- 1. Do:
 - (a) Calculate the cubic residue symbols $\left[\frac{4+\sqrt{-3}}{11}\right]_2$, $\left[\frac{2\sqrt{-3}}{4+\sqrt{-3}}\right]_2$, and $\left[\frac{2+\sqrt{-3}}{7+2\sqrt{-3}}\right]_2$. Which elements are cubic residues and which are not?
 - We have $\left[\frac{4+\sqrt{-3}}{11}\right]_3 \equiv (4+\sqrt{-3})^{(N(11)-1)/3} = (4+\sqrt{-3})^{40} \equiv \omega^2 \pmod{11}$ so $\left[\frac{4+\sqrt{-3}}{11}\right]_3 = \boxed{\omega^2}$.
 - Thus $4 + \sqrt{-3}$ is not a cubic residue modulo 11. Also $\left[\frac{2\sqrt{-3}}{4 + \sqrt{-3}}\right]_3 \equiv (2\sqrt{-3})^{(N(4+\sqrt{-3})-1)/3} = (2\sqrt{-3})^6 \equiv 1 \pmod{4 + \sqrt{-3}}$ so $\left[\frac{2\sqrt{-3}}{4 + \sqrt{-3}}\right]_3 = \boxed{1}$. Thus $2\sqrt{-3}$ is a cubic residue modulo $4 + \sqrt{-3}$.
 - Finally $\left[\frac{2+\sqrt{-3}}{7+2\sqrt{-3}}\right]_{3} \equiv (2+\sqrt{-3})^{(N(7+2\sqrt{-3})-1)/3} = (2+\sqrt{-3})^{20} \equiv \omega \pmod{7+2\sqrt{-3}}$ so $\left[\frac{2+\sqrt{-3}}{7+2\sqrt{-3}}\right]_3 = \omega$. Thus $2+\sqrt{-3}$ is not a cubic residue modulo $7+2\sqrt{-3}$.
 - (b) Find the primary associates of the primes $2 + \sqrt{-3}$ and $7 + 2\sqrt{-3}$ in $\mathcal{O}_{\sqrt{-3}}$, and then verify cubic reciprocity for these associates.
 - Since $2 + \sqrt{-3} = 3 + 2\omega$, we see that $-\omega^2(2 + \sqrt{-3}) = \boxed{-1 3\omega}$ is primary. Likewise, since $7 + 2\sqrt{-3} = 9 + 4\omega$ we see that $-\omega^2(7 + 2\sqrt{-3}) = \boxed{5 + 9\omega}$ is primary.
 - Then $\left[\frac{-1-3\omega}{5+9\omega}\right]_3 \equiv (-1-3\omega)^{(N(5+9\omega)-1)/3} \equiv (-1-3\omega)^{20} \equiv \omega^2 \pmod{9+5\omega}.$
 - Also, $\left[\frac{5+9\omega}{-1-3\omega}\right]_3 \equiv (5+9\omega)^{(N(-1-3\omega)-1)/3} \equiv (5+9\omega)^2 \equiv \omega^2 \pmod{-1-3\omega}$. • These are equal, as cubic reciprocity dictates they should be
 - (c) Calculate the quartic residue symbols $\left[\frac{5+i}{7}\right]_4$, $\left[\frac{2i}{6+i}\right]_4$, and $\left[\frac{-2+i}{7-2i}\right]_4$. Which elements are quadratic residues?
 - We have $\left\lfloor \frac{5+i}{7} \right\rfloor_4 \equiv (5+i)^{(N(7)-1)/4} = (5+i)^{12} \equiv -i \pmod{7}$ so $\left\lfloor \frac{5+i}{7} \right\rfloor_4 = \boxed{-i}$. Thus 5+i is is not a quadratic or quartic residue modulo 7.
 - Also $\left|\frac{2i}{6+i}\right|_{4} \equiv (2i)^{(N(6+i)-1)/4} = (2i)^9 \equiv -1 \pmod{6+i}$ so $\left|\frac{2i}{6+i}\right|_{4} = \boxed{-1}$. Therefore, this means that 2i is a quadratic residue but not a quartic residue modulo 6 + i.
 - Finally $\left[\frac{-2+i}{7-2i}\right]_{A} \equiv (-2+i)^{(N(7-2i)-1)/4} = (-2+i)^{13} \equiv 1 \pmod{7-2i}$ so $\left[\frac{-2+i}{7-2i}\right]_{A} = \boxed{1}$. Thus -2 + i is a quartic (hence also a quadratic) residue modulo 7 - 2i.
 - (d) Find the primary associates of the primes 11 and 7 + 2i in $\mathbb{Z}[i]$, and then verify quartic reciprocity for these associates.
 - We have $-11 \equiv 1 \pmod{2+2i}$ and also $7+2i \equiv 1 \pmod{2+2i}$, so the desired associates are |-11|and |7+2i|
 - We have $\left[\frac{-11}{7+2i}\right]_i \equiv (-11)^{(N(7+2i)-1)/4} = (-11)^{13} \equiv 1 \pmod{7+2i}$ so $\left[\frac{-11}{7+2i}\right]_i = 1.$
 - Also $\left[\frac{7+2i}{11}\right]_{4} \equiv (7+2i)^{(N(11)-1)/4} = (7+2i)^{30} \equiv 1 \pmod{11}$ so $\left[\frac{7+2i}{11}\right]_{4} = 1.$
 - This agrees with quartic reciprocity since $\frac{N(-11)-1}{4} \cdot \frac{N(7+2i)-1}{4}$ is even, so the quartic residue symbols should be equal.

