
E. Dummit's Math 4527 ∼ Number Theory 2, Spring 2025 ∼ Homework 6, due Tue Feb 18th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. In each given quadratic integer ring, determine which of the given elements are units, which are irreducible,
and which are reducible. Also, for the units, compute their multiplicative inverses, and for the reducible
elements �nd a nontrivial factorization.

(a) R = Z[i], elements 4− i, 3 + i, 3− 2i, 7.

(b) R = O√−3, elements
1 +
√
−3

2
, 2 +

√
−3, 3 +

√
−3,

5 +
√
−3

2
.

(c) R = O√5, elements 2 +
√

5, 3− 2
√

5, 7 + 5
√

5, 1 +
√

5.

(d) R = O√7, elements 2−
√

7, 3 +
√

7, 1 +
√

7, 8− 3
√

7.

2. For each pair of elements a, b in the given Euclidean domain R, �nd a greatest common divisor d and write
it in the form d = xa + yb for some x, y ∈ R. (You may wish to work through problems 4 and 5 before doing
parts (c), (d), and (e).)

(a) R = Z[i], a = 57 + 17i, b = 26 + 22i.

(b) R = Z[i], a = 9 + 43i, b = 22 + 10i.

(c) R = Z[
√
−2], a = 33 + 5

√
−2, b = 8 + 11

√
−2.

(d) R = Z[
√

2], a = 31 + 15
√

2, b = 10 +
√

2.

(e) R = O√−3, a = 19 +
√
−3, b = 14 + 7

√
−3.

Part II: Solve the following problems. Justify all answers with rigorous, clear arguments.

3. Show that the rings (Z/15Z)× (Z/8Z) and (Z/24Z)× (Z/5Z) are isomorphic.

4. Let R = Z[
√
−2], and let a + b

√
−2 and c + d

√
−2 be elements of R with c + d

√
−2 6= 0.

(a) Show that
a + b

√
−2

c + d
√
−2

= x + y
√
−2 for rational x, y. Then let s be the closest integer to x and t be the

closest integer to y, and set q = s+ t
√
−2 and r = (a+ b

√
−2)− (s+ t

√
−2)(c+ d

√
−2). Prove also that

N(r) ≤ 3

4
N(c + d

√
−2).

(b) Show that R is a Euclidean domain.

(c) Show that Z[
√

2] and Z[
√

3] are also Euclidean domains under the absolute value of the �eld norm∣∣∣N(a + b
√
D)

∣∣∣ =
∣∣a2 −Db2

∣∣.
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5. The goal of this problem is to prove that O√−D is a Euclidean domain for −D = −3, −7, and −11, which
extends the result of problem 4 (establishing this fact for −D = −2, 2, and 3).

(a) Suppose ABC is an acute triangle. Show that the point P inside ABC that maximizes the distance to
the nearest vertex of ABC is the circumcenter (i.e., the center of the circle through the vertices of ABC,
or equivalently, the point O such that OA = OB = OC).

(b) Suppose that −D = −3, −7, or −11. Prove that any complex number z ∈ C di�ers from an element

in O√−D by a complex number whose norm (i.e., the square of its absolute value) is at most
(1 + D)2

16D
.

[Hint: The elements of O√−D form a lattice Λ in the complex plane. Identify a fundamental region for
this lattice and then use symmetry to reduce the minimal distance calculation to part (a).]

(c) Prove that O√−D is a Euclidean domain for −D = −3, −7, and −11. [Hint: Adapt the proof in 4b.]

6. The goal of this problem is to prove that for any squarefree integer D ≥ 3, the ring Z[
√
−D] is not a unique

factorization domain, generalizing the technique used for D = 5.

(a) Show that
√
−D, 1 +

√
−D, 1 −

√
−D, and 2 are irreducible elements in Z[

√
−D]. [Hint: For the �rst

three, show that the only elements of norm less than D are integers.]

(b) Show that either D (if D is even) or D + 1 (if D is odd) has two di�erent factorizations into irreducibles
in Z[

√
−D], and deduce that Z[

√
−D] is not a unique factorization domain.

(c) What goes wrong if you try to use the proof to show that Z[
√
D] is not a UFD for squarefree D ≥ 3?

7. [Challenge] Let R = Z[
√
−3] and let I = (2, 1 +

√
−3) in R.

(a) Show that I2 = (2)I in R but that I 6= (2).

(b) Show that there are two residue classes in R/I and deduce that I is a prime ideal.

(c) Show that I is the unique proper ideal of R properly containing (2) and also the unique prime ideal of
R containing (2). [Hint: Consider the ideals of R/(2) and use the correspondence between ideals of R
containing J and ideals of R/J .]

(d) Show that (2) cannot be written as a product of prime ideals of R.

Remark: This problem illustrates that factorization into prime ideals can fail if we do not work in the full

quadratic integer ring. Working in the correct ring O√−3 = Z[ 1+
√
−3

2 ] will solve the issues that arise

in this example, since in fact I = (2) is a prime ideal inside O√−3 because 2 and 1 +
√
−3 are now

associates.
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