
E. Dummit's Math 4527 ∼ Number Theory 2, Spring 2025 ∼ Homework 3 Solutions

1. For each value of D, use the super magic box to (i) �nd the continued fraction expansion for
√
D, (ii) �nd the

fundamental unit in the ring Z[
√
D], (iii) determine whether the Pell's equation x2−Dy2 = −1 has a solution

and if so �nd the smallest one, and (iv) �nd the smallest two solutions to the Pell's equation x2 −Dy2 = 1:

(a) D = 19.

• Here is the result of doing the super magic box calculation for D = 19:
n −1 0 1 2 3 4 5 6

An = an−1Cn−1 −An−1 0 4 2 3 3 2 4

Cn = (D −A2
n)/Cn−1 1 3 5 2 5 3 1

an = b(An + a0)/Cnc 4 2 1 3 1 2 8
pn = anpn−1 + pn−2 1 4 9 13 48 61 170 1421
qn = anqn−1 + qn−2 0 1 2 3 11 14 39 326

p2n −Dq2n −3 5 −2 5 −3 1 −3

• The continued fraction expansion is
√
19 = [4, 2, 1, 3, 1, 2, 8] and the fundamental unit is 170 + 39

√
19 .

• Since the �rst Cn equal to ±1 is equal to 1 for n = 6, so there is no solution to x2 − 19y2 = −1.
• The smallest solution to x2 − 19y2 = 1 is (x, y) = (170, 39), and then the next smallest solution is
given by the square of the fundamental unit (170 + 39

√
19)2 = 57799 + 13260

√
19. So the smallest

two solutions are (170, 39), (57799, 13260) .

(b) D = 22.

• Here is the result of doing the super magic box calculation for D = 22:
n −1 0 1 2 3 4 5 6

An = an−1Cn−1 −An−1 0 4 2 4 4 2 4

Cn = (D −A2
n)/Cn−1 1 6 3 2 3 6 1

an = b(An + a0)/Cnc 4 1 2 4 2 1 8
pn = anpn−1 + pn−2 1 4 5 14 61 136 197 1712
qn = anqn−1 + qn−2 0 1 1 3 13 29 42 365

p2n −Dq2n −6 3 −2 3 −6 1 −5

• The continued fraction expansion is
√
22 = [4, 1, 2, 4, 1, 2, 8] and the fundamental unit is 197 + 42

√
22 .

• We see that the �rst Cn equal to ±1 is equal to 1 for n = 6, so there is no solution to x2−22y2 = −1.
• The smallest solution to x2 − 22y2 = 1 is (x, y) = (197, 42), and the next smallest solution is then
given by the square of the fundamental unit (197 + 42

√
22)2 = 77617 + 16548

√
22. So the smallest

two solutions are (197, 42), (77617, 16548) .

(c) D = 130.

• Here is the result of doing the super magic box calculation for D = 130:
n −1 0 1 2 3

An = an−1Cn−1 −An−1 0 11 7 11

Cn = (D −A2
n)/Cn−1 1 9 9 1

an = b(An + a0)/Cnc 11 2 2 22
pn = anpn−1 + pn−2 1 11 23 57 1277
qn = anqn−1 + qn−2 0 1 2 5 112

p2n −Dq2n −9 9 −1 9

• The continued fraction expansion is
√
130 = [11, 2, 2, 22] and the fundamental unit is 57 + 5

√
130 .

• We see that the �rst Cn equal to ±1 is equal to 1 for n = 3, so there is a solution to x2−130y2 = −1
and the smallest one is (57, 5) .

1



• The minimal solution to x2−130y2 = 1 is the square of the fundamental unit (57+5
√
130)2 = 6499+

570
√
130. The next solution is the fourth power, which is (57+5

√
130)4 = 84474001+7408860

√
130.

So the smallest are (6499, 570), (84474001, 7408860) .

(d) D = 61.

• Here is the result of doing the super magic box calculation for D = 61:

n −1 0 1 2 3 4 5 6 7 8 9 10 11
An = an−1Cn−1 −An−1 0 7 5 7 5 4 6 4 5 7 5 7

Cn = (D −A2
n)/Cn−1 1 12 3 4 9 5 5 9 4 3 12 1

an = b(An + a0)/Cnc 7 1 4 3 1 2 2 1 3 4 1 14
pn = anpn−1 + pn−2 1 7 8 39 125 164 453 1070 1523 5639 24079 29718 440131
qn = anqn−1 + qn−2 0 1 1 5 16 21 58 137 195 722 3083 3805 56353

p2n −Dq2n −12 3 −4 9 −5 5 −9 4 −3 12 −1 12

• The continued fraction expansion is
√
61 = [7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14] and the fundamental unit

is 29718 + 3805
√
61 .

