Deduce that g (y,) is an element
of the quadratic integer ring O, =.

-1
e Comparing the expressions for S from (b) and (d) yields p(p — 1) = () (p — 1)g1(x)? and so

-1
g(x)? = (p) p = p*, as claimed.

e The second statement follows by taking the square root to see g1(x,) = £/p* € O 5
Now let p and ¢ be distinct odd primes and let g = g1(x;,) € O, 5= be the quadratic Gauss sum

(f) Show that g9=! = (I;*) (mod ¢). [Hint: Use (e).]

e Since ¢ — 1 is even, we have g1 = (¢2)4=1/2 = (p*)a-1/2 = <p> (mod q) by Euler’s criterion.
q

(g) Show that g7 = g4(xp) = (Z) g (mod ¢). [Hint: Use 5(c) and part (a).]

. Using the freshman’s binomial theorem mod g, we have g? = [Zt 1 Xp (t)e%“/p] Zt L Xp(t)Temiat/p =

)7 = x,(t) since ¢ is odd.
e Then (a) gives gq(xp) = (q) g, s0 we get g7 = g4(xp) = (q) g (mod ¢) as claimed.
p p

(h) Conclude that <q) g= (p) g (mod ¢), and deduce that (q) = <p)
p q

p q
e Comparing the expressions from (f) and (g) yields ( ) g=gi= (p) g (mod ¢). Then multiplying
p q

by ¢g and using g?> = p* from (e) yields q p* b

SP L (t)e?™it/P = g (x,,) (mod q), where in the middle we used x,,(t

invertible mod ¢, gives (;ﬁ) = (Z) (mod q).

) p* (mod gq), so cancelling p*, which is
q

e Finally, since ¢ is odd and these Legendre symbols are both +1, they must actually be equal

(i) Deduce the law of quadratic reciprocity: (q) = <p> (—1)p=Dla=1)/4,

q

=)
L

-1
e By Euler’s criterion applied to the element ( ) mod ¢ and the fact that (p) = (=1)P=1/2 we
N (G () /2
have (q> = <p> S ANV P (p) = (p> (;1) ! = <p> (=1)P=Dla-1)/4
P q q q q q/) \? q

as required.