- 2. Find all solutions (x, y, z) to the Diophantine equation $x^2 + y^2 = z^7$ where x and y are relatively prime.
 - Since squares are 0 or 1 modulo 4, one of x, y must be odd and the other is even, and also z is odd.
 - Now factor the equation inside the UFD $\mathbb{Z}[i]$ as $(x+iy)(x-iy) = z^5$.
 - We now claim that x + iy and x iy are relatively prime inside $\mathbb{Z}[i]$: this follows the same way as the argument in class for $x^2 + y^2 = z^5$: any common divisor must necessarily divide the sum 2x and the difference 2iy, but since x and y are relatively prime integers, this means that the gcd must divide $2 = -i(1+i)^2$. Then the only possible Gaussian prime divisor of the gcd is 1+i, but 1+i does not divide x + iy because x and y have opposite parity.
 - Thus, x + iy and x iy are relatively prime inside $\mathbb{Z}[i]$. Since their product is a seventh power (namely, z^7) and $\mathbb{Z}[i]$ is a UFD, this means that each term must be a seventh power up to a unit factor.
 - But since the only units are $\pm 1, \pm i$ and these are all seventh powers (of their reciprocals), we must have $x + iy = (a + bi)^7 = (a^7 21a^5b^2 + 35a^3b^4 7ab^6) + (7a^6b 35a^4b^3 + 21a^2b^5 b^7)i$. Then the conjugate x iy is $(a bi)^7$, and $z^7 = (x + iy)(x iy) = (a^2 + b^2)^7$.
 - Since all such tuples work, the solutions are of the form $(x, y, z) = \boxed{(a^7 21a^5b^2 + 35a^3b^4 7ab^6, 7a^6b 35a^4b^3 + 21a^2b^5 b^7, a^2 + b^2)}$ for relatively prime integers a and b.
- 3. Prove that the only solution to the Diophantine equation $y^2 = x^3 8$ is (x, y) = (2, 0). [Hint: There are two different cases according to whether y is even or odd.]
 - If y is even, say with y = 2p, then x must also be even, say with x = 2q. Then the equation becomes $p^2 = 2q^3 2$, so p is even, say p = 2r. Then we get $4r^2 = 2q^3 2$ so that $2r^2 = q^3 1$.
 - Rearrange the equation and factor in $\mathbb{Z}[\sqrt{-2}]$ to obtain $q^3 = (1 + r\sqrt{-2})(1 r\sqrt{-2})$. Since $1 + r\sqrt{-2}$ and $1 r\sqrt{-2}$ are relatively prime (their sum is 2, and the only irreducible factor $\sqrt{-2}$ of 2 does not divide either term) this means $1 + r\sqrt{-2}$ must be a cube up to a unit factor, hence it actually is a cube.
 - Then $1 + r\sqrt{-2} = (a + b\sqrt{-2})^3 = (a^3 6ab^2) + (3a^2b 2b^3)\sqrt{-2}$, so that $a^3 6ab^2 = 1$. Factoring yields $a(a^2 6b^2) = 1$ and so $a = \pm 1$. The only possibility that yields a valid b is a = 1 with b = 0, which gives r = 0 hence y = 0 and x = 2. Thus we get the solution (2, 0) in this case.
 - Otherwise, if y is odd, rearrange the equation and factor in $\mathbb{Z}[\sqrt{-2}]$ to obtain $x^3 = (y+2\sqrt{-2})(y-2\sqrt{-2})$. Then $y+2\sqrt{-2}$ and $y-2\sqrt{-2}$ are relatively prime since their difference is $4\sqrt{-2}$ and the only irreducible factor $\sqrt{-2}$ of $4\sqrt{-2}$ does not divide either term since y is odd.
 - This means $y + 2\sqrt{-2}$ must be a cube up to a unit factor, hence it actually is a cube.
 - Then $y + 2\sqrt{-2} = (a + b\sqrt{-2})^3 = (a^3 6ab^2) + (3a^2b 2b^3)\sqrt{-2}$ so that $3a^2b 2b^3 = 2$. Factoring yields $b(3a^2 2b^2) = 2$ and so b divides 2. But b = -2 gives $a^2 = 7/3$, b = -1 gives a = 0, b = 1 gives $a^2 = 4/3$, and b = 2 gives $a^2 = 3$, so the only solution comes from a = 0, b = -1, but this yields y = 0 which does not have y odd.
 - Thus we get the unique solution (x, y) = (2, 0) as claimed.
- 4. If R is a (commutative) ring with 1, the <u>characteristic</u> of R is defined to be the smallest positive integer n for which $1 + 1 + \dots + 1 = 0$, or 0 if there is no such positive integer n.

