
E. Dummit's Math 4527 ∼ Number Theory 2, Spring 2025 ∼ Homework 5 Solutions

1. Determine, with brief reasons, whether each subset S is an ideal of the given ring R:

(a) R = F [x], S = the set of polynomials whose coe�cient of x is zero.

• This subset is not an ideal because it is not closed under arbitrary multiplication by elements of
R: for example, 1 ∈ S but x · 1 = x is not in S.

(b) R = Z/18Z, S = {0, 3, 6, 9, 12, 15}.

• This set is an ideal since 0 ∈ S, S is closed under subtraction, and S is closed under arbitrary
multiplication by elements of R since x · (3a) = 3(xa) ∈ S.

(c) R = Z/15Z, S = {0, 4, 8, 12}.

• This set is not an ideal since it is not closed under addition or multiplication (since neither 4+12 = 1
nor 4 · 4 = 1 are in R).

(d) R = Z× Z, S = {(a, a) : a ∈ Z}.

• This set is not an ideal because it is not closed under arbitrary multiplication by elements of R:
for example, (1, 1) ∈ S but (1, 2) · (1, 1) = (1, 2) is not in S.

(e) R = Z× Z, S = {(0, a) : a ∈ Z}.

• This set is an ideal since it contains 0, is closed under subtraction, and is closed under arbitrary
multiplication since (x, y) · (0, a) = (0, ay) ∈ S.

(f) R = F [x], S = F [x2], the polynomials in which only even powers of x appear.

• This set is not an ideal as it is not closed under arbitrary multiplication: x2 ∈ S but x·x2 = x3 6∈ S.
(g) R = F [x], S = the set of polynomials whose coe�cients sum to zero.

• This set is an ideal since it is the kernel of the ring homomorphism ϕ : F [x] → F given by
ϕ(p) = p(1). (Of course, it is also possible to verify the ideal conditions explicitly.)

2. Let R = Z[
√
7] and consider the ideals I = (3) and J = (3, 1 +

√
7).

(a) Show R/I has exactly 9 residue classes. [Hint: They are p+ q
√
7 + I for p, q ∈ {0, 1, 2}. Explain why.]

• Note that I consists of the multiples of 3, so I = {3a + 3b
√
7 : a, b ∈ Z}. Thus, by subtracting an

appropriate element from I, we see that any element of R is congruent to something of the form
p+ q

√
7 for p, q ∈ {0, 1, 2}.

• On the other hand, all such elements are distinct modulo I, since none of their pairwise di�erences
is in I. Therefore, the residue classes modulo I are uniquely represented by the 9 elements of the
form p+ q

√
7, and so the residue classes themselves have the form p+ q

√
7+ I as claimed, and there

clearly are 3 · 3 = 9 of them in total.

(b) Write down the multiplication table for R/I, and identify which elements are units and which elements
are zero divisors. Is I a prime ideal? A maximal ideal?

• Here is the multiplication table (for brevity all entries are listed without the +I):

· 0 1 2
√
7 1 +

√
7 2 +

√
7 2

√
7 1 + 2

√
7 2 + 2

√
7

0 0 0 0 0 0 0 0 0 0

1 0 1 2
√
7 1 +

√
7 2 +

√
7 2

√
7 1 + 2

√
7 2 + 2

√
7

2 0 2 1 2
√
7 2 + 2

√
7 1 + 2

√
7

√
7 2 +

√
7 1 +

√
7√

7 0
√
7 2

√
7 1 1 +

√
7 1 + 2

√
7 2 2 +

√
7 2 + 2

√
7

1 +
√
7 0 1 +

√
7 2 + 2

√
7 1 +

√
7 2 + 2

√
7 0 2 + 2

√
7 0 1 +

√
7

2 +
√
7 0 2 +

√
7 1 + 2

√
7 1 + 2

√
7 0 2 +

√
7 2 +

√
7 1 + 2

√
7 0

2
√
7 0 2

√
7

√
7 2 2 + 2

√
7 2 +

√
7 1 1 + 2

√
7 1 +

√
7

1 + 2
√
7 0 1 + 2

√
7 2 +

√
7 2 +

√
7 0 1 + 2

√
7 1 + 2

√
7 2 +

√
7 0

2 + 2
√
7 0 2 + 2

√
7 1 +

√
7 2 + 2

√
7 1 +

√
7 0 1 +

√
7 0 2 + 2

√
7
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• To compute these entries, we simply multiply and then reduce the coe�cients of 1 and
√
7 modulo

