
E. Dummit's Math 4527 ∼ Number Theory 2, Spring 2025 ∼ Homework 8, due Tue Mar 18th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. (a) Calculate the cubic residue symbols

[
4 +
√
−3

11

]
3

,

[
2
√
−3

4 +
√
−3

]
3

, and

[
2 +
√
−3

7 + 2
√
−3

]
3

. Which elements are

cubic residues and which are not?

(b) Find the primary associates of the primes 2 +
√
−3 and 7 + 2

√
−3 in O√−3, and then verify cubic

reciprocity for these associates.

(c) Calculate the quartic residue symbols

[
5 + i

7

]
4

,

[
2i

6 + i

]
4

, and

[
−2 + i

7− 2i

]
4

. Which elements are quartic

residues? Which elements are quadratic residues?

(d) Find the primary associates of the primes 11 and 7 + 2i in Z[i], and then verify quartic reciprocity for
these associates.

2. Find all solutions (x, y, z) to the Diophantine equation x2 + y2 = z7 where x and y are relatively prime.

Part II: Solve the following problems. Justify all answers with rigorous, clear arguments.

3. Prove that the only solution to the Diophantine equation y2 = x3 − 8 is (x, y) = (2, 0). [Hint: There are two
di�erent cases according to whether y is even or odd.]

4. If R is a (commutative) ring with 1, the characteristic of R is de�ned to be the smallest positive integer n for
which 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n terms

= 0, or 0 if there is no such positive integer n.

(a) Find the characteristics of Z, R, Z/mZ, Z[i]/(7), Z[i]/(2 + i), and (Z/4Z)× (Z/6Z). [Note that (1, 1) is
the multiplicative identity in the last ring.]

(b) If R is an integral domain, prove that its characteristic is always either 0 or a prime number.

(c) Let R be a commutative ring of prime characteristic p. Prove that for any a, b ∈ R, the �freshman's
binomial theorem� (a + b)p = ap + bp is actually correct. Deduce that the map ϕ : R → R given by
ϕ(a) = ap is actually a ring homomorphism (this map is called the Frobenius endomorphism and turns
out to be quite important in many contexts).

(d) Let p be an integer prime congruent to 3 modulo 4. If z = a + bi ∈ Z[i], prove that zp ≡ z (mod p).
[Note that this was mentioned but not proven in class.]

5. Suppose I is a nonzero ideal of R = O√D. The goal of this problem is to show that R/I is �nite and its
cardinality is N(I). (Indeed, N(I) is often just de�ned to be the cardinality of R/I, rather than as the
nonnegative generator of I · I.)

(a) Suppose I has prime ideal factorization I = P a11 · · ·P ann . Show that R/I is isomorphic to (R/P a11 ) ×
· · · × (R/P ann ) and that N(I) = N(P a11 ) · · ·N(P ann ).

(b) Suppose a is any positive integer. Show that the cardinality of R/(a) is a2.

(c) Suppose Q = Pn is a power of a prime ideal. If P = (p) for a prime integer p, show that#(R/Q) = N(Q).

(d) Suppose Q = Pn for some prime ideal P with PP = (p) and p prime; note that we are not assuming that

P 6= P . Show that all of the quotients R/P , P/P 2, ... , Pn−1/Pn, Pn/(PnP ), ... , (PnP
n−1

)/(PnP
n
)

have cardinality greater than 1, and that the product of their cardinalities is the cardinality of R/(PnP
n
).

Conclude that all of these cardinalities must equal p and deduce that #(R/Q) = N(Q).

(e) Show that R/I has cardinality N(I) for any nonzero ideal I.
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6. The goal of this problem is to formulate a general dth-power residue symbol in Z/pZ, for a prime p (indeed,
the construction works in any �nite �eld). So let p be a prime.

(a) Suppose p ≡ 2 (mod 3). Show that every residue class is a cube modulo p. [Hint: The map x 7→ x3 is a
homomorphism on the unit group (Z/pZ)×: what is its kernel?]