n terms

- (a) Find the characteristics of \mathbb{Z} , \mathbb{R} , $\mathbb{Z}/m\mathbb{Z}$, $\mathbb{Z}[i]/(7)$, $\mathbb{Z}[i]/(2+i)$, and $(\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/6\mathbb{Z})$. [Note that (1,1) is the multiplicative identity in the last ring.]
 - The characteristic of \mathbb{Z} is [0], the characteristic of \mathbb{R} is [0], the characteristic of $\mathbb{Z}/m\mathbb{Z}$ is [m], the characteristic of $\mathbb{Z}[i]/(7)$ is [7], the characteristic of $\mathbb{Z}[i]/(2+i)$ is [5] (note that $5 \equiv 0 \mod 2+i$ but no smaller integer is), and the characteristic of $(\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/6\mathbb{Z})$ is [12], since it is straightforward to see that $12 \cdot (1,1) = (0,0)$ but no smaller multiple will suffice.
- (b) If R is an integral domain, prove that its characteristic is always either 0 or a prime number.

- If the characteristic is 0 we are done, and the characteristic cannot be 1 (since then 1 = 0) so suppose the characteristic is n > 1.
- If n = ab for positive integers a and b, then we have $0 = \underbrace{1+1+\dots+1}_{n \text{ terms}} = \underbrace{(\underbrace{1+1+\dots+1}_{a \text{ terms}})(\underbrace{1+1+\dots+1}_{b \text{ terms}})$.
- But since R is an integral domain, it has no zero divisors, so one of the terms on the right must be zero. By minimality of n, we conclude that either a = n or b = n, meaning that n has no nontrivial factorization hence must be prime.
- (c) Let R be a commutative ring of prime characteristic p. Prove that for any $a, b \in R$, the "freshman's binomial theorem" $(a + b)^p = a^p + b^p$ is actually correct. Deduce that the map $\varphi : R \to R$ given by $\varphi(a) = a^p$ is actually a ring homomorphism (this map is called the <u>Frobenius endomorphism</u> and turns out to be quite important in many contexts).
 - From the (correct) binomial theorem, we know that $(a+b)^p = a^p + {p \choose 1} a^{p-1} b + \dots + {p \choose p-1} a b^{p-1} + b^p$, so it is sufficient to prove that each of the binomial coefficients ${p \choose k}$ for $1 \le k \le p-1$ is divisible by p, since by the assumption on the characteristic we know that p = 0 in R.
 - For this, observe that $\binom{p}{k} = \frac{p!}{k!(p-k)!}$, and notice that the numerator is divisible by p but the denominator is not (since there is a factor of p in p! but not in any smaller factorial). Thus, the integer quotient is divisible by p, as claimed.
 - Finally, we see $\varphi(a+b) = (a+p)^p = a^p + b^p = \varphi(a) + \varphi(b)$ and also $\varphi(ab) = (ab)^p = a^p b^p = \varphi(a)\varphi(b)$ so φ is a ring homomorphism as claimed.