3, so for example (2
√
7)(1 + 2

√
7) = 28 + 2

√
7 ≡ 1 + 2

√
7.

• The units are 1, 2,
√
7, 2
√
7 and the zero divisors are 1 +

√
7, 2 +

√
7, 1 + 2

√
7, 2 + 2

√
7 .

• Since there are zero divisors in R/I, we see I is not prime and hence also not maximal .

(c) Show that R/J contains exactly 3 residue classes and identify them. Is J a prime ideal? A maximal
ideal?

• Note that J contains I so the residue classes will be a subset of the ones we found above for R/I;
we just have to decide which ones become equivalent when we include 1 +

√
7.

• We can see that we end up with three inequivalent residue classes: 0 + J , 1 + J , and 2 + J .
Explicitly, we have 0+ J = {(3a+ b)+ b

√
7 : a, b ∈ Z}, 1+ J = {(3a+ b+1)+ b

√
7 : a, b ∈ Z}, and

2 + J = {(3a+ b+ 2) + b
√
7 : a, b ∈ Z}.

• From the description we gave here, we can see that the ring structure of R/J is isomorphic to Z/3Z,
under the identi�cation of a+ I with a ∈ Z/3Z. The indices clearly add modulo 3, and we also have
(2 + J) · (2 + J) = 4 + J = 1 + J , so all of the multiplications also work consistently.

• Since R/J ∼= Z/3Z is isomorphic to a �eld, that tells us J is maximal , hence also prime .

3. Let R be a commutative ring with 1.

(a) If S is a not necessarily �nite set of ideals of R, show that the intersection T =
⋂
I∈S I is an ideal of R.

• Let x, y ∈ T and r ∈ R. Since 0 ∈ I for all I ∈ S we see 0 ∈ T ; likewise, since x− y and rx are also
in I for all I ∈ S, they are also in the intersection T , so T is an ideal.

(b) Show via an explicit example that the union of a collection of ideals of R is not necessarily an ideal of R.

• There are many counterexamples. For example, 2Z ∪ 3Z = {. . . ,−3,−2, 0, 2, 3, 4, 6, . . . } is clearly
not an ideal of Z, since it contains 2 and 3 but not 3− 2 = 1.

(c) If I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · is a not necessarily �nite increasing chain of ideals of R, show that the union
T =

⋃∞
i=1 Ii is an ideal of R.

• Let T =
⋃
i Ii, let x, y ∈ T , and let r ∈ R. Then 0 ∈ T since 0 ∈ I1.

• By de�nition, we know that x ∈ Ii and y ∈ Ij for some i and j. Then for a = max(i, j), we see that
x and y are both in Ia so since Ia is an ideal, we see that x− y and rx are in Ia, hence in T as well.

4. Let R be a commutative ring with 1 and de�ne the binomial coe�cient
(
n
k

)
= n!

k!(n−k)! for integers 0 ≤ k ≤ n.
Prove the binomial theorem in R: (x+ y)n =

∑n
k=0

(
n
k

)
xn−kyk for any x, y ∈ R and any n > 0.

• First, we observe Pascal's identity
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)
holds for every 0 ≤ k ≤ n, either via

(
n−1
k

)
+(

n−1
k−1
)
= (n−1)!

k!(n−k−1)! +
(n−1)!

(k−1)!(n−k)! = n!
k!(n−k)! =

(
n
k

)
or via a double-counting argument (if we choose k

elements from a total of n, either we choose the last one or we do not).

• For the binomial theorem itself, we induct on n. The base case n = 1 is obvious, since x+ y = x+ y.

