- 1. Determine, with brief reasons, whether each subset S is an ideal of the given ring R:
 - (a) R = F[x], S = the set of polynomials whose coefficient of x is zero.
 - This subset is not an ideal because it is not closed under arbitrary multiplication by elements of R: for example, $1 \in S$ but $x \cdot 1 = x$ is not in S.
 - (b) $R = \mathbb{Z}/18\mathbb{Z}, S = \{0, 3, 6, 9, 12, 15\}.$
 - This set is an ideal since $0 \in S$, S is closed under subtraction, and S is closed under arbitrary multiplication by elements of R since $x \cdot (3a) = 3(xa) \in S$.
 - (c) $R = \mathbb{Z}/15\mathbb{Z}, S = \{0, 4, 8, 12\}.$
 - This set is not an ideal since it is not closed under addition or multiplication (since neither 4+12 = 1 nor $4 \cdot 4 = 1$ are in R).
 - (d) $R = \mathbb{Z} \times \mathbb{Z}, S = \{(a, a) : a \in \mathbb{Z}\}.$
 - This set is not an ideal because it is not closed under arbitrary multiplication by elements of R: for example, $(1,1) \in S$ but $(1,2) \cdot (1,1) = (1,2)$ is not in S.
 - (e) $R = \mathbb{Z} \times \mathbb{Z}, S = \{(0, a) : a \in \mathbb{Z}\}.$
 - This set is an ideal since it contains 0, is closed under subtraction, and is closed under arbitrary multiplication since $(x, y) \cdot (0, a) = (0, ay) \in S$.
 - (f) R = F[x], $S = F[x^2]$, the polynomials in which only even powers of x appear.
 - This set is not an ideal as it is not closed under arbitrary multiplication: $x^2 \in S$ but $x \cdot x^2 = x^3 \notin S$.
 - (g) R = F[x], S = the set of polynomials whose coefficients sum to zero.
 - This set is an ideal since it is the kernel of the ring homomorphism $\varphi : F[x] \to F$ given by $\varphi(p) = p(1)$. (Of course, it is also possible to verify the ideal conditions explicitly.)
- 2. Let $R = \mathbb{Z}[\sqrt{7}]$ and consider the ideals I = (3) and $J = (3, 1 + \sqrt{7})$.
 - (a) Show R/I has exactly 9 residue classes. [Hint: They are $p + q\sqrt{7} + I$ for $p, q \in \{0, 1, 2\}$. Explain why.]
 - Note that I consists of the multiples of 3, so $I = \{3a + 3b\sqrt{7} : a, b \in \mathbb{Z}\}$. Thus, by subtracting an appropriate element from I, we see that any element of R is congruent to something of the form $p + q\sqrt{7}$ for $p, q \in \{0, 1, 2\}$.
 - On the other hand, all such elements are distinct modulo I, since none of their pairwise differences is in I. Therefore, the residue classes modulo I are uniquely represented by the 9 elements of the form $p + q\sqrt{7}$, and so the residue classes themselves have the form $p + q\sqrt{7} + I$ as claimed, and there clearly are $3 \cdot 3 = 9$ of them in total.
 - (b) Write down the multiplication table for R/I, and identify which elements are units and which elements are zero divisors. Is I a prime ideal? A maximal ideal?
