E. Dummit’s Math 4527 ~ Number Theory 2, Spring 2025 ~ Homework 5 Solutions

1. Determine, with brief reasons, whether each subset S is an ideal of the given ring R:

(a) R = F[z], S = the set of polynomials whose coefficient of x is zero.
e This subset is because it is not closed under arbitrary multiplication by elements of
R: for example, 1 € S but -1 =z is not in S.
(b) R=7Z/18Z, S = {0, 3,6,9,12,15}.
e This set since 0 € S, S is closed under subtraction, and S is closed under arbitrary
multiplication by elements of R since z - (3a) = 3(za) € S.
(¢) R=7/15Z, S = {0,4,8,12}.
e This set since it is not closed under addition or multiplication (since neither 4+12 =1
nor 4-4 =1 are in R).
(d R=ZxZ,5={(a,a) : a €Z}.
e This set because it is not closed under arbitrary multiplication by elements of R:
for example, (1,1) € S but (1,2) - (1,1) = (1,2) is not in S.
() R=Zx7Z,S={0,a) : a €Z}.
e This set since it contains 0, is closed under subtraction, and is closed under arbitrary
multiplication since (z,y) - (0,a) = (0,ay) € S.
(f) R = F[z], S = F[z?], the polynomials in which only even powers of = appear.

e This set as it is not closed under arbitrary multiplication: 22 € S but z-2% = 22 € S.

(g) R = FJ[z], S = the set of polynomials whose coefficients sum to zero.

e This set since it is the kernel of the ring homomorphism ¢ : F[z] — F given by
©(p) = p(1). (Of course, it is also possible to verify the ideal conditions explicitly.)

2. Let R = Z[\/7] and consider the ideals I = (3) and J = (3,1 + /7).

(a) Show R/I has exactly 9 residue classes. [Hint: They are p + ¢v/7 + I for p,q € {0,1,2}. Explain why.]

e Note that I consists of the multiples of 3, so I = {3a + 3bv/7 : a,b € Z}. Thus, by subtracting an
appropriate element from I, we see that any element of R is congruent to something of the form
p +qV/7 for p,q € {0,1,2}.

e On the other hand, all such elements are distinct modulo I, since none of their pairwise differences
is in I. Therefore, the residue classes modulo I are uniquely represented by the 9 elements of the
form p+ ¢+/7, and so the residue classes themselves have the form p+ ¢v/7+ I as claimed, and there
clearly are 3 -3 =9 of them in total.

(b) Write down the multiplication table for R/I, and identify which elements are units and which elements
are zero divisors. Is I a prime ideal? A maximal ideal?

e Here is the multiplication table (for brevity all entries are listed without the +1):
- [0l T T 2 T VT T AHVT [ 24+VT [ VT [ 142VT [ 2+2V7 |
0 0 0 0 0 0 0 0 0 0
1 0 1 2 N&i 1+V7 | 247 2/7 14+2V7 | 2427
2 0 2 1 27 2427 | 14 2V7 VT 247 | 1+V7
NG 0 NG 20/7 1 1+V7 | 1+2V7 2 247 | 24 2V7
1+vV7 0] 1+vV7 | 242V7 | 1+V7 | 2+2V7 0 2+ 27 0 147
24+4V7 0] 24T [ 14+2V7T | 1+2V7 0 247 | 247 | 1+2V7 0
27T o] 2v7 VT 2 24+2V7 | 247 1 1+2V7 | 147
LH2VT [ 0| 1+2V7 | 24T | 247 0 1+2V7 [ 1+2V7 | 2+V7 0
242V7 [0 2427 | 1+V7 [242V7 | 1+V7 0 14+7 0 2+ 207




e To compute these entries, we simply multiply and then reduce the coefficients of 1 and /7 modulo
3, so for example (2\ﬁ)(1 + Q\ﬁ) =928+2V/7=1+2/7.

e The units are | 1,2,v/7,2v7 | and the zero divisors are | 1 + V7,2 + V7,1 + 2V7,2 + 2V7 |

e Since there are zero divisors in R/I, we see I is |not prime | and hence also | not maximal |.

