E. Dummit’s Math 4527 ~ Number Theory 2, Spring 2025 ~ Homework 4 Solutions
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1. Find all ordered pairs (a, b) of positive integers for which — + 5= 10"
a
e Clearing the denominators yields 10b + 20a = ab, and rearranging and factoring then yields (a — 10)(b —
20) = 200. Since a, b are positive we see that a — 10,b — 20 must in fact be positive since otherwise the
product (a — 10)(b — 20) is less than 200.
e For each integer factorization of 200 (namely, 1200, 2 - 100, 4 - 50, 5 - 40, 8 - 25, 10 - 20, 20 - 10, 25 - 8,
40-5,50-4, 100 -2, 200 - 1) we obtain a solution (a,b) to the system:

](11,220),(12,120),(14,70),(15,60),(18,45),(20,40)7(30730)7(35,28),(50,25),(60,24),(110,22),(210,21)L
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2. Find all ordered pairs (a, b) of positive integers for which o +-=

b 2018

e Clearing denominators yields 2018(a + b) = 3ab, and so multiplying by 3, rearranging, and factoring
yields (3a — 2018)(3b — 2018) = 20182 = 22 - 10092 (note 1009 is prime).

e Since 3a — 2018 and 3b — 2018 are both greater than —2018, we see that both must be positive, and
so 3a — 2018 must be a factor of 22 - 10092 congruent to —2018 = 1 mod 3. This yields possibilities of
3a — 2018 = 1,4, 1009, 4 - 1009, 10092, 4 - 10092 so that
(a,b) = ’ (673,1358114), (674, 340033), (1009, 2018), (2018,1009), (340033,674), (1358114, 673) ‘

Remark: This is problem Al from the 2018 Putnam exam.

3. Find all solutions to the Diophantine equation y? = x* + 223 + 222 + 4.

o Let p(z) = 2 + 223 + 222 + 4. Note that p(z) — (22 +2)? = 22 +4 > 0, and also p(z) — (2* + x + 1)? =
3 —2x — 22, so unless 3 — 2z — x2 < 0, which is to say, whenever —3 < z < 1, we would have (22 + )% <
p(z) < (2% + x + 1)2, which would be impossible since then we would have 22 + z < y < 2% + z + 1.

e Thus we must have —3 < x < 1. Testing these five values produces the solutions (x,y) = ’ (=3,£7), (0,£2), (1,£3) ‘

4. Find all integers n such that n* +n? +n2 +n + 1 is a perfect square.

e Let p(n) = n* +n3 4+ n% +n+ 1. We bound 16p(n) above and below by perfect squares.

e First, 16p(n) — (4n? + 2n + 1)2 = 4n? + 12n + 15 = (2n + 3)? + 6, so 16p(n) > (4n? + 2n + 1)2.

e Also, 16p(n) — (4n? 4+ 2n +2)? = —4n? +8n + 12 = 16 — (2n — 2)?, so unless 16 > (2n — 2)? which is to
say —1 < n < 3, then we have 16p(n) < (4n? + 2n + 2)%.

e Thus, unless —1 < n < 3, it is true that (4n? 4+ 2n + 1)? < p(n) < (4n? + 2n + 2)? and so p(n) cannot
be the square of an integer. Thus, the only possible n have —1 < n < 3. Testing p(n) for -1 <n <3

shows that the only values of n for which p(n) are a perfect cube are n = .

5. Let n > 2 be a fixed integer. Find infinitely many distinct positive integer triples (x,y, z) such that ™ 4+ y"™ =
2"T1. [Hint: Divide both sides by 2™.]

e Following the hint, dividing both sides by 2" yields (z/2)™ + (y/2)" = z.

e We want to arrange for z,y, z to be integers, so a natural way is just to require x/z to be some integer
a and y/z to be some integer b.

e Then z = a™ + b™ and then z = a(a™ + b™) with y = b(a™ 4 b"), and since we can choose a, b arbitrarily
we get infinitely many triples.