 - Here is the multiplication table (for brevity all entries are listed without the +I):

	0	1	2	$\sqrt{7}$	$1+\sqrt{7}$	$2+\sqrt{7}$	$2\sqrt{7}$	$1 + 2\sqrt{7}$	$2 + 2\sqrt{7}$
0	0	0	0	0	0	0	0	0	0
1	0	1	2	$\sqrt{7}$	$1+\sqrt{7}$	$2 + \sqrt{7}$	$2\sqrt{7}$	$1 + 2\sqrt{7}$	$2 + 2\sqrt{7}$
2	0	2	1	$2\sqrt{7}$	$2 + 2\sqrt{7}$	$1 + 2\sqrt{7}$	$\sqrt{7}$	$2+\sqrt{7}$	$1 + \sqrt{7}$
$\sqrt{7}$	0	$\sqrt{7}$	$2\sqrt{7}$	1	$1+\sqrt{7}$	$1 + 2\sqrt{7}$	2	$2+\sqrt{7}$	$2 + 2\sqrt{7}$
$1+\sqrt{7}$	0	$1+\sqrt{7}$	$2 + 2\sqrt{7}$	$1 + \sqrt{7}$	$2 + 2\sqrt{7}$	0	$2 + 2\sqrt{7}$	0	$1 + \sqrt{7}$
$2+\sqrt{7}$	0	$2+\sqrt{7}$	$1 + 2\sqrt{7}$	$1 + 2\sqrt{7}$	0	$2 + \sqrt{7}$	$2 + \sqrt{7}$	$1 + 2\sqrt{7}$	0
$2\sqrt{7}$	0	$2\sqrt{7}$	$\sqrt{7}$	2	$2 + 2\sqrt{7}$	$2 + \sqrt{7}$	1	$1 + 2\sqrt{7}$	$1 + \sqrt{7}$
$1 + 2\sqrt{7}$	0	$1 + 2\sqrt{7}$	$2+\sqrt{7}$	$2+\sqrt{7}$	0	$1 + 2\sqrt{7}$	$1 + 2\sqrt{7}$	$2+\sqrt{7}$	0
$2 + 2\sqrt{7}$	0	$2 + 2\sqrt{7}$	$1 + \sqrt{7}$	$2 + 2\sqrt{7}$	$1+\sqrt{7}$	0	$1 + \sqrt{7}$	0	$2 + 2\sqrt{7}$

- To compute these entries, we simply multiply and then reduce the coefficients of 1 and $\sqrt{7}$ modulo 3, so for example $(2\sqrt{7})(1+2\sqrt{7}) = 28 + 2\sqrt{7} \equiv 1 + 2\sqrt{7}$.
- The units are $1, 2, \sqrt{7}, 2\sqrt{7}$ and the zero divisors are $1 + \sqrt{7}, 2 + \sqrt{7}, 1 + 2\sqrt{7}, 2 + 2\sqrt{7}$
- Since there are zero divisors in R/I, we see I is not prime and hence also not maximal
- (c) Show that R/J contains exactly 3 residue classes and identify them. Is J a prime ideal? A maximal ideal?
 - Note that J contains I so the residue classes will be a subset of the ones we found above for R/I; we just have to decide which ones become equivalent when we include $1 + \sqrt{7}$.
 - We can see that we end up with three inequivalent residue classes: 0 + J, 1 + J, and 2 + J. Explicitly, we have $0 + J = \{(3a + b) + b\sqrt{7} : a, b \in \mathbb{Z}\}, 1 + J = \{(3a + b + 1) + b\sqrt{7} : a, b \in \mathbb{Z}\}$, and $2 + J = \{(3a + b + 2) + b\sqrt{7} : a, b \in \mathbb{Z}\}$.
 - From the description we gave here, we can see that the ring structure of R/J is isomorphic to Z/3Z, under the identification of a + I with ā ∈ Z/3Z. The indices clearly add modulo 3, and we also have (2 + J) · (2 + J) = 4 + J = 1 + J, so all of the multiplications also work consistently.
 - Since $R/J \cong \mathbb{Z}/3\mathbb{Z}$ is isomorphic to a field, that tells us J is maximal, hence also prime
- 3. Let R be a commutative ring with 1.
 - (a) If S is a not necessarily finite set of ideals of R, show that the intersection $T = \bigcap_{I \in S} I$ is an ideal of R.
 - Let $x, y \in T$ and $r \in R$. Since $0 \in I$ for all $I \in S$ we see $0 \in T$; likewise, since x y and rx are also in I for all $I \in S$, they are also in the intersection T, so T is an ideal.
 - (b) Show via an explicit example that the union of a collection of ideals of R is not necessarily an ideal of R.
 - There are many counterexamples. For example, 2ℤ ∪ 3ℤ = {..., -3, -2, 0, 2, 3, 4, 6, ...} is clearly not an ideal of ℤ, since it contains 2 and 3 but not 3 − 2 = 1.
 - (c) If $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$ is a not necessarily finite increasing chain of ideals of R, show that the union $T = \bigcup_{i=1}^{\infty} I_i$ is an ideal of R.