- (d) Let p be an integer prime congruent to 3 modulo 4. If $z = a + bi \in \mathbb{Z}[i]$, prove that $z^p \equiv \overline{z} \pmod{p}$. [Note that this was mentioned but not proven in class.]
 - Since p is an odd prime, $\mathbb{Z}[i]/(p)$ has characteristic p, as suggested in part (a).
 - Then by (c), we have $z^p = (a + bi)^p \equiv a^p + (bi)^p \pmod{p}$.
 - By Fermat's little theorem we know that $a^p \equiv a$ and $b^p \equiv b \pmod{p}$, and also since $p \equiv 3 \pmod{4}$ we have $i^p = -i$.
 - Putting all of this together yields $z^p = (a + bi)^p \equiv a^p + (bi)^p \equiv a bi \equiv \overline{z} \pmod{p}$, as claimed.
- 5. Suppose I is a nonzero ideal of $R = \mathcal{O}_{\sqrt{D}}$. The goal of this problem is to show that R/I is finite and its cardinality is N(I). (Indeed, N(I) is often just defined to be the cardinality of R/I, rather than as the nonnegative generator of $I \cdot \overline{I}$.)
 - (a) Suppose I has prime ideal factorization $I = P_1^{a_1} \cdots P_n^{a_n}$. Show that R/I is isomorphic to $(R/P_1^{a_1}) \times \cdots \times (R/P_n^{a_n})$ and that $N(I) = N(P_1^{a_1}) \cdots N(P_n^{a_n})$.
 - First, if P and Q are distinct nonzero prime ideals, then P^a and Q^b are comaximal: any ideal containing both necessarily divides both, but by the uniqueness of prime ideal factorizations, the only such ideal is (1) = R.
 - Thus $P_1^{a_1}, P_2^{a_2}, \ldots, P_n^{a_n}$ are pairwise comaximal, so the Chinese remainder theorem immediately gives that R/I is isomorphic to $(R/P_1^{a_1}) \times \cdots \times (R/P_n^{a_n})$.
 - Finally, we have $N(I) = N(P_1^{a_1}) \cdots N(P_n^{a_n})$ because the norm of ideals is multiplicative.
 - (b) Suppose a is any positive integer. Show that the cardinality of R/(a) is a^2 .
 - Observe that $(a) = \{ap + aq\alpha : p, q \in \mathbb{Z}\}$ where α is the generator of $\mathcal{O}_{\sqrt{D}}$.
 - Then the elements of R/(a) are uniquely represented as residue classes $p' + q'\alpha$ where $0 \le p' \le a 1$ and $0 \le q' \le a - 1$, and there are $a \cdot a = a^2$ of these.
 - (c) Suppose $Q = P^n$ is a power of a prime ideal. If P = (p) for a prime integer p, show that #(R/Q) = N(Q).
 - We have $Q = (p)^n = (p^n)$ and also $N(Q) = (p^n)\overline{(p^n)} = p^{2n}$.
 - So by (b) we have $\#(R/Q) = (p^n)^2 = p^{2n} = N(Q)$ as claimed.
 - (d) Suppose $Q = P^n$ for some prime ideal P with $P\overline{P} = (p)$ and p prime; note that we are *not* assuming that $\overline{P} \neq P$. Show that all of the quotients R/P, P/P^2 , ..., P^{n-1}/P^n , $P^n/(P^n\overline{P})$, ..., $(P^n\overline{P}^{n-1})/(P^n\overline{P}^n)$ have cardinality greater than 1, and that the product of their cardinalities is the cardinality of $R/(P^n\overline{P}^n)$. Conclude that all of these cardinalities must equal p and deduce that #(R/Q) = N(Q).