6. The goal of this problem is to solve the equation ¥ = y* in positive rational numbers. Assume z,y > 0.

(a) Prove that any rational solution with y > z is of the form (z,y) = ((1 + 1/u)%, (1 + 1/u)*™!) for some
rational number u > 0. [Hint: If y > z, set y = (1 + 1/u)x.]
e If x = 1 then clearly y = 1. Now assume x # 1 and y # z. Without loss of generality we can also
take y > x: then y/x — 1 is a positive rational number, so we can set y/x = 1+ 1/u for some u > 0.
e Plugging in y = (1 + 1/u)z then yields 2 +1/W? = [(1 + 1/u)z]*.
e Now taking the zth root of both sides and dividing by z yields /% = 141 /u, so that z = (14+1/u)".
Then y = (14 1/u)x = (14 1/u)**, so (z,y) is as claimed.
(b) Let m > 2. Show that the difference between any two positive consecutive mth powers is greater than
m.
e This follows from the binomial theorem: for m > 2 we have (a+1)"—a™ = ma™ '+ () a™ 2+ -+1
and so for m > 2 the terms ma™ ! and 1 are distinct, and their sum is at least m-1m"1+1 =m+1.
e It is also possible to establish the result by induction on a or on m, or by noting that (a +1)™ — a™
is increasing as a function of a, so it is at least 2™ — 1 > m.

(c) With notation as in part (a), suppose v = n/m in lowest terms. Show that m + n and n must both be
mth powers and deduce that m = 1. [Hint: Write out z in terms of m, n and use the fact that m+n, m,n
are relatively prime.]

e Using (a), we see that if u = n/m then z = (1 + 1/u)* = (m + n)™/™/n™/™.

e Then because m + n and n are relatively prime, the expression (m + n)”/m/n”/m is rational only
when both (m 4 n)"/™ and n™/™ are rational numbers, and since m,n are relatively prime, this
occurs only when m + n and n are mth powers.

e But by part (b), it cannot be the case that m + n and n are both mth powers if m > 2, since their
difference is only m.

e Thus, we must have m = 1 as claimed.

(d) Conclude that the rational solutions to 2¥ = y* are of the form (x,y) = (s, s) for rational s along with
(x,y) = (1 +1/n)", (1 +1/n)") or ((1+ 1/n)"*L, (1 +1/n)") for integers n.

o Clearly if y = x then z¥ = y” so all (s,s) with s rational are solutions. If y > x then by (a) and (c)
then (z,y) = (1 +1/n)", (1 4+ 1/n)"*1), and if y < x then swapping z,y also yields a solution, so
we must instead have (z,y) = ((1 + 1/n)" " (14 1/n)").

(e) Find all integral solutions to ¥ = y=.
e We simply have to determine the possible integer results of the expressions in (d).
e Clearly (z,y) = (s, s) works for any positive integer s.

e Also, if n is an integer, then for (14 1/n)™ to be an integer we must have n = 1, otherwise we have
a denominator n™ > 1, so the only other integral solutions are (2,4) and (4, 2).

7. Prove that the sum of the first n positive integers is a perfect square for infinitely many values of n, and find
the first five such n.
nin+1) . . .
e We have the well-known formula 14+2+3+---+n= — as is easy to prove by induction.
. . . . . nn+1) 5 o
e We are therefore seeking solutions to the Diophantine equation ————= = k°. Multiplying by 8 and
completing the square on the left yields (2n + 1) — 1 = 8k?, so that (2n + 1)? — 8k% = 1.

e This is a Pell equation 2 — 8y? = 1: since x must always be odd since 8y? is even, each solution of this
Pell equation yields an admissible value for n.

e From our study of this Pell equation we know it has infinitely many solutions given by computing powers
of the fundamental unit that we can easily calculate as u = 3 + V8.

e The first five solutions correspond to v = 3 + /8, u? = 17 + 12v/2, u® = 99 + 70v/2, u* = 577 + 408+/2,
and u® = 3363 + 23782, which give n = ] 1,8, 49,288, 1681 \




8. Prove that there are no integral solutions to the equation 2% + y? = 322 other than (0,0,0). [Hint: Use a
descent argument modulo 3.

e Clearly, (0,0,0) is a solution. Now suppose there is another solution: without loss of generality suppose
z is positive and minimal.

e Reducing both sides modulo 3 yields 22 + y? = 0 (mod 3). Since squares are 0 or 1 mod 3, both = and
y must be divisible by 3: say x = 3z’ and y = 3y/'.

e Then 3(2"2+y'%) = 22 so0 z is also divisible by 3, say with z = 32’. But now we have (z)?+ (/)% = 3(2')?
and z’ < z, which is impossible since we assumed z was minimal. Thus, there are no solutions.