• For the inductive step, we have (x + y)n = (x + y)
∑n−1
k=0

(
n−1
k

)
xn−1−kyk =

∑n−1
k=0

(
n−1
k

)
xn−kyk +∑n−1

j=0

(
n−1
j

)
xn−1−jyj+1 =

∑n−1
k=0

[(
n−1
k

)
+
(
n−1
k−1
)]
xn−kyk =

∑n
k=0

(
n
k

)
xn−kyk, as desired.
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5. Let R be a commutative ring with 1 and let I and J be ideals of R.

(a) Show that I + J = {a+ b : a ∈ I, b ∈ J}, the set of all sums of elements of I and J , is an ideal of R.

• Clearly 0 ∈ I + J , and if r ∈ R and x = a + b and y = c + d are both in I + J , then so are
x− y = (a− c) + (b− d) and rx = ra+ rb.

(b) Show that I + J is the smallest ideal of R that contains both I and J . Deduce that if I = (a1, . . . , an)
and J = (b1, . . . , bm) then I + J = (a1, . . . , an, b1, . . . , bm).

• Certainly I + J is an ideal that contains both I and J . Conversely, if an ideal contains both I and
J then it also contains any element of the form a+ b for a ∈ I and b ∈ J , hence contains I + J .

• Thus, I + J is the smallest ideal that contains both I and J .

• If I = (a1, . . . , an) and J = (b1, . . . , bm), then the ideal (a1, . . . , an, b1, . . . , bm) is the smallest ideal
that contains both I and J , so it is also equal to I + J .

(c) Let a and b be positive integers with greatest common divisor d. Show that (a) + (b) = (d) in Z.
• By part (b) we have (a) + (b) = (a, b) = (d), since we know that the ideal (a, b) is principal and
generated by the gcd of a and b.

(d) Show that IJ = {a1b1 + · · ·+ anbn, : ai ∈ I, bi ∈ J}, the set of �nite sums of products of an element of
I with an element of J , is an ideal of R.

• Clearly 0 ∈ IJ , and if r ∈ R and x =
∑
aibi and y =

∑
cidi are both in IJ , then so are x − y =∑

aibi +
∑

(−ci)di and rx =
∑

(rai)bi.

(e) If I = (a1, . . . , an) and J = (b1, . . . , bm), show that IJ = (a1b1, a1b2, . . . , anb1, a1b2, . . . , anbm).

• Clearly IJ contains all of the elements aibj , so (a1b1, a1b2, . . . , anb1, a1b2, . . . , anbm) ⊆ IJ .
• Conversely, if x = A1B1 + · · · + AnBn ∈ IJ , then we can write Ai = ri,1a1 + · · · + ri,nan and
Bi = si,1b1 + · · ·+ si,mbm for some elements ri,j , si,j ∈ R.

• Then AiBi = (ri,1si,1)a1b1+· · ·+(ri,nsi,m)anbm is in IJ , hence so is x. Thus, IJ = (a1b1, . . . , anbm).

(f) Show that IJ is an ideal contained in I ∩ J , and give an example where IJ 6= I ∩ J .
• If x ∈ IJ then x = a1b1 + · · ·+ anbn for some ai ∈ I and bi ∈ J .
• Since each ai ∈ I and I is an ideal, we see that a1b1, a2b2, . . . , anbn are each in I, hence so is their
sum x.

• Likewise, since each bi ∈ J and J is an ideal, we see that a1b1, a2b2, . . . , anbn are each in J , hence
so is x. Thus, x is in both I and J , so x ∈ I ∩ J . Thus, IJ ⊆ I ∩ J .

• There are many examples where equality does not hold: a simple one is I = J = 2Z inside Z: then
I ∩ J = 2Z while IJ = 4Z, per part (e).

(g) If I + J = R, show that IJ = I ∩ J . [Hint: There exist x ∈ I and y ∈ J with x+ y = 1.]

• If I + J = R then by de�nition there exist elements x ∈ I and y ∈ J with x+ y = 1.