- First, the ideals R, P, P², ..., Pⁿ⁻¹, Pⁿ, PⁿP̄, ..., PⁿP̄ⁿ⁻¹, PⁿP̄ⁿ must all be distinct by the uniqueness of prime ideal factorizations, since both P and P̄ are prime ideals and each factorization has a different number of terms. Therefore, all of the quotients R/P, P/P², ..., Pⁿ⁻¹/Pⁿ, Pⁿ/(PⁿP̄), ..., (PⁿP̄ⁿ⁻¹)/(PⁿP̄ⁿ) have cardinality greater than 1.
- For the product of the cardinalities we simply apply the following fact about cosets: in any group with subgroups $H_2 \leq H_1$ we have $[G:H_2] = [G:H_1] \cdot [H_1:H_2]$, which follows simply by noting that each coset of H_1 splits into $[H_1:H_2]$ cosets of H_2 . (One can also deduce this fact from the third isomorphism theorem $R/J \cong (R/I)/(J/I)$ whenever J contains I.)
- Applying this fact repeatedly shows that $\#(R/P) \cdot \#(P/P^2) \cdots \#((P^n \overline{P}^{n-1})/(P^n \overline{P}^n)) = \#(R/(P^n \overline{P}^n)) = \#(R/(P^n \overline{P}^n))$
- But by (b), $\#(R/(p^n)) = p^{2n}$, and so each of the 2n cardinalities of the quotients must be a power of p. But since none of them can equal 1, the only way the product can equal p^{2n} is if all of them are p (otherwise the product would be too large).
- Then by our coset fact again, we have $\#(R/Q) = \#(R/P) \cdot \#(P/P^2) \cdots \#(P^{n-1}/P^n) = p^n = N(P)^n = N(Q).$
- (e) Show that R/I has cardinality N(I) for any nonzero ideal I.
 - By (a), R/I is isomorphic to (R/P₁^{a1}) ×···× (R/P_n^{an}) and N(I) = N(P₁^{a1}) ··· N(P_n^{an}). Then (c) and (d) show #(R/P_i^{ai}) = N(P_i^{ai}) for each prime power P_i^{ai}. Taking the product over all i yields N(I) = ∏_i N(P_i^{ai}) = ∏_i #(R/P_i^{ai}) = #[∏_i(R/P_i^{ai})] = #(R/I).
- 6. The goal of this problem is to formulate a general *d*th-power residue symbol in $\mathbb{Z}/p\mathbb{Z}$, for a prime *p* (indeed, the construction works in any finite field). So let *p* be a prime.
 - (a) Suppose $p \equiv 2 \pmod{3}$. Show that every residue class is a cube modulo p. [Hint: The map $x \mapsto x^3$ is a homomorphism on the unit group $(\mathbb{Z}/p\mathbb{Z})^{\times}$: what is its kernel?]
 - Per the hint, we observe that the cubing map $\varphi(x) = x^3$ is a homomorphism on the unit group $(\mathbb{Z}/p\mathbb{Z})^{\times}$, since it is clearly multiplicative. The kernel of this map consists of the elements with $x^3 \equiv 1 \pmod{p}$, which is to say, the elements of order dividing 3.
 - But since the unit group has order $p-1 \equiv 1 \pmod{3}$, we see that there are no elements of order 3 in this group, so the only element of order dividing 3 is the identity.
 - Hence the kernel of φ is trivial, so by the first isomorphism theorem (for groups) we see that the image of φ has cardinality p-1, and so φ is onto: this means every residue class is a cube, as claimed.
 - (b) Suppose $p \equiv 3 \pmod{4}$. Show that every square modulo p is a fourth power modulo p. [Hint: Consider the squaring map on the group of nonzero squares, which has order (p-1)/2.]
 - Per the hint, we observe that the squaring map $\varphi(x) = x^2$ is a homomorphism on the group of squares in $(\mathbb{Z}/p\mathbb{Z})^{\times}$, which has order (p-1)/2. The kernel of this map consists of the elements of order dividing 2.
 - But since this group has order $(p-1)/2 \equiv 1 \pmod{2}$, we see that there are no elements of order 2 in this group, so the only element of order dividing 2 is the identity.
 - Hence the kernel of φ is trivial, so just as in part (a) that means φ is onto, so that every square residue class is the square of another square, which is to say, a fourth power.

We can see from (a) and (b) that for cubes the only interesting case is when $p \equiv 1 \pmod{3}$ and for fourth powers the only interesting case is when $p \equiv 1 \pmod{4}$. So we now study the more general situation of dth powers when $p \equiv 1 \pmod{d}$. So let $d \geq 2$ and let $p \equiv 1 \pmod{d}$.

- (c) Let u be a primitive root modulo p. Show that the dth powers modulo p are u^d, u^{2d}, \ldots , and $u^{p-1} = 1$, and also that there are d solutions to $x^d \equiv 1 \pmod{p}$, given by $u^{(p-1)/d}, u^{2(p-1)/d}, \ldots, u^{d(p-1)/d} = 1$.
 - Since u is a primitive root, the units are $u^1, u^2, \ldots, u^{p-1} = 1$ and so the dth powers are $u^d, u^{2d}, \ldots, u^{d(p-1)/d} = 1$, and after this the powers begin repeating again.