(b) Suppose p ≡ 3 (mod 4). Show that every square modulo p is a fourth power modulo p. [Hint: Consider
the squaring map on the group of nonzero squares, which has order (p− 1)/2.]

We can see from (a) and (b) that for cubes the only interesting case is when p ≡ 1 (mod 3) and for fourth
powers the only interesting case is when p ≡ 1 (mod 4). So we now study the more general situation of dth
powers when p ≡ 1 (mod d). So let d ≥ 2 and let p ≡ 1 (mod d).

(c) Let u be a primitive root modulo p. Show that the dth powers modulo p are ud, u2d, . . . , and up−1 = 1,
and also that there are d solutions to xd ≡ 1 (mod p), given by u(p−1)/d, u2(p−1)/d, ... , ud(p−1)/d = 1.

Now de�ne the dth-power residue symbol (ap )d to be the residue class of a(p−1)/d (mod p).

(d) Show that (ap )d = 0 when p divides a, and otherwise (ap )d is one of the d solutions to xd ≡ 1 (mod p).

(e) Show that (abp )d = (ap )d(
b
p )d.

(f) Let u be a primitive root modulo p. Show that (up )d is a primitive dth root of unity modulo p (i.e., its

order modulo p is exactly d).

(g) Show that (ap )d = 1 if and only if a is a nonzero dth power modulo p.

Remark: As is, we cannot formulate any sort of dth-power reciprocity law, since we cannot compare the dth
roots of unity modulo di�erent primes in any sensible way except in the case where d = 2. Unfortunately,
there is no easy way to �x this problem, since there is no canonical way to identify the roots of unity
modulo p with those in C (if d > 2, taking the conjugate gives an equally valid identi�cation). Ultimately,
this is why we must work in O√−3 for cubic residue symbols and in Z[i] for quartic residue symbols, as
these rings do possess the necessary complex roots of unity to allow us to compare residue symbols for
di�erent primes.

7. [Challenge] In class, we proved cubic and quartic reciprocity using properties of Gauss sums. The goal of this
problem is to give a self-contained proof of quadratic reciprocity using Gauss sums. So let p, q be distinct
odd integer primes and let χp(a) = (ap ) be the Legendre symbol modulo p. Recall that the Gauss sum of a

multiplicative character χ is de�ned to be ga(χ) =
∑p−1
t=1 χ(t)e

2πiat/p ∈ C.

(a) Show that ga(χp) = (ap )g1(χp) for any integer a. [Hint: If p|a, count the number of quadratic residues.

For other a, reindex the sum.]

(b) Let S =
∑p−1
a=0 ga(χp)g−a(χp). Show that S = (−1p )(p−1)g1(χ)

2. [Hint: Use (a), making sure to separate

a = 0 and a 6= 0.]

(c) Show that
∑p−1
a=0 e

2πia(s−t)/p =

{
p if s ≡ t (mod p)

0 if s 6≡ t (mod p)
for any integers s and t.

(d) Show that the sum S from part (b) is equal to p(p−1). [Hint: Write S =
∑p−1
a=0

∑p−1
s=1

∑p−1
t=1 (

st
p )e

2πia(s−t)/p,

then change summation order to sum over a �rst, move the Legendre symbol out, and use (c).]

(e) Let p∗ = (−1p )p. Show that the Gauss sum g1(χp) has g1(χp)
2 = p∗. Deduce that g1(χp) is an element

of the quadratic integer ring O√p∗ .
Now let p and q be distinct odd primes and let g = g1(χp) ∈ O√p∗ be the quadratic Gauss sum.

(f) Show that gq−1 ≡ (p
∗

q ) (mod q). [Hint: Use (e).]

(g) Show that gq ≡ gq(χp) ≡ ( qp )g (mod q). [Hint: Use 5(c) and part (a).]

(h) Conclude that ( qp )g ≡ (p
∗

q )g (mod q), and deduce that ( qp ) = (p
∗

q ).

(i) Deduce the law of quadratic reciprocity: ( qp ) = (pq )(−1)
(p−1)(q−1)/4.
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