• We see that the �rst Cn equal to ±1 is equal to 1 for n = 11, so there is a solution to x2−61y2 = −1
and the smallest one is (29718, 3805) .

• The smallest solution will be to x2 − 61y2 = 1 and it is given by the square of the fundamental unit
(29718 + 3805

√
61)2 = 1766319049 + 226153980

√
61. The next solution is the square of this one,

which is the quite lengthy (29718 + 3805
√
61)4 = 6239765965720528801 + 798920165762330040

√
61.

So the smallest two are (1766319049, 226153980), (6239765965720528801, 798920165762330040) .

2. Use the super magic box to factor each of the following integers:

(a) 437.

• Here is the result of doing the super magic box calculation for D = 437 until we �nd a perfect square
for Cn with n even:

n −1 0 1 2
An = an−1Cn−1 −An−1 0 20 17
Cn = (D −A2

n)/Cn−1 1 37 4
an = b(An + a0)/Cnc 20 1 9
pn = anpn−1 + pn−2 1 20 21
qn = anqn−1 + qn−2 0 1 1

p2n −Dq2n −37 4

• We see that for n = 2, Cn = 4. Thus, from the column for n = 1, we see that p21 = 212 ≡ 22 mod
437.

• Then we compute gcd(21 + 2, 437) = 23 and so we get a factorization 437 = 23 · 19.
(b) 8137.

• Here is the result of doing the super magic box calculation for D = 8137 until we �nd a perfect
square for Cn with n even:

n −1 0 1 2 3 4 5 6
An = an−1Cn−1 −An−1 0 90 58 71 73 44 62
Cn = (D −A2

n)/Cn−1 1 37 129 24 117 53 81
an = b(An + a0)/Cnc 90 4 1 6 1 2
pn = anpn−1 + pn−2 1 90 361 451 3067 3518 10103
qn = anqn−1 + qn−2 0 1 4 5 34 39 112

p2n −Dq2n −37 129 −24 117 −53 81

• We see that for n = 6, Cn = 81. Thus, from the column for n = 5, we see that p25 = 101032 ≡ 92

mod 8137.

• Then we compute gcd(10103 + 3, 8137) = 79 and so we get a factorization 8137 = 79 · 103.

2



(c) 15403.

• Here is the result of doing the super magic box calculation for D = 15403 until we �nd a perfect
square for Cn with n even:

n −1 0 1 2 3 4 5 6
An = an−1Cn−1 −An−1 0 124 119 111 90 19 119
Cn = (D −A2

n)/Cn−1 1 27 46 67 109 138 9
an = b(An + a0)/Cnc 124 9 5 3 1 1 27
pn = anpn−1 + pn−2 1 124 1117 5709 18244 23953 42197
qn = anqn−1 + qn−2 0 1 9 46 147 193 340

p2n −Dq2n −27 46 −67 109 −138 9

• We see that for n = 6, Cn = 9. Thus, from the column for n = 5, we see that p21 = 421972 ≡ 32 mod
15403.

• Then we compute gcd(42197 + 3, 15403) = 211 and so we get a factorization 15403 = 73 · 211.

3. In class, we showed how to compute solutions to Pell's equation x2 − Dy2 = ±1 by taking powers of the
fundamental solution u = x1 + y1

√
D and then extracting coe�cients of the resulting power. The goal of this

problem is to give various formulas and recurrences for these coe�cients. So suppose u = x1 + y1
√
D is the

fundamental solution to x2 −Dy2 = ±1 and let xn + yn
√
D = (x1 + y1

√
D)n.

(a) Show that xn+1 = x1xn +Dy1yn and yn+1 = y1xn + x1yn.

• We have xn+1 + yn+1

√
D = (x1 + y1

√
D)n+1 = (x1 + y1

√
D)(x1 + y1

√
D)n = (x1 + y1

√
D)(xn +

yn
√
D) = (x1xn +Dy1yn) + (y1xn + x1yn)

√
D.