• Then for any r ∈ I ∩ J , we can write r = r(x+ y) = rx+ yr, and both rx and yr are in IJ : hence
I ∩ J ⊆ IJ , and since IJ ⊆ I ∩ J by part (f), we conclude IJ = I ∩ J .

6. Suppose R is a �nite ring with 1 6= 0. If R has a prime number of elements p, show that R is isomorphic to
Z/pZ as a ring. [Hint: Use Lagrange's theorem on the additive group of R to show 1 has additive order p,
then consider the map ϕ : Z→ R with ϕ(n) = n1R.]

• Per the hint, by Lagrange's theorem on the additive group of R, we see that the additive order of 1 must
divide p. Since p is prime and the order cannot be 1 since 1 6= 0, the order must be p.

• Now consider the map ϕ : Z→ R given by ϕ(n) = n1R.

• This map is a ring homomorphism since ϕ(a + b) = (a + b)1R = a1R + b1R = ϕ(a)ϕ(b) and ϕ(ab) =
(ab)1R = (a1R)(b1R) = ϕ(a)ϕ(b), it is surjective because the p elements {n1R : 0 ≤ n ≤ p − 1} are
distinct hence are all of the elements of R, and �nally the kernel of ϕ is pZ since 1 has additive order p.

• Thus, by the �rst isomorphism theorem, R ∼= Z/pZ.
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7. Let F be a �eld and de�ne R = F [ε]/(ε2), a ring known as the ring of dual numbers over F . Intuitively, one
can think of the element ε ∈ R as being like an �in�nitesimal�: a number so small that its square is zero.

(a) Show that the zero divisors in R are the elements of the form bε with b 6= 0, and the units in R are the
elements of the form a+ bε with a 6= 0.

• Notice that (bε)(ε) = 0, so if b 6= 0 then bε is a zero divisor.

• Furthermore, if a 6= 0 then (motivated by the analogous calculation in Q(
√
D)) we can write

1

a+ bε
·

a− bε
a− bε

=
a− bε
a2

. Thus, we see that (a+ bε)(a−1 − ba−2ε) = 1, and so a+ bε is a unit.

• Finally, since a zero divisor can never be a unit, and every nonzero element in R is of one of the
above two forms, there are no other units or zero divisors.

(b) Find the three ideals of R.

• We claim that 0, R, and (ε) are the ideals of R. It is easy to see that they are all ideals.

• Now suppose I is a nonzero proper ideal of R. Then I contains a nonzero element but cannot contain
any units (since then we would have I = R): by part (a), the only possible remaining elements are
therefore elements of the form bε for some b 6= 0.

• It is easy to see that (bε) = (ε) for any b 6= 0, so 0, R, and (ε) are the only ideals of R.

(c) Let S = R[x] and p(x) ∈ S. Show that p(x+ ε) = p(x) + εp′(x) in S, where p′(x) denotes the derivative
of p(x).

• By the binomial theorem (conveniently proven in an earlier problem on this very assignment!), we
have (x+ ε)n = xn+nxn−1ε+

(
n
2

)
xn−2ε2+ · · ·+ εn, but every term after the �rst two vanishes since

each such term contains ε2. Thus, (x+ ε)n = xn + nεxn−1.

• Then, for p(x) = a0 + a1x + · · · + anx
n, we have p(x + ε) = a0 + a1(x + ε) + · · · + an(x + ε)n =

a0 + a1(x+ ε)+ a2(x
2 +2εx)+ · · ·+ an(x

n+nεxn−1) = [a0 + a1x+ · · ·+ anx
n] + ε(a1 +2a2x+ · · ·+

nanx
n−1) = p(x) + εp′(x).

(d) Let p(x), q(x) ∈ F [x] and set P (x) = p(x)q(x). Show that P ′(x) = p′(x)q(x)+p(x)q′(x). [Hint: Use (c).]