 - Let $T = \bigcup_i I_i$, let $x, y \in T$, and let $r \in R$. Then $0 \in T$ since $0 \in I_1$.
 - By definition, we know that $x \in I_i$ and $y \in I_j$ for some *i* and *j*. Then for $a = \max(i, j)$, we see that x and y are both in I_a so since I_a is an ideal, we see that x y and rx are in I_a , hence in T as well.
- 4. Let R be a commutative ring with 1 and define the binomial coefficient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ for integers $0 \le k \le n$. Prove the binomial theorem in R: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$ for any $x, y \in R$ and any n > 0.
 - First, we observe Pascal's identity $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ holds for every $0 \le k \le n$, either via $\binom{n-1}{k} + \binom{n-1}{k-1} = \frac{(n-1)!}{k!(n-k-1)!} + \frac{(n-1)!}{(k-1)!(n-k)!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$ or via a double-counting argument (if we choose k elements from a total of n, either we choose the last one or we do not).
 - For the binomial theorem itself, we induct on n. The base case n = 1 is obvious, since x + y = x + y.
 - For the inductive step, we have $(x+y)^n = (x+y)\sum_{k=0}^{n-1} \binom{n-1}{k} x^{n-1-k} y^k = \sum_{k=0}^{n-1} \binom{n-1}{k} x^{n-k} y^k + \sum_{j=0}^{n-1} \binom{n-1}{j} x^{n-1-j} y^{j+1} = \sum_{k=0}^{n-1} \left[\binom{n-1}{k} + \binom{n-1}{k-1} \right] x^{n-k} y^k = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$, as desired.

- 5. Let R be a commutative ring with 1 and let I and J be ideals of R.
 - (a) Show that $I + J = \{a + b : a \in I, b \in J\}$, the set of all sums of elements of I and J, is an ideal of R.
 - Clearly $0 \in I + J$, and if $r \in R$ and x = a + b and y = c + d are both in I + J, then so are x y = (a c) + (b d) and rx = ra + rb.
 - (b) Show that I + J is the smallest ideal of R that contains both I and J. Deduce that if $I = (a_1, \ldots, a_n)$ and $J = (b_1, \ldots, b_m)$ then $I + J = (a_1, \ldots, a_n, b_1, \ldots, b_m)$.
 - Certainly I + J is an ideal that contains both I and J. Conversely, if an ideal contains both I and J then it also contains any element of the form a + b for $a \in I$ and $b \in J$, hence contains I + J.
 - Thus, I + J is the smallest ideal that contains both I and J.
 - If $I = (a_1, \ldots, a_n)$ and $J = (b_1, \ldots, b_m)$, then the ideal $(a_1, \ldots, a_n, b_1, \ldots, b_m)$ is the smallest ideal that contains both I and J, so it is also equal to I + J.
 - (c) Let a and b be positive integers with greatest common divisor d. Show that (a) + (b) = (d) in \mathbb{Z} .
 - By part (b) we have (a) + (b) = (a, b) = (d), since we know that the ideal (a, b) is principal and generated by the gcd of a and b.
 - (d) Show that $IJ = \{a_1b_1 + \cdots + a_nb_n, : a_i \in I, b_i \in J\}$, the set of finite sums of products of an element of I with an element of J, is an ideal of R.
 - Clearly $0 \in IJ$, and if $r \in R$ and $x = \sum a_i b_i$ and $y = \sum c_i d_i$ are both in IJ, then so are $x y = \sum a_i b_i + \sum (-c_i) d_i$ and $rx = \sum (ra_i) b_i$.
 - (e) If $I = (a_1, \ldots, a_n)$ and $J = (b_1, \ldots, b_m)$, show that $IJ = (a_1b_1, a_1b_2, \ldots, a_nb_1, a_1b_2, \ldots, a_nb_m)$.
 - Clearly IJ contains all of the elements $a_i b_j$, so $(a_1 b_1, a_1 b_2, \ldots, a_n b_1, a_1 b_2, \ldots, a_n b_m) \subseteq IJ$.
