
E. Dummit's Math 4527 ∼ Number Theory 2, Spring 2025 ∼ Homework 4 Solutions

1. Find all ordered pairs (a, b) of positive integers for which
1

a
+

2

b
=

1

10
.

• Clearing the denominators yields 10b+20a = ab, and rearranging and factoring then yields (a− 10)(b−
20) = 200. Since a, b are positive we see that a− 10, b− 20 must in fact be positive since otherwise the
product (a− 10)(b− 20) is less than 200.

• For each integer factorization of 200 (namely, 1 · 200, 2 · 100, 4 · 50, 5 · 40, 8 · 25, 10 · 20, 20 · 10, 25 · 8,
40 · 5, 50 · 4, 100 · 2, 200 · 1) we obtain a solution (a, b) to the system:

(11, 220), (12, 120), (14, 70), (15, 60), (18, 45), (20, 40), (30, 30), (35, 28), (50, 25), (60, 24), (110, 22), (210, 21) .

2. Find all ordered pairs (a, b) of positive integers for which
1

a
+

1

b
=

3

2018
.

• Clearing denominators yields 2018(a + b) = 3ab, and so multiplying by 3, rearranging, and factoring
yields (3a− 2018)(3b− 2018) = 20182 = 22 · 10092 (note 1009 is prime).

• Since 3a − 2018 and 3b − 2018 are both greater than −2018, we see that both must be positive, and
so 3a − 2018 must be a factor of 22 · 10092 congruent to −2018 ≡ 1 mod 3. This yields possibilities of
3a− 2018 = 1, 4, 1009, 4 · 1009, 10092, 4 · 10092 so that

(a, b) = (673, 1358114), (674, 340033), (1009, 2018), (2018, 1009), (340033, 674), (1358114, 673) .

Remark: This is problem A1 from the 2018 Putnam exam.

3. Find all solutions to the Diophantine equation y2 = x4 + 2x3 + 2x2 + 4.

• Let p(x) = x4 + 2x3 + 2x2 + 4. Note that p(x)− (x2 + x)2 = x2 + 4 > 0, and also p(x)− (x2 + x+ 1)2 =
3− 2x− x2, so unless 3− 2x− x2 ≤ 0, which is to say, whenever −3 ≤ x ≤ 1, we would have (x2 + x)2 <
p(x) < (x2 + x+ 1)2, which would be impossible since then we would have x2 + x < y < x2 + x+ 1.

• Thus we must have−3 ≤ x ≤ 1. Testing these �ve values produces the solutions (x, y) = (−3,±7), (0,±2), (1,±3) .

4. Find all integers n such that n4 + n3 + n2 + n+ 1 is a perfect square.

• Let p(n) = n4 + n3 + n2 + n+ 1. We bound 16p(n) above and below by perfect squares.

• First, 16p(n)− (4n2 + 2n+ 1)2 = 4n2 + 12n+ 15 = (2n+ 3)2 + 6, so 16p(n) > (4n2 + 2n+ 1)2.

• Also, 16p(n)− (4n2 + 2n+ 2)2 = −4n2 + 8n+ 12 = 16− (2n− 2)2, so unless 16 ≥ (2n− 2)2 which is to
say −1 ≤ n ≤ 3, then we have 16p(n) < (4n2 + 2n+ 2)2.

• Thus, unless −1 ≤ n ≤ 3, it is true that (4n2 + 2n + 1)2 < p(n) < (4n2 + 2n + 2)2 and so p(n) cannot
be the square of an integer. Thus, the only possible n have −1 ≤ n ≤ 3. Testing p(n) for −1 ≤ n ≤ 3

shows that the only values of n for which p(n) are a perfect cube are n = −1, 0, 3 .

5. Let n ≥ 2 be a �xed integer. Find in�nitely many distinct positive integer triples (x, y, z) such that xn+yn =
zn+1. [Hint: Divide both sides by zn.]

• Following the hint, dividing both sides by zn yields (x/z)n + (y/z)n = z.

• We want to arrange for x, y, z to be integers, so a natural way is just to require x/z to be some integer
a and y/z to be some integer b.

• Then z = an + bn and then x = a(an + bn) with y = b(an + bn), and since we can choose a, b arbitrarily
we get in�nitely many triples.
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6. The goal of this problem is to solve the equation xy = yx in positive rational numbers. Assume x, y > 0.

(a) Prove that any rational solution with y > x is of the form (x, y) = ((1 + 1/u)u, (1 + 1/u)u+1) for some
rational number u > 0. [Hint: If y > x, set y = (1 + 1/u)x.]