• Equating the coe�cients yields the claimed relations xn+1 = x1xn+Dy1yn and yn+1 = y1xn+x1yn.

(b) Show that both sequences {xn}n≥1 and {yn}n≥1 satisfy the two-term recurrence relation tn+2 = Atn+1+
Btn where A = 2x1 and B = −(x21 −Dy21).
• Using (a), we have xn+2 − 2x1xn+1 = x1xn+1 + Dy1yn+1 − 2x1xn+1 = Dy1yn+1 − x1xn+1 =
Dy1(y1xn+x1yn)−x1(x1xn+Dy1yn) = (Dy21−x21)xn, and thus xn+2 = 2x1xn+1+(Dy21−x21)xn =
Axn+1 +Bxn as claimed.

• Likewise, yn+2−2x1yn+1 = y1xn+1−x1yn+1 = y1(x1xn+Dy1yn)−x1(y1xn+x1yn) = (Dy21−x21)yn,
and thus yn+2 = 2x1yn+1 + (Dy21 − x21)yn = Ayn+1 +Byn as claimed.

(c) If u = x1 − y1
√
D is the conjugate of u, show that xn − yn

√
D = un. Deduce that xn =

un + un

2
and

yn =
un − un

2
√
D

. [Hint: The conjugation map respects multiplication, just like complex conjugation does.]

• As noted in the hint, the conjugation map respects multiplication: explicitly, (a+ b
√
D)(c+ d

√
D) =

(ac+Dbd) + (ad+ bc)
√
D = (ac+Dbd)− (ad+ bc)

√
D = (a− b

√
D)(c− d

√
D).

• Therefore, we have un = un = xn + yn
√
D = xn − yn

√
D as claimed.

• Then adding and subtracting un = xn + yn
√
D and un = xn − yn

√
D yields xn =

un + un

2
and

yn =
un − un

2
√
D

.

Remark: The reason that {xn}n≥1 and {yn}n≥1 satisfy the kind of two-term linear recurrences given in
(b) is because xn+2, xn+1, yn+2, and yn+1 are all linear combinations of xn and yn, and so the sets
{xn+2, xn+1, xn} and {yn+2, yn+1, yn} are linearly dependent as functions. Furthermore, the general
theory of linear recurrences says that the solutions to a recurrence of the form tn+2 = Atn+1 + Btn
are given by tn = cαn + dβn where α and β are the roots of the characteristic polynomial t2 − At − B
and c, d are some constants. Part (b) shows that the characteristic polynomial for both recurrences is
t2 − 2x1t + (x1 − Dy21), which factors as (t − u)(t − u): this is why in (c) the results are of the form
xn, yn = cun + dun for some constants c, d.
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4. The goal of this problem is to prove that if p is a prime congruent to 1 modulo 4, then there is always a
solution to the negative Pell equation x2 − py2 = −1. As we showed, there exists a minimal solution (x1, y1)
to x2 − py2 = 1 where x, y are positive and minimal.

(a) Show that x1 is odd, y1 is even, and that gcd(x1 + 1, x1 − 1) = 2.

• Modulo 4, we have x2 − y2 ≡ 1 (mod 4). Since squares are 0 or 1 mod 4, the only way we can have
x2 − y2 ≡ 1 (mod 4) is to have x2 ≡ 1 and y2 ≡ 0, meaning that x1 is odd and y1 is even.

• Note that gcd(x1 + 1, x1 − 1) divides their di�erence, which is 2. However, since x1 is odd, both
x1 + 1 and x1 − 1 are even, so their gcd is in fact 2.

(b) Show either that x1 − 1 = 2ps2, x1 + 1 = 2t2 or that x1 − 1 = 2s2 and x1 + 1 = 2pt2 for some positive
integers s, t. [Hint: Use x21 − 1 = py2 and gcd(x1 + 1, x1 − 1) = 2.]

• Per the hint, we rearrange and factor x21−py21 = 1 as (x1−1)(x1+1) = py21 . Since x1−1 and x1+1
have only a factor 2 in common, we see x′ = x1 − 1 and x′′ = x1 + 1 are relatively prime.

• Since we have the factorization x′ · x′′ = p(y1/2)
2, and x′, x′′ are relatively prime, by the uniqueness

of prime factorizations one of them must be a square and the other must be p times a square.