 - Conversely, if $x = A_1B_1 + \cdots + A_nB_n \in IJ$, then we can write $A_i = r_{i,1}a_1 + \cdots + r_{i,n}a_n$ and $B_i = s_{i,1}b_1 + \cdots + s_{i,m}b_m$ for some elements $r_{i,j}, s_{i,j} \in R$.
 - Then $A_i B_i = (r_{i,1} s_{i,1}) a_1 b_1 + \dots + (r_{i,n} s_{i,m}) a_n b_m$ is in IJ, hence so is x. Thus, $IJ = (a_1 b_1, \dots, a_n b_m)$.
 - (f) Show that IJ is an ideal contained in $I \cap J$, and give an example where $IJ \neq I \cap J$.
 - If $x \in IJ$ then $x = a_1b_1 + \cdots + a_nb_n$ for some $a_i \in I$ and $b_i \in J$.
 - Since each $a_i \in I$ and I is an ideal, we see that $a_1b_1, a_2b_2, \ldots, a_nb_n$ are each in I, hence so is their sum x.
 - Likewise, since each $b_i \in J$ and J is an ideal, we see that $a_1b_1, a_2b_2, \ldots, a_nb_n$ are each in J, hence so is x. Thus, x is in both I and J, so $x \in I \cap J$. Thus, $IJ \subseteq I \cap J$.
 - There are many examples where equality does not hold: a simple one is $I = J = 2\mathbb{Z}$ inside \mathbb{Z} : then $I \cap J = 2\mathbb{Z}$ while $IJ = 4\mathbb{Z}$, per part (e).
 - (g) If I + J = R, show that $IJ = I \cap J$. [Hint: There exist $x \in I$ and $y \in J$ with x + y = 1.]
 - If I + J = R then by definition there exist elements $x \in I$ and $y \in J$ with x + y = 1.
 - Then for any $r \in I \cap J$, we can write r = r(x + y) = rx + yr, and both rx and yr are in IJ: hence $I \cap J \subseteq IJ$, and since $IJ \subseteq I \cap J$ by part (f), we conclude $IJ = I \cap J$.
- 6. Suppose R is a finite ring with $1 \neq 0$. If R has a prime number of elements p, show that R is isomorphic to $\mathbb{Z}/p\mathbb{Z}$ as a ring. [Hint: Use Lagrange's theorem on the additive group of R to show 1 has additive order p, then consider the map $\varphi : \mathbb{Z} \to R$ with $\varphi(n) = n1_R$.]
 - Per the hint, by Lagrange's theorem on the additive group of R, we see that the additive order of 1 must divide p. Since p is prime and the order cannot be 1 since $1 \neq 0$, the order must be p.
 - Now consider the map $\varphi : \mathbb{Z} \to R$ given by $\varphi(n) = n \mathbb{1}_R$.
 - This map is a ring homomorphism since $\varphi(a+b) = (a+b)\mathbf{1}_R = a\mathbf{1}_R + b\mathbf{1}_R = \varphi(a)\varphi(b)$ and $\varphi(ab) = (ab)\mathbf{1}_R = (a\mathbf{1}_R)(b\mathbf{1}_R) = \varphi(a)\varphi(b)$, it is surjective because the *p* elements $\{n\mathbf{1}_R : 0 \le n \le p-1\}$ are distinct hence are all of the elements of *R*, and finally the kernel of φ is $p\mathbb{Z}$ since 1 has additive order *p*.
 - Thus, by the first isomorphism theorem, $R \cong \mathbb{Z}/p\mathbb{Z}$.

- 7. Let F be a field and define $R = F[\epsilon]/(\epsilon^2)$, a ring known as the <u>ring of dual numbers</u> over F. Intuitively, one can think of the element $\epsilon \in R$ as being like an "infinitesimal": a number so small that its square is zero.
 - (a) Show that the zero divisors in R are the elements of the form $b\epsilon$ with $b \neq 0$, and the units in R are the elements of the form $a + b\epsilon$ with $a \neq 0$.
 - Notice that $(b\epsilon)(\epsilon) = 0$, so if $b \neq 0$ then $b\epsilon$ is a zero divisor.