• For the second part, we can see that each of the given elements $u^{(p-1)/d}$, $u^{2(p-1)/d}$, ..., $u^{d(p-1)/d} = 1$ are clearly solutions to $x^d \equiv 1 \pmod{p}$ by Euler's theorem. But they are all distinct and there are d of them, so since the polynomial $x^d - 1$ has at most d roots by unique factorization in $\mathbb{F}_p[x]$, they are all of the roots.

Now define the <u>dth-power residue symbol</u> $\left(\frac{a}{p}\right)_d$ to be the residue class of $a^{(p-1)/d} \pmod{p}$.

- (d) Show that $\left(\frac{a}{p}\right)_d = 0$ only when p divides a, and otherwise $\left(\frac{a}{p}\right)_d$ is one of the d solutions to $x^d \equiv 1$ (mod p).
 - Obviously $a^{(p-1)/d} \equiv 0$ only when $a \equiv 0 \pmod{p}$. Otherwise, we see that $[a^{(p-1)/d}]^d = a^{p-1} \equiv 1 \pmod{p}$ by Euler's theorem, and so $\left(\frac{a}{p}\right)_d$ is one of the *d* solutions to $x^d \equiv 1 \pmod{p}$.
- (e) Show that $\left(\frac{ab}{p}\right)_d = \left(\frac{a}{p}\right)_d \left(\frac{b}{p}\right)_d$. • We have $\left(\frac{ab}{p}\right)_d = (ab)^{(p-1)/d} = a^{(p-1)/d}b^{(p-1)/d} = \left(\frac{a}{p}\right)_d \left(\frac{b}{p}\right)_d$ as residue classes modulo p.
- (f) Let u be a primitive root modulo p. Show that $\left(\frac{u}{p}\right)_d$ is a primitive dth root of unity modulo p (i.e., its order modulo p is exactly d).
 - Suppose the order of $\left(\frac{u}{p}\right)_d$ equals k; then $k \le d$ by part (d).
 - By definition we would have $u^{k(p-1)/d} = 1 \pmod{p}$, so by properties of order this means the exponent k(p-1)/d must be a multiple of the order of u, which is p-1.
 - This means k/d is an integer and thus that $k \ge d$, so we must have k = d.

(g) Show that $\left(\frac{a}{p}\right)_d = 1$ if and only if *a* is a nonzero *d*th power modulo *p*.

- Let u be a primitive root modulo p. If $a = b^d$ for a nonzero b, then $\left(\frac{a}{p}\right)_d = \left(\frac{b}{p}\right)_d^d = 1$ by multiplicativity from (e) and the fact that $\left(\frac{b}{p}\right)_d$ is a dth root of unity by (d).
- Conversely, suppose $\left(\frac{a}{p}\right)_d = 1$ and $a = u^k$. Then $1 = \left(\frac{a}{p}\right)_d = \left(\frac{u}{p}\right)_d^k$ and so since $\left(\frac{u}{p}\right)_d$ is a primitive *d*th root of unity, this means *k* is divisible by *d*, and so $a = (u^{k/d})^d$ is a *d*th power, as desired.
- **Remark:** As is, we cannot formulate any sort of *d*th-power reciprocity law, since we cannot compare the *d*th roots of unity modulo different primes in any sensible way except in the case where d = 2. Unfortunately, there is no easy way to fix this problem, since there is no canonical way to identify the roots of unity modulo p with those in \mathbb{C} (if d > 2, taking the conjugate gives an equally valid identification). Ultimately, this is why we must work in $\mathcal{O}_{\sqrt{-3}}$ for cubic residue symbols and in $\mathbb{Z}[i]$ for quartic residue symbols, as these rings do possess the necessary complex roots of unity to allow us to compare residue symbols for different primes.
- 7. [Challenge] In class, we proved cubic and quartic reciprocity using properties of Gauss sums. The goal of this problem is to give a self-contained proof of quadratic reciprocity using Gauss sums. So let p, q be distinct odd integer primes and let $\chi_p(a) = \left(\frac{a}{p}\right)$ be the Legendre symbol modulo p. Recall that the Gauss sum of a multiplicative character χ is defined to be $g_a(\chi) = \sum_{t=1}^{p-1} \chi(t) e^{2\pi i a t/p} \in \mathbb{C}$.