(c¢) Show that R/J contains exactly 3 residue classes and identify them. Is J a prime ideal? A maximal
ideal?

e Note that J contains I so the residue classes will be a subset of the ones we found above for R/I;
we just have to decide which ones become equivalent when we include 1 + /7.

e We can see that we end up with three inequivalent residue classes: 0+ J, 1+ J, and 2 + J.
Explicitly, we have 0+ J = {(3a +b) +bV/7 : a,b € Z}, 1+ J = {(Ba+b+1)+ b7 : a,b € Z}, and
2+J={(Ba+b+2)+b/7: a,beZ}.

e From the description we gave here, we can see that the ring structure of R/J is isomorphic to Z/3Z,
under the identification of a + I with @ € Z/3Z. The indices clearly add modulo 3, and we also have
2+ J)-(24+J)=4+J=1+J,so all of the multiplications also work consistently.

e Since R/J = Z/3Z is isomorphic to a field, that tells us J is , hence also .

3. Let R be a commutative ring with 1.

(a) If S is a not necessarily finite set of ideals of R, show that the intersection T = ();.¢ I is an ideal of R.

e Let z,y €T and r € R. Since 0 € [ for all I € S we see 0 € T'; likewise, since z — y and rx are also
in I for all I € S, they are also in the intersection 7', so T is an ideal.

(b) Show via an explicit example that the union of a collection of ideals of R is not necessarily an ideal of R.

e There are many counterexamples. For example, 2Z U3Z = {...,—-3,-2,0,2,3,4,6,...} is clearly
not an ideal of Z, since it contains 2 and 3 but not 3 —2 = 1.

(¢ f CI,C---C1I, C--- is anot necessarily finite increasing chain of ideals of R, show that the union
T =J;2, I; is an ideal of R.

o Let T'=J, I;, let xz,y € T, and let € R. Then 0 € T since 0 € I;.

e By definition, we know that = € I; and y € I, for some ¢ and j. Then for a = max(i, j), we see that
x and y are both in I, so since [, is an ideal, we see that x — y and rx are in I, hence in T as well.

4. Let R be a commutative ring with 1 and define the binomial coefficient (}) = #lk), for integers 0 < k < n.
Prove the binomial theorem in R: (z 4 y)" = > _, (})a" *y* for any z,y € R and any n > 0.

e First, we observe Pascal’s identity (Z) = (";1) + (Z:i) holds for every 0 < k < n, either via (";1) +
(r7)) = k!((::kll!l), + (k—(ln)l_(il)ik)! = k,(,:‘ik), = (}) or via a double-counting argument (if we choose k
elements from a total of n, either we choose the last one or we do not).

e For the binomial theorem itself, we induct on n. The base case n = 1 is obvious, since  +y = x + ¥.

e For the inductive step, we have (z + y)" = (z +y) Ypry ("¢ 1)a" ' FyF = Spsg ("L Ham Rk +
e ("7 iy = T () + ()| e = S (e, as desired.




5. Let R be a commutative ring with 1 and let I and J be ideals of R.

(a) Show that I+ J={a+0b: a €I, be J}, the set of all sums of elements of I and J, is an ideal of R.
e Clearly 0 € I+ J, and if r € R and x = a+ b and y = ¢+ d are both in I 4+ J, then so are
x—y=(a—c)+ (b—d) and ra =ra+ rb.
(b) Show that I + J is the smallest ideal of R that contains both I and J. Deduce that if I = (a1,...,a,)
and J = (b1,...,by) then I +J = (a1,...,an,b1,...,bm).
e Certainly I + J is an ideal that contains both I and J. Conversely, if an ideal contains both I and
J then it also contains any element of the form a + b for a € I and b € J, hence contains I + J.
e Thus, I 4+ J is the smallest ideal that contains both I and J.
o If I =(ay,...,an) and J = (by,...,by), then the ideal (aj,...,an,b1,...,by) is the smallest ideal
that contains both I and J, so it is also equal to I + J.
(c¢) Let a and b be positive integers with greatest common divisor d. Show that (a) + (b) = (d) in Z.

e By part (b) we have (a) + (b) = (a,b) = (d), since we know that the ideal (a,b) is principal and
generated by the gecd of a and b.