• On one hand, we have P (x + ε) = p(x + ε)q(x + ε) = (p(x) + εp′(x))(q(x) + εq′(x)) = p(x)q(x) +
ε[p′(x)q(x) + p(x)q′(x)] using (c) twice.

• On the other hand, we have P (x + ε) = P (x) + εP ′(x) again by (c). So comparing the expressions
shows that we must have P ′(x) = p′(x)q(x) + p(x)q′(x), as claimed.

Remark: Part (c) shows how to use dual numbers to give a purely algebraic way to compute the derivative
of a polynomial (in fact, some computer systems actually do di�erentiation this way), and (d) illustrates
that they yield a formal proof of the product rule. In fact, the dual numbers are essentially the same
object used in the construction of cotangent spaces in di�erential geometry.
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8. [Challenge] The goal of this problem is to prove the following theorem of Hurwitz: if α has a continued fraction
α = [a0, a1, . . . ] with convergents pn/qn = [a0, . . . , an] and remainders αn = [an+1, . . . ], then for any k at least
one of the inequalities |α− pn−2/qn−2| < 1

q2n−2

√
5
, |α− pn−1/qn−1| < 1

q2n−1

√
5
, |α− pn/qn| < 1

q2n
√
5
must hold.

For each n, de�ne ϕn = qn−2/qn−1 and also set ψn = ϕn + αn.

(a) Show that

∣∣∣∣α− pn
qn

∣∣∣∣ = 1

q2nψn+1
. [Hint: Use α =

pnαn+1 + pn−1
qnαn+1 + qn−1

.]

• We have

∣∣∣∣α− pn
qn

∣∣∣∣ = ∣∣∣∣pnαn+1 + pn−1
qnαn+1 + qn−1

− pn
qn

∣∣∣∣ = 1

qn(qnαn+1 + qn−1)
=

1

q2n(αn+1 + ϕn+1)
=

1

q2nψn+1
.

(b) Show that
1

ϕn+1
+

1

αn+1
= ψn.

• We have
1

ϕn+1
=

qn
qn−1

= an + ϕn and αn = an +
1

αn+1
, so

1

ϕn+1
+

1

αn+1
= ϕn + αn = ψn.

(c) Show that if ψn, ψn−1 ≤
√
5 then ϕn >

√
5−1
2 . [Hint: Use ϕn + αn ≤

√
5 and 1

ϕn
+ 1

αn
≤
√
5 to bound

ϕn, noting that ϕn is rational.]

• By de�nition and (b), we have ϕn + αn ≤
√
5 and

1

ϕn
+

1

αn
≤
√
5.

• Then we have (
√
5 − ϕn)(

√
5 − 1

ϕn
) ≥ αn

1

αn
= 1, so multiplying out and rearranging gives 5 −

ϕn
√
5− 1

ϕn

√
5 + 1 ≥ 1 so that ϕn +

1

ϕn
≤
√
5.

• Clearing denominators and completing the square yields (ϕn −
√
5

2
)2 ≤ 1

4
and so ϕn ≥

√
5− 1

2
.

Finally, we must have strict inequality because ϕn is rational.

(d) Show that an =
1

ϕn+1
− ϕn.

• We have
1

ϕn+1
− ϕn =

qn
qn−1

− qn−2
qn−1

=
(anqn−1 + qn−2)− qn−2

qn−1
= an.

(e) Show that at least one of the inequalities |α− pn−2/qn−2| < 1
q2n−2

√
5
, |α− pn−1/qn−1| < 1

q2n−1

√
5
, |α− pn/qn| <

1
q2n
√
5
must hold. [Hint: Apply (a), then (c), and �nally estimate an using (d).]

• Suppose otherwise. Then by (a) we would have ψn−1 ≥
√
5, ψn ≥

√
5, and ψn+1 ≥

√
5.

• By (c) this would therefore imply ϕn >

√
5− 1

2
and also ϕn+1 >

√
5− 1

2
.

• Then by (d) we would have an =
1

ϕn+1
− ϕn <

2√
5− 1

−
√
5− 1

2
= 1. But this is a contradiction

because an is a positive integer.
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