- (a) Show that $g_a(\chi_p) = \left(\frac{a}{p}\right) g_1(\chi_p)$ for any integer *a*. [Hint: If p|a, count the number of quadratic residues. For other *a*, reindex the sum.]
 - If p|a then $g_a(\chi_p) = \sum_{t=1}^{p-1} \left(\frac{t}{p}\right)$. This sum is zero because there are (p-1)/2 quadratic residues, where the Legendre symbol is +1, and (p-1)/2 quadratic nonresidues, where the Legendre symbol is -1.
 - Otherwise if p does not divide a, by changing variables s = at and noting that s also runs over all nonzero residue classes modulo p, we have $g_a(\chi) = \sum_{t=1}^{p-1} \left(\frac{t}{p}\right) e^{2\pi i at/p} = \sum_{s=1}^{p-1} \left(\frac{s/a}{p}\right) e^{2\pi i s/p} = \left(\frac{a}{p}\right) p^{-1} \sum_{s=1}^{p-1} \left(\frac{s}{p}\right) e^{2\pi i s/p} = \left(\frac{a}{p}\right) g_1(\chi_p)$ since $\left(\frac{a}{p}\right)^{-1} = \left(\frac{a}{p}\right)$.
- (b) Let $S = \sum_{a=0}^{p-1} g_a(\chi_p) g_{-a}(\chi_p)$. Show that $S = \left(\frac{-1}{p}\right) (p-1)g_1(\chi)^2$. [Hint: Use (a), making sure to separate a = 0 and $a \neq 0$.]
 - By (a) we can write $S = \sum_{a=0}^{p-1} g_a(\chi_p) g_{-a}(\chi_p) = \sum_{a=0}^{p-1} \left(\frac{a}{p}\right) g_1(\chi) \cdot \left(\frac{-a}{p}\right) g_1(\chi) = \sum_{a=0}^{p-1} \left(\frac{-a^2}{p}\right) g_1(\chi)^2$. • Since $\left(\frac{-a^2}{p}\right) = \left(\frac{-1}{p}\right)$ for any $a \neq 0$, the given sum is simply $\left(\frac{-1}{p}\right) (p-1)g_1(\chi)^2$, as claimed.

(c) Show that $\sum_{a=0}^{p-1} e^{2\pi i a(s-t)/p} = \begin{cases} p & \text{if } s \equiv t \pmod{p} \\ 0 & \text{if } s \not\equiv t \pmod{p} \end{cases}$ for any integers s and t.

- If s = t then the sum is just $\sum_{a=0}^{p-1} 1 = p$.
- Otherwise, if $s \neq t$, the sum is a geometric series and is $\frac{1 [e^{2\pi i(s-t)/p}]^p}{1 e^{2\pi i(s-t)/p}} = \frac{1 e^{2\pi i(s-t)}}{1 e^{2\pi i(s-t)/p}} = 0$ since $e^{2\pi i a(s-t)} = 1$.
- (d) Show that the sum S from part (b) is equal to p(p-1). [Hint: Write $S = \sum_{a=0}^{p-1} \sum_{s=1}^{p-1} \sum_{t=1}^{p-1} \left(\frac{st}{p}\right) e^{2\pi i a(s-t)/p}$, then change summation order to sum over a first, move the Legendre symbol out, and use (c).]
 - We have $g_a(\chi_p) = \sum_{s=1}^{p-1} \chi(t) e^{2\pi i a s/p}$ and $g_{-a}(\chi_p) = \sum_{t=1}^{p-1} \chi(t) e^{2\pi i a t/p}$ so multiplying these together yields $g_a(\chi_p)g_{-a}(\chi_p) = \sum_{s=1}^{p-1} \sum_{t=1}^{p-1} \left(\frac{st}{p}\right) e^{2\pi i a (s-t)/p}$. Now summing over a gives $S = \sum_{a=0}^{p-1} \sum_{s=1}^{p-1} \sum_{t=1}^{p-1} \left(\frac{st}{p}\right) e^{2\pi i a (s-t)/p}$.
 - Changing the summation order to sum over a first then gives $S = \sum_{s=1}^{p-1} \sum_{t=1}^{p-1} \sum_{a=0}^{p-1} \left(\frac{st}{p}\right) e^{2\pi i a(s-t)/p} = \sum_{s=1}^{p-1} \sum_{t=1}^{p-1} \left(\frac{st}{p}\right) \sum_{a=0}^{p-1} e^{2\pi i a(s-t)/p}.$
 - Now by (c) we see that the inner sum is equal to p when s = t and is 0 when $s \neq t$, so the sum S reduces to $\sum_{s=1}^{p-1} \left(\frac{s^2}{p}\right) p = p(p-1)$ since the Legendre symbol is always 1.