• If x = 1 then clearly y = 1. Now assume x 6= 1 and y 6= x. Without loss of generality we can also
take y > x: then y/x− 1 is a positive rational number, so we can set y/x = 1+ 1/u for some u > 0.

• Plugging in y = (1 + 1/u)x then yields x(1+1/u)x = [(1 + 1/u)x]x.

• Now taking the xth root of both sides and dividing by x yields x1/u = 1+1/u, so that x = (1+1/u)u.
Then y = (1 + 1/u)x = (1 + 1/u)u+1, so (x, y) is as claimed.

(b) Let m ≥ 2. Show that the di�erence between any two positive consecutive mth powers is greater than
m.

• This follows from the binomial theorem: form ≥ 2 we have (a+1)m−am = mam−1+
(
m
2

)
am−2+· · ·+1

and so for m ≥ 2 the terms mam−1 and 1 are distinct, and their sum is at least m ·1m−1+1 = m+1.

• It is also possible to establish the result by induction on a or on m, or by noting that (a+1)m− am

is increasing as a function of a, so it is at least 2m − 1 > m.

(c) With notation as in part (a), suppose u = n/m in lowest terms. Show that m+ n and n must both be
mth powers and deduce that m = 1. [Hint: Write out x in terms of m,n and use the fact that m+n,m, n
are relatively prime.]

• Using (a), we see that if u = n/m then x = (1 + 1/u)u = (m+ n)n/m/nn/m.

• Then because m + n and n are relatively prime, the expression (m + n)n/m/nn/m is rational only
when both (m + n)n/m and nn/m are rational numbers, and since m,n are relatively prime, this
occurs only when m+ n and n are mth powers.

• But by part (b), it cannot be the case that m+ n and n are both mth powers if m ≥ 2, since their
di�erence is only m.

• Thus, we must have m = 1 as claimed.

(d) Conclude that the rational solutions to xy = yx are of the form (x, y) = (s, s) for rational s along with
(x, y) = ((1 + 1/n)n, (1 + 1/n)n+1) or ((1 + 1/n)n+1, (1 + 1/n)n) for integers n.

• Clearly if y = x then xy = yx so all (s, s) with s rational are solutions. If y > x then by (a) and (c)
then (x, y) = ((1 + 1/n)n, (1 + 1/n)n+1), and if y < x then swapping x, y also yields a solution, so
we must instead have (x, y) = ((1 + 1/n)n+1, (1 + 1/n)n).

(e) Find all integral solutions to xy = yx.

• We simply have to determine the possible integer results of the expressions in (d).

• Clearly (x, y) = (s, s) works for any positive integer s.

• Also, if n is an integer, then for (1 + 1/n)n to be an integer we must have n = 1, otherwise we have
a denominator nn > 1, so the only other integral solutions are (2, 4) and (4, 2).

7. Prove that the sum of the �rst n positive integers is a perfect square for in�nitely many values of n, and �nd
the �rst �ve such n.

• We have the well-known formula 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
as is easy to prove by induction.

• We are therefore seeking solutions to the Diophantine equation
n(n+ 1)

2
= k2. Multiplying by 8 and

completing the square on the left yields (2n+ 1)2 − 1 = 8k2, so that (2n+ 1)2 − 8k2 = 1.

• This is a Pell equation x2 − 8y2 = 1: since x must always be odd since 8y2 is even, each solution of this
Pell equation yields an admissible value for n.

• From our study of this Pell equation we know it has in�nitely many solutions given by computing powers
of the fundamental unit that we can easily calculate as u = 3 +

√
8.

• The �rst �ve solutions correspond to u = 3 +
√
8, u2 = 17 + 12

√
2, u3 = 99 + 70

√
2, u4 = 577 + 408

√
2,

and u5 = 3363 + 2378
√
2, which give n = 1, 8, 49, 288, 1681 .
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8. Prove that there are no integral solutions to the equation x2 + y2 = 3z2 other than (0, 0, 0). [Hint: Use a
descent argument modulo 3.]

• Clearly, (0, 0, 0) is a solution. Now suppose there is another solution: without loss of generality suppose
z is positive and minimal.

• Reducing both sides modulo 3 yields x2 + y2 ≡ 0 (mod 3). Since squares are 0 or 1 mod 3, both x and
y must be divisible by 3: say x = 3x′ and y = 3y′.

• Then 3(x′2+y′2) = z2 so z is also divisible by 3, say with z = 3z′. But now we have (x′)2+(y′)2 = 3(z′)2

and z′ < z, which is impossible since we assumed z was minimal. Thus, there are no solutions.