(d) Show that IJ ={aiby + -+ anbn, : a; € I, b; € J}, the set of finite sums of products of an element of
I with an element of J, is an ideal of R.

e Clearly 0 € IJ, and if r € R and © = > a;b; and y = Y _ ¢;d; are both in IJ, then so are x — y =
> abi + > (—c¢)d; and rx =Y (ra;)b;.
(e) I =(ay,...,a,) and J = (b1,...,by,), show that IJ = (a1b1, a1ba,...,anb1,a1ba, ..., anby).
e Clearly IJ contains all of the elements a;b;, so (a1b1,a1bs, ..., anb1,a1be, ..., anby) C IJ.
e Conversely, if v = A1By + --- + A, B, € IJ, then we can write A; = 1,101 + -+ + 7 na, and
B; = 5;,1b1 4+ - - - 4 8;,mby, for some elements 7; ;,s; ; € R.
e Then A;B; = (r;18:,1)a1b1+- - -+ (i nSim)anbm is in IJ, hence so is x. Thus, IJ = (a1b1,. .., anbp).
(f) Show that I.J is an ideal contained in I N J, and give an example where IJ # I N J.
e If x € IJ then x = a1by + - -+ + anb,, for some a; € I and b; € J.

e Since each a; € I and [ is an ideal, we see that a1b1, asbs,...,a,b, are each in I, hence so is their
sum x.
e Likewise, since each b; € J and J is an ideal, we see that a1b{,a2bo,...,a,b, are each in J, hence

8o is . Thus, z is in both I and J,so x € INJ. Thus, IJ CINJ.
e There are many examples where equality does not hold: a simple one is I = J = 2Z inside Z: then
INJ =2Z while IJ =47, per part (e).
(g) If I+ J = R, show that IJ =TI N J. [Hint: There exist € [ and y € J with x +y = 1]
e If I + J = R then by definition there exist elements x € I and y € J with z +y = 1.

e Then for any r € I N J, we can write r = r(xz + y) = rz + yr, and both rz and yr are in IJ: hence
INJ C1J,and since IJ C INJ by part (f), we conclude IJ =1nNJ.

6. Suppose R is a finite ring with 1 # 0. If R has a prime number of elements p, show that R is isomorphic to
Z/pZ as a ring. [Hint: Use Lagrange’s theorem on the additive group of R to show 1 has additive order p,
then consider the map ¢ : Z — R with ¢(n) = nlg.]

e Per the hint, by Lagrange’s theorem on the additive group of R, we see that the additive order of 1 must
divide p. Since p is prime and the order cannot be 1 since 1 # 0, the order must be p.

e Now consider the map ¢ : Z — R given by ¢(n) = nlg.

e This map is a ring homomorphism since p(a + b) = (a + b)1g = alr + blg = p(a)p(b) and p(ab) =
(ab)1r = (alg)(blr) = w(a)p(b), it is surjective because the p elements {nlrp : 0 < n < p — 1} are
distinct hence are all of the elements of R, and finally the kernel of ¢ is pZ since 1 has additive order p.

e Thus, by the first isomorphism theorem, R = Z/pZ.




7. Let F be a field and define R = Fle]/(¢?), a ring known as the ring of dual numbers over F'. Intuitively, one
can think of the element € € R as being like an “infinitesimal™ a number so small that its square is zero.

(a) Show that the zero divisors in R are the elements of the form be with b # 0, and the units in R are the
elements of the form a + be with a # 0.

e Notice that (be)(e) = 0, so if b # 0 then be is a zero divisor.

e Furthermore, if a # 0 then (motivated by the analogous calculation in Q(v/D)) we can write

b . a+be

a—be a—be

e Thus, we see that (a + be)(a™! —ba=2¢) = 1, and so a + be is a unit.

a — be a

e Finally, since a zero divisor can never be a unit, and every nonzero element in R is of one of the
above two forms, there are no other units or zero divisors.

(b) Find the three ideals of R.

e We claim that 0, R, and (¢) are the ideals of R. It is easy to see that they are all ideals.

e Now suppose [ is a nonzero proper ideal of R. Then I contains a nonzero element but cannot contain
any units (since then we would have I = R): by part (a), the only possible remaining elements are
therefore elements of the form be for some b # 0.

o It is easy to see that (be) = (¢) for any b # 0, so 0, R, and (¢) are the only ideals of R.