 - Furthermore, if $a \neq 0$ then (motivated by the analogous calculation in $\mathbb{Q}(\sqrt{D})$) we can write $\frac{1}{a+b\epsilon} \cdot \frac{a-b\epsilon}{a-b\epsilon} = \frac{a-b\epsilon}{a^2}$. Thus, we see that $(a+b\epsilon)(a^{-1}-ba^{-2}\epsilon) = 1$, and so $a+b\epsilon$ is a unit.
 - Finally, since a zero divisor can never be a unit, and every nonzero element in R is of one of the above two forms, there are no other units or zero divisors.
 - (b) Find the three ideals of R.
 - We claim that 0, R, and (ϵ) are the ideals of R. It is easy to see that they are all ideals.
 - Now suppose I is a nonzero proper ideal of R. Then I contains a nonzero element but cannot contain any units (since then we would have I = R): by part (a), the only possible remaining elements are therefore elements of the form $b\epsilon$ for some $b \neq 0$.
 - It is easy to see that $(b\epsilon) = (\epsilon)$ for any $b \neq 0$, so 0, R, and (ϵ) are the only ideals of R.
 - (c) Let S = R[x] and $p(x) \in S$. Show that $p(x + \epsilon) = p(x) + \epsilon p'(x)$ in S, where p'(x) denotes the derivative of p(x).
 - By the binomial theorem (conveniently proven in an earlier problem on this very assignment!), we have $(x + \epsilon)^n = x^n + nx^{n-1}\epsilon + {n \choose 2}x^{n-2}\epsilon^2 + \cdots + \epsilon^n$, but every term after the first two vanishes since each such term contains ϵ^2 . Thus, $(x + \epsilon)^n = x^n + n\epsilon x^{n-1}$.
 - Then, for $p(x) = a_0 + a_1 x + \dots + a_n x^n$, we have $p(x + \epsilon) = a_0 + a_1(x + \epsilon) + \dots + a_n(x + \epsilon)^n = a_0 + a_1(x + \epsilon) + a_2(x^2 + 2\epsilon x) + \dots + a_n(x^n + n\epsilon x^{n-1}) = [a_0 + a_1x + \dots + a_nx^n] + \epsilon(a_1 + 2a_2x + \dots + na_nx^{n-1}) = p(x) + \epsilon p'(x).$
 - (d) Let $p(x), q(x) \in F[x]$ and set P(x) = p(x)q(x). Show that P'(x) = p'(x)q(x) + p(x)q'(x). [Hint: Use (c).]
 - On one hand, we have $P(x + \epsilon) = p(x + \epsilon)q(x + \epsilon) = (p(x) + \epsilon p'(x))(q(x) + \epsilon q'(x)) = p(x)q(x) + \epsilon [p'(x)q(x) + p(x)q'(x)]$ using (c) twice.
 - On the other hand, we have $P(x + \epsilon) = P(x) + \epsilon P'(x)$ again by (c). So comparing the expressions shows that we must have P'(x) = p'(x)q(x) + p(x)q'(x), as claimed.
 - **Remark:** Part (c) shows how to use dual numbers to give a purely algebraic way to compute the derivative of a polynomial (in fact, some computer systems actually do differentiation this way), and (d) illustrates that they yield a formal proof of the product rule. In fact, the dual numbers are essentially the same object used in the construction of cotangent spaces in differential geometry.

8. [Challenge] The goal of this problem is to prove the following theorem of Hurwitz: if α has a continued fraction $\alpha = [a_0, a_1, \dots]$ with convergents $p_n/q_n = [a_0, \dots, a_n]$ and remainders $\alpha_n = [a_{n+1}, \dots]$, then for any k at least one of the inequalities $|\alpha - p_{n-2}/q_{n-2}| < \frac{1}{q_{n-2}^2\sqrt{5}}, |\alpha - p_{n-1}/q_{n-1}| < \frac{1}{q_{n-1}^2\sqrt{5}}, |\alpha - p_n/q_n| < \frac{1}{q_n^2\sqrt{5}}$ must hold.

For each n, define $\varphi_n = q_{n-2}/q_{n-1}$ and also set $\psi_n = \varphi_n + \alpha_n$.