9. Find all positive integers n such that there exist positive integers a, b, c with 2an + 3bn = 4cn. [Hint: Do
n = 2 and n > 2 separately, and use descent arguments.]

• The answer is only n = 1. Clearly n = 1 works since for instance we can take a = b = 4 and c = 5. Now
assume n ≥ 2 and that 2an + 3bn = 4cn where a+ b+ c is minimal.

• For n = 2, reducing both sides modulo 3 yields 2a2 ≡ c2 (mod 3). Since 2 is not a square modulo 3, if
a or c is not divisible by 3 we would obtain an immediate contradiction. Hence both a and c must be
divisible by 3, but then 3b2 would be divisible by 9 hence 3|b also. This cannot occur since we could then
divide a, b, c by 3 to get a smaller triple.

• For n ≥ 3, since 3bn = 4cn − 2an we see that 3bn is even hence b is even. Then 2an = 4cn − 3bn is
divisible by 4, whence an is even hence a is even. Then �nally 4cn = 2an + 3bn is divisible by 2n ≥ 8
hence c is also even. This cannot occur since we could then divide a, b, c by 2 to get a smaller triple.

Remark: This is problem A1 from the 2024 Putnam exam.

10. The goal of this problem is to �nd all solutions to the Diophantine equation x2 + y2 = 2z2 in various ways.
If gcd(x, y, z) = d then clearly (x/d, y/d, z/d) is also a solution, so it su�ces to �nd all primitive solutions, in
which gcd(x, y, z) = 1. So now suppose that (x, y, z) is a primitive solution to x2 + y2 = 2z2.

(a) Show that x and y must have the same parity. Letting a = (x− y)/2 and b = (x+ y)/2, show that there
exist integers s, t such that a and b equal 2st and s2 − t2 in some order.

• Note that if x, y have opposite parity then x2 + y2 is odd and thus cannot equal 2z2. So x, y have
the same parity, meaning that a = (x − y)/2 and b = (x + y)/2 are both nonnegative integers. If
x 6≡ y (mod 4) then replacing x with −x makes x ≡ y (mod 4) in which case a is even and b is odd.

• Then a2+b2 = (x2+y2)/2, so the original equation is equivalent to a2+b2 = z2. This is the original
Pythagorean equation, so since a is even we get a = 2st, b = s2 − t2, z = s2 + t2 as required.

(b) In the ring of Gaussian integers Z[i], show that 1 + i must divide both x + iy and x − iy. Letting
p + iq = (x + iy)/(1 + i), show that there exist integers s, t such that p and q equal s2 − t2 and 2st in
some order.

• Factoring in Z[i] yields (x+ iy)(x− iy) = −i(1 + i)2z2.

• Since 1 + i is a Gaussian prime it must divide one of x+ iy and x− iy, but if it divides one then it
divides the other since they di�er by 2iy, a multiple of 1 + i.

• If we set x+ iy = (1+ i)(p+ iq) then we are reduced to (p+ iq)(p− iq) = z2, which per our analysis
has solution p = s2 − t2 and q = 2st, possibly after scaling by i (which would interchange p and q).

(c) Show that the line through (x/z, y/z) and (−1, 1) has rational slope. Also, if ` is the line with rational
slope t/s through the point (−1, 1), �nd the intersection point of ` with the circle (x/z)2 + (y/z)2 = 2.

• Note that the line through two points with rational coordinates necessarily have rational slope.

• Taking lines with rational slope t/s through the point (−1, 1) on the circle x2 + y2 = 2 yields the

other intersection point as (x/z, y/z) =

(
s2 − 2st− t2

s2 + t2
,
s2 + 2st− t2

s2 + t2

)
.

(d) Find all primitive solutions to the Diophantine equation x2 + y2 = 2z2.

• Using any of the three results yields (x, y, z) = (s2 + 2st− t2, s2 − 2st− t2, s2 + t2) for s, t ∈ Z.
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11. Prove that there are no integral solutions to the equation y9 = x2 + 20242020. [Hint: Work modulo 19.]

• Modulo 19, we have (y9)2 ≡ y18 ≡ 1 (mod 19) if y is not divisible by 19 by Euler's theorem, and so
y9 ∈ {−1, 0, 1} mod 19.

• Likewise, we can simply list all of the squares modulo 19: they are {0, 1, 4, 5, 6, 7, 9, 11, 16, 17}.
• Therefore, y9 − x2 ∈ {0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18} mod 19.