9. Find all positive integers n such that there exist positive integers a, b, ¢ with 2a™ + 3b™ = 4¢™. [Hint: Do
n = 2 and n > 2 separately, and use descent arguments.]

e The answer is only n = 1. Clearly n = 1 works since for instance we can take a = b =4 and ¢ = 5. Now
assume n > 2 and that 2a™ + 3b™ = 4¢™ where a + b + ¢ is minimal.

e For n = 2, reducing both sides modulo 3 yields 2a? = ¢? (mod 3). Since 2 is not a square modulo 3, if
a or c is not divisible by 3 we would obtain an immediate contradiction. Hence both a and ¢ must be
divisible by 3, but then 3b? would be divisible by 9 hence 3|b also. This cannot occur since we could then
divide a, b, c by 3 to get a smaller triple.

e For n > 3, since 3b™ = 4¢" — 2a™ we see that 3b™ is even hence b is even. Then 2a™ = 4c¢™ — 3b" is
divisible by 4, whence a™ is even hence a is even. Then finally 4¢™ = 2a™ + 3b™ is divisible by 2™ > 8
hence c is also even. This cannot occur since we could then divide a, b, c by 2 to get a smaller triple.

Remark: This is problem Al from the 2024 Putnam exam.

10. The goal of this problem is to find all solutions to the Diophantine equation 2 + 3% = 222 in various ways.
If ged(z,y, z) = d then clearly (x/d,y/d, z/d) is also a solution, so it suffices to find all primitive solutions, in
which ged(z,y, z) = 1. So now suppose that (z,vy, z) is a primitive solution to z? + y? = 222

(a) Show that = and y must have the same parity. Letting a = (x —y)/2 and b = (z +y)/2, show that there
exist integers s,t such that ¢ and b equal 2st and s — 2 in some order.

e Note that if =,y have opposite parity then 2% 4+ y? is odd and thus cannot equal 2z2. So z,y have
the same parity, meaning that a = (z — y)/2 and b = (z + y)/2 are both nonnegative integers. If
2 Z y (mod 4) then replacing x with —x makes = = y (mod 4) in which case a is even and b is odd.

e Then a?+b? = (22 +14y?)/2, so the original equation is equivalent to a4+ b* = 22. This is the original
Pythagorean equation, so since a is even we get a = 2st, b = 52 — 2, z = s 4 t2 as required.

(b) In the ring of Gaussian integers Z[i], show that 1 + ¢ must divide both z + iy and x — iy. Letting
p+iq = (v +iy)/(1 + i), show that there exist integers s,t such that p and q equal s? — 2 and 2st in
some order.

e Factoring in Z[i] yields (z + iy)(x — iy) = —i(1 + )%z

e Since 1 + ¢ is a Gaussian prime it must divide one of x + iy and = — iy, but if it divides one then it
divides the other since they differ by 2iy, a multiple of 1 + 4.

o If we set x +iy = (1+1)(p+iq) then we are reduced to (p +iq)(p —iq) = 22, which per our analysis
has solution p = s? — t? and ¢ = 2st, possibly after scaling by i (which would interchange p and q).

(c¢) Show that the line through (z/z,y/z) and (—1,1) has rational slope. Also, if £ is the line with rational
slope t/s through the point (—1, 1), find the intersection point of ¢ with the circle (x/2)% + (y/2)? = 2.

e Note that the line through two points with rational coordinates necessarily have rational slope.

e Taking lines with rational slope ¢/s through the point (—1,1) on the circle 22 + y? = 2 yields the

52 — 2st —t2 5% + 2st — 2
2482 7 24142

other intersection point as (z/z,y/z) = (

(d) Find all primitive solutions to the Diophantine equation x? + y? = 222.

e Using any of the three results yields (x,y,2) = ’ (82 + 2st — %, 5% — 25t — %, 5% + %) | for s,t € Z.