- (e) Let $p^* = \left(\frac{-1}{p}\right)p$. Show that the Gauss sum $g_1(\chi_p)$ has $g_1(\chi_p)^2 = p^*$. Deduce that $g_1(\chi_p)$ is an element of the quadratic integer ring $\mathcal{O}_{\sqrt{p^*}}$.
 - Comparing the expressions for S from (b) and (d) yields $p(p-1) = \left(\frac{-1}{p}\right)(p-1)g_1(\chi)^2$ and so $g_1(\chi)^2 = \left(\frac{-1}{p}\right)p = p^*$, as claimed.

• The second statement follows by taking the square root to see $g_1(\chi_p) = \pm \sqrt{p^*} \in \mathcal{O}_{\sqrt{p^*}}$.

Now let p and q be distinct odd primes and let $g = g_1(\chi_p) \in \mathcal{O}_{\sqrt{p^*}}$ be the quadratic Gauss sum.

- (f) Show that $g^{q-1} \equiv \left(\frac{p^*}{q}\right) \pmod{q}$. [Hint: Use (e).]
 - Since q-1 is even, we have $g^{q-1} = (g^2)^{(q-1)/2} = (p^*)^{(q-1)/2} \equiv \left(\frac{p^*}{q}\right) \pmod{q}$ by Euler's criterion.
- (g) Show that $g^q \equiv g_q(\chi_p) \equiv \left(\frac{q}{p}\right)g \pmod{q}$. [Hint: Use 5(c) and part (a).]
 - Using the freshman's binomial theorem mod q, we have $g^q = \left[\sum_{t=1}^{p-1} \chi_p(t) e^{2\pi i t/p}\right]^q \equiv \sum_{t=1}^{p-1} \chi_p(t)^q e^{2\pi i q t/p} = \sum_{t=1}^{p-1} \chi_p(t) e^{2\pi i q t/p} = g_q(\chi_p) \pmod{q}$, where in the middle we used $\chi_p(t)^q = \chi_p(t)$ since q is odd.
 - Then (a) gives $g_q(\chi_p) = \left(\frac{q}{p}\right)g$, so we get $g^q \equiv g_q(\chi_p) \equiv \left(\frac{q}{p}\right)g \pmod{q}$ as claimed.
- (h) Conclude that $\left(\frac{q}{p}\right)g \equiv \left(\frac{p^*}{q}\right)g \pmod{q}$, and deduce that $\left(\frac{q}{p}\right) = \left(\frac{p^*}{q}\right)$
 - Comparing the expressions from (f) and (g) yields $\left(\frac{q}{p}\right)g \equiv g^q \equiv \left(\frac{p^*}{q}\right)g \pmod{q}$. Then multiplying by g and using $g^2 = p^*$ from (e) yields $\left(\frac{q}{p}\right)p^* \equiv \left(\frac{p^*}{q}\right)p^* \pmod{q}$, so cancelling p^* , which is invertible mod q, gives $\left(\frac{q}{p}\right) \equiv \left(\frac{p^*}{q}\right) \pmod{q}$.
 - Finally, since q is odd and these Legendre symbols are both ± 1 , they must actually be equal.

(i) Deduce the law of quadratic reciprocity: $\left(\frac{q}{p}\right) = \left(\frac{p}{q}\right) (-1)^{(p-1)(q-1)/4}$.

• By Euler's criterion applied to the element $\left(\frac{-1}{p}\right) \mod q$ and the fact that $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$, we have $\left(\frac{q}{p}\right) = \left(\frac{p^*}{q}\right) = \left(\frac{\left(\frac{-1}{p}\right)p}{q}\right) = \left(\frac{\left(\frac{-1}{p}\right)}{q}\right) \left(\frac{p}{q}\right) = \left(\frac{p}{q}\right) \left(\frac{-1}{p}\right)^{(q-1)/2} = \left(\frac{p}{q}\right) (-1)^{(p-1)(q-1)/4}$ as required.