(c) Let S = R[z] and p(x) € S. Show that p(x + €) = p(z) + ep/(x) in S, where p'(z) denotes the derivative
of p(x).

e By the binomial theorem (conveniently proven in an earlier problem on this very assignment!), we
have (z+€)" = 2" + nz" e+ (3)a" 22 4 - -+ €", but every term after the first two vanishes since
each such term contains €2. Thus, (z + €)" = 2" + nex" L.

e Then, for p(x) = ap + a1z + -+ + apz™, we have p(x +€) = ag+ a1(x +€) + - + ap(x + )" =
ao+a1(z +€) +az(z? +2ex) + -+ an(z™ + nex™ ) = [ag + ez + - -+ anx™] + e(ag + 2a0x + - +
napz" ) = p(z) + ep' ().

(d) Let p(x),q(z) € Flx] and set P(x) = p(x)q(x). Show that P'(z) = p'(x)q(z) + p(x)¢'(z). |Hint: Use (c).]

e On one hand, we have P(x +¢) = p(z + €)q(x + €) = (p(z) + ep/ (x))(q(z) + ¢’ (z)) = p(z)q(z) +
P! (2)9(z) + p(x)q'(z)] using (¢) twice.

e On the other hand, we have P(z + ¢) = P(z) + e¢P’(x) again by (c). So comparing the expressions
shows that we must have P'(z) = p'(x)q(z) + p(x)¢'(z), as claimed.

Remark: Part (c) shows how to use dual numbers to give a purely algebraic way to compute the derivative
of a polynomial (in fact, some computer systems actually do differentiation this way), and (d) illustrates
that they yield a formal proof of the product rule. In fact, the dual numbers are essentially the same
object used in the construction of cotangent spaces in differential geometry.




8. [Challenge] The goal of this problem is to prove the following theorem of Hurwitz: if « has a continued fraction
a = [ag, ay, . ..] with convergents p,, /¢, = [ao, ..., ay] and remainders an [@nt1,--.], then for any k at least
one of the inequalities |a — pp—2/¢n—2| < f’ loe = Pr—1/Gn-1| < a7 loe = pr/an| < 2—[ must hold.

For each n, define ¢,, = ¢—2/¢n—1 and also set V¥, = ©n + ay,.

1 —
(a) Show that |a — 22| = 5 . |Hint: Use a = PnQnt1 + Pn1
an q"¢"+1 QnQini1 + Q-1
_ 1 1 1
e We have a_&:M_pj: _— —_ .
qn GnOn+1 + Gn—1 4n @n(@n@n+1 + Gn-1) qn(anﬂ + Vnt1) @2t
1
(b) Show that + = Y.
! 1 1 1
e We have — dn =an + ¢, and o, = a, + , SO + = p + Q= V.
Pttt On+1 Pn+l Onitl

(¢c) Show that if ¢, ¢¥n—1 < V/5 then ¢, >
©n, noting that ¢, is rational.]

V5-1 [Hint: Use ¢ + a < /5 and g%n + 5= < V5 to bound

1 1
e By definition and (b), we have ¢, + o, < V5 and — + — < /5.
1%

n 70

1 1
e Then we have (v/5 — ¢,)(v5 — —) > a,— = 1, so multiplying out and rearranging gives 5 —

n aTL

1 1
cpn\ff—\/nglleothatgonqL—g\/g.

n $n

)2 < = and so ¢, >

e Clearing denominators and completing the square yields (¢, —

&

e
(S
I
—

Finally, we must have strict inequality because ¢, is rational.

(d) Show that a, =

Pn41
e We have —p = dn__ dn-2 _ (anGn—1+ qn—2) — qn—2 .
Pn+1 dn—1 dn—1 Gn—1
(e) Show that at least one of the inequalities | — pp—2/qn—2] <ot & = Pr_1/gqn-1] <L o = pufan] <
2f must hold. [Hint: Apply (a), then (c), and finally estlmate a,, using (d).]

e Suppose otherwise. Then by (a) we would have 1,1 > /5, ¥, > /5, and ¢, 41 > V/5.
VE—1
5

e By (c) this would therefore imply ¢,, > and also @,41 >

1 2 Vh—1
Pnt1 V-1 2

e Then by (d) we would have a,, = = 1. But this is a contradiction

because a,, is a positive integer.