11. Prove that there are no integral solutions to the equation y° = x2 + 2024202°. [Hint: Work modulo 19.]

e Modulo 19, we have (y%)? = y'® = 1 (mod 19) if y is not divisible by 19 by Euler’s theorem, and so
y® € {-1,0,1} mod 19.

e Likewise, we can simply list all of the squares modulo 19: they are {0,1,4,5,6,7,9,11,16,17}.

o Therefore, y° — 22 € {0,1,2,3,4,7,8,9,10,11,12, 13,14, 15, 16, 17, 18} mod 19.

e However, we can compute 20242920 = 102920 = 10? = 100? = 5% = 6 (mod 19). Since this is not one of

the possible residue classes of the form 3° — z2? by the above calculation, we deduce that there are no
solutions to 3° = 2 + 20242°20 mod 19, as claimed.

12. [Challenge] The goal of this problem is to give two ways to solve the Diophantine equation (2 —zy —y?)? =1
in positive integers. Let F,, be the nth Fibonacci number, defined by F} = F» =1 and F,, 1, = F,, + F,,_1 for
n> 2, andletcp:HT‘[.

(a) Show that (z,y) = (F,,41, F,) satisfies (2% — 2y — y?)? = 1 for every n > 1.
e Induction on n. The result clearly holds for n = 1 since (12 —1—1)2 =1,
e For the inductive step, suppose (F2,; — Fy11F, — F3)? = 1.

e Then F? n+2 n+2Fn+1 F7%+1 = (Fn+1 +Fn)2 - (F7L+1 +Fn)Fn+1 _Fg_t,-l = _(F7%+1 _Fn—i-an —FT%);
so its square is also 1 by the inductive hypothesis.

We now show that the pairs of consecutive Fibonacci numbers are the only solutions. The first approach is
via a descent argument.

(b) Suppose (z,y) = (a,b) is a solution to (22 — xy — y?)? = 1. Show that a > b, and that if a > b then
(z,y) = (b,a — b) is also a solution to the system.
e First, we have a? — ab — b?> = +1 and so a? > b% + (ab — 1) > b? since ab > 1. Thus, a > b.
e Furthermore, if @ > b then b? — b(a — b) — (a — b)? = —(a® — ab — b?), and so if (a,b) is a solution
then so is (b,a — b).
(¢) Prove that every solution to (2 — xy — y?)? = 1 is of the form (a,b) = (F,,11, F,,) for some n > 1.
e The point here is that applying the map (a,b) — (b,a — b) will always yield a smaller solution, and
this process can only terminate in a pair with equal terms.
e But if y = x then 1 = (22 — 2y — 3?)? = 2% implies (z,y) = (1,1) = (F1, F»).
e The inverse of this map is (¢,d) — (¢ + d, ¢), which clearly maps (F, 41, Fn) — (Fnio, Fri1), and

thus by an easy induction, we see that every solution to the system is of the form (a,b) = (F41, F)
for some n > 1.

Now we give a second approach based on rational approximations

(d) Suppose that (z,y) is a solution to ]x —xy —y? z_ ga‘ . [Hint:
Let t = 5 - % and then show that ¢ > % + 2y2 and t < L — 5,5 both yield contradlctlons ]
° Lett:%f% o that ¢ = £f§+% and then observe that |x —ry—vy | =92 |t? *Z|' Thus,
we have [t2 — 3| = %, sot? =2+ %
o If t > f + 3 1 then we would have t? > %Jr % + 4;4 > ng %, contradiction. Likewise, if
t< i——thent2 ,_£+4y < 3 — 47 fory > 2, since in that case we have g5 < [£E P
Thus, we must have |£ — gp’ = ‘t —‘ < 2;2, as claimed.

(e) Deduce that every solution to the system is of the form (z,y) = (Fniy1, Frn).
e This is a direct check for y =1. If y > 1, then (d) implies that any solution to |:c —xy—y | =1
then |z/y — ¢| < 5. By our results on contlnued fractions, this means x/y is a continued fraction

convergent to ¢ = [ } but as we noted in class, the continued fraction convergents of [1] are precisely
the ratios F,,11/F, of consecutive Fibonacci numbers.

e Hence z/y = F,,+1/F,. Since clearly x,y are relatively prime this forces (z,y) = (Fr41, Fn). Since
all of these pairs are solutions as noted in (a), they are all of the solutions.