• However, we can compute 20242020 ≡ 102020 ≡ 104 ≡ 1002 ≡ 52 ≡ 6 (mod 19). Since this is not one of
the possible residue classes of the form y9 − x2 by the above calculation, we deduce that there are no
solutions to y9 = x2 + 20242020 mod 19, as claimed.

12. [Challenge] The goal of this problem is to give two ways to solve the Diophantine equation (x2−xy−y2)2 = 1
in positive integers. Let Fn be the nth Fibonacci number, de�ned by F1 = F2 = 1 and Fn+1 = Fn +Fn−1 for

n ≥ 2, and let ϕ = 1+
√
5

2 .

(a) Show that (x, y) = (Fn+1, Fn) satis�es (x
2 − xy − y2)2 = 1 for every n ≥ 1.

• Induction on n. The result clearly holds for n = 1 since (12 − 1− 1)2 = 1.

• For the inductive step, suppose (F 2
n+1 − Fn+1Fn − F 2

n)
2 = 1.

• Then F 2
n+2−Fn+2Fn+1−F 2

n+1 = (Fn+1+Fn)
2−(Fn+1+Fn)Fn+1−F 2

n+1 = −(F 2
n+1−Fn+1Fn−F 2

n),
so its square is also 1 by the inductive hypothesis.

We now show that the pairs of consecutive Fibonacci numbers are the only solutions. The �rst approach is
via a descent argument.

(b) Suppose (x, y) = (a, b) is a solution to (x2 − xy − y2)2 = 1. Show that a ≥ b, and that if a > b then
(x, y) = (b, a− b) is also a solution to the system.

• First, we have a2 − ab− b2 = ±1 and so a2 ≥ b2 + (ab− 1) ≥ b2 since ab ≥ 1. Thus, a ≥ b.

• Furthermore, if a > b then b2 − b(a − b) − (a − b)2 = −(a2 − ab − b2), and so if (a, b) is a solution
then so is (b, a− b).

(c) Prove that every solution to (x2 − xy − y2)2 = 1 is of the form (a, b) = (Fn+1, Fn) for some n ≥ 1.

• The point here is that applying the map (a, b) 7→ (b, a− b) will always yield a smaller solution, and
this process can only terminate in a pair with equal terms.

• But if y = x then 1 = (x2 − xy − y2)2 = x4 implies (x, y) = (1, 1) = (F1, F2).

• The inverse of this map is (c, d) 7→ (c + d, c), which clearly maps (Fn+1, Fn) 7→ (Fn+2, Fn+1), and
thus by an easy induction, we see that every solution to the system is of the form (a, b) = (Fn+1, Fn)
for some n ≥ 1.

Now we give a second approach based on rational approximations.

(d) Suppose that (x, y) is a solution to
∣∣x2 − xy − y2

∣∣ = 1 with x ≥ y > 1. Show that
∣∣∣xy − ϕ

∣∣∣ < 1
2y2 . [Hint:

Let t = x
y −

1
2 and then show that t >

√
5
2 + 1

2y2 and t <
√
5
2 −

1
2y2 both yield contradictions.]

• Let t = x
y −

1
2 so that t2 = x2

y2 − x
y + 1

4 , and then observe that
∣∣x2 − xy − y2

∣∣ = y2 · |t2 − 5
4 |. Thus,

we have |t2 − 5
4 | =

1
y2 , so t2 = 5

4 ±
1
y2 .

• If t >
√
5
2 + 1

2y2 then we would have t2 > 5
2 +

√
5

2y2 + 1
4y4 > 5

4 + 1
y2 , contradiction. Likewise, if

t <
√
5
2 −

1
2y2 then t2 < 5

2 −
√
5

2y2 +
1

4y4 ≤ 5
4 −

1
y2 for y ≥ 2, since in that case we have 1

4y4 ≤ [
√
5
2 −1] 1

y2 .

Thus, we must have
∣∣∣xy − ϕ

∣∣∣ = ∣∣∣t− √5
2

∣∣∣ < 1
2y2 , as claimed.

(e) Deduce that every solution to the system is of the form (x, y) = (Fn+1, Fn).

• This is a direct check for y = 1. If y > 1, then (d) implies that any solution to
∣∣x2 − xy − y2

∣∣ = 1
then |x/y − ϕ| < 1

2y2 . By our results on continued fractions, this means x/y is a continued fraction

convergent to ϕ = [1], but as we noted in class, the continued fraction convergents of [1] are precisely
the ratios Fn+1/Fn of consecutive Fibonacci numbers.

• Hence x/y = Fn+1/Fn. Since clearly x, y are relatively prime this forces (x, y) = (Fn+1, Fn). Since
all of these pairs are solutions as noted in (a), they are all of the solutions.
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