(a) Show that
$$\left| \alpha - \frac{p_n}{q_n} \right| = \frac{1}{q_n^2 \psi_{n+1}}$$
. [Hint: Use $\alpha = \frac{p_n \alpha_{n+1} + p_{n-1}}{q_n \alpha_{n+1} + q_{n-1}}$.]
• We have $\left| \alpha - \frac{p_n}{q_n} \right| = \left| \frac{p_n \alpha_{n+1} + p_{n-1}}{q_n \alpha_{n+1} + q_{n-1}} - \frac{p_n}{q_n} \right| = \frac{1}{q_n (q_n \alpha_{n+1} + q_{n-1})} = \frac{1}{q_n^2 (\alpha_{n+1} + \varphi_{n+1})} = \frac{1}{q_n^2 \psi_{n+1}}$.

- (b) Show that $\frac{1}{\varphi_{n+1}} + \frac{1}{\alpha_{n+1}} = \psi_n$.
 - We have $\frac{1}{\varphi_{n+1}} = \frac{q_n}{q_{n-1}} = a_n + \varphi_n$ and $\alpha_n = a_n + \frac{1}{\alpha_{n+1}}$, so $\frac{1}{\varphi_{n+1}} + \frac{1}{\alpha_{n+1}} = \varphi_n + \alpha_n = \psi_n$.
- (c) Show that if $\psi_n, \psi_{n-1} \leq \sqrt{5}$ then $\varphi_n > \frac{\sqrt{5}-1}{2}$. [Hint: Use $\varphi_n + \alpha_n \leq \sqrt{5}$ and $\frac{1}{\varphi_n} + \frac{1}{\alpha_n} \leq \sqrt{5}$ to bound φ_n , noting that φ_n is rational.]
 - By definition and (b), we have $\varphi_n + \alpha_n \leq \sqrt{5}$ and $\frac{1}{\varphi_n} + \frac{1}{\alpha_n} \leq \sqrt{5}$.
 - Then we have $(\sqrt{5} \varphi_n)(\sqrt{5} \frac{1}{\varphi_n}) \ge \alpha_n \frac{1}{\alpha_n} = 1$, so multiplying out and rearranging gives $5 \varphi_n \sqrt{5} \frac{1}{\varphi_n} \sqrt{5} + 1 \ge 1$ so that $\varphi_n + \frac{1}{\varphi_n} \le \sqrt{5}$.
 - Clearing denominators and completing the square yields $(\varphi_n \frac{\sqrt{5}}{2})^2 \leq \frac{1}{4}$ and so $\varphi_n \geq \frac{\sqrt{5}-1}{2}$. Finally, we must have strict inequality because φ_n is rational.

(d) Show that
$$a_n = \frac{1}{\varphi_{n+1}} - \varphi_n$$

- We have $\frac{1}{\varphi_{n+1}} \varphi_n = \frac{q_n}{q_{n-1}} \frac{q_{n-2}}{q_{n-1}} = \frac{(a_n q_{n-1} + q_{n-2}) q_{n-2}}{q_{n-1}} = a_n.$
- (e) Show that at least one of the inequalities $|\alpha p_{n-2}/q_{n-2}| < \frac{1}{q_{n-2}^2\sqrt{5}}, |\alpha p_{n-1}/q_{n-1}| < \frac{1}{q_{n-1}^2\sqrt{5}}, |\alpha p_n/q_n| < \frac{1}{q_n^2\sqrt{5}}$ must hold. [Hint: Apply (a), then (c), and finally estimate a_n using (d).]
 - Suppose otherwise. Then by (a) we would have $\psi_{n-1} \ge \sqrt{5}$, $\psi_n \ge \sqrt{5}$, and $\psi_{n+1} \ge \sqrt{5}$.
 - By (c) this would therefore imply $\varphi_n > \frac{\sqrt{5}-1}{2}$ and also $\varphi_{n+1} > \frac{\sqrt{5}-1}{2}$.
 - Then by (d) we would have $a_n = \frac{1}{\varphi_{n+1}} \varphi_n < \frac{2}{\sqrt{5}-1} \frac{\sqrt{5}-1}{2} = 1$. But this is a contradiction because a_n is a positive integer.