• Thus, either x1 − 1 = 2ps2, x1 + 1 = 2t2 or x1 − 1 = 2s2 and x1 + 1 = 2pt2, as claimed.

(c) With notation as in (b), show that if x1 − 1 = 2ps2 and x1 + 1 = 2t2 then t2 − ps2 = 1, contradicting
the minimality of (x1, y1). Conclude in fact that there is an integer solution to x2 − py2 = −1.
• If the �rst case holds then subtracting yields 2 = 2t2 − 2ps2 so that t2 − ps2 = 1. But since s, t are
positive integers, this cannot be true because t is smaller than x1 by (b) but (x1, y1) was assumed
to be minimal.

• Thus we must have x1 − 1 = 2s2 and x1 + 1 = 2pt2 and so subtracting now gives s2 − pt2 = −1.
Thus there is an integer solution to x2 − py2 = −1 as claimed.

5. The goal of this problem is to establish some cases in which the negative Pell equation x2−Dy2 = −1 has no
solutions.

(a) Suppose that D is divisible by 4. Show that x2 −Dy2 = −1 has no solutions.

• Reducing modulo 4 yields x2 ≡ −1 (mod 4) which has no solutions.

(b) Suppose that p is an odd prime and that there is a solution to the congruence x2 ≡ −1 (mod p). Prove
that p ≡ 1 (mod 4). [Hint: Explain why x has order 4 in the multiplicative group of nonzero residues
modulo p, and then use Lagrange's theorem or Euler's theorem.]

• Note that x4 ≡ (−1)2 ≡ 1 (mod p), so the order of x must divide 4. However, because x2 ≡ −1
(mod p) is not 1 mod p, since p is odd, the order of x cannot divide 2, hence it must be 4.

• Now apply Lagrange's theorem to the multiplicative group (Z/pZ)× of nonzero residues modulo p:
this group has order p − 1. But by Lagrange's theorem, the order of any element must divide the
order of the group, and so 4 must divide p− 1, meaning that p ≡ 1 (mod 4) as claimed.

• Alternatively, by Euler's theorem, we have xp−1 ≡ 1 (mod p), and so since p−1 is even, we can write
(−1)(p−1)/2 = (x2)(p−1)/2 = xp−1 ≡ 1 (mod p). Since −1 6≡ 1 (mod p), we must have (−1)(p−1)/2 ≡ 1
(mod p) and so (p− 1)/2 must be even.

(c) Suppose that D is divisible by a prime that is congruent to 3 modulo 4. Show that x2 −Dy2 = −1 has
no solutions.

• Suppose p|D is congruent to 3 modulo 4. Then modulo p we see that x2 ≡ −1 (mod p). But this is
a contradiction by part (b), since x2 ≡ −1 (mod p) has no solutions unless p = 2 or p ≡ 1 (mod 4).

(d) By (a)-(c) above, if x2 −Dy2 = −1 has solutions, then D is a product of primes congruent to 1 modulo
4, possibly times 2. In fact, not all such integers do have a solution to the negative Pell equation: show
speci�cally that x2 − 34y2 = −1 and x2 − 221y2 = −1 have no solutions.

• We can use the super magic box to compute the fundamental unit in each case.

• For D = 34 the fundamental unit is 35 + 6
√
34: since 352 − 6 · 342 = 1, there is no solution to

x2 − 34y2 = −1.
• For D = 221 the fundamental unit is 1665 + 112

√
221: since 16652 − 221 · 1122 = 1, there is no

solution to x2 − 221y2 = −1.
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6. The goal of this problem is to construct uncountably many transcendental numbers.

(a) Prove that the real number α =

∞∑
k=1

1

(k!)k!
= 1 +

1

22
+

1

66
+

1

2424
+ · · · is transcendental.

• We use Liouville's criterion. If we let
pn
qn

=
∑n

k=1

1

(k!)k!
then it is easy to see that the denominator

qn equals (n!)n! since all of the other denominators in the sum divide it.

• Furthermore, the tail of the sum
∑∞

k=n+1

1

(k!)k!
is bounded above by

2

(n+ 1)!(n+1)!
since it is cer-

tainly bounded above by the geometric series
1

2n+d(n+ 1)!(n+1)!
.

• Therefore, we see

∣∣∣∣α− pn
qn

∣∣∣∣ < 2

(n+ 1)!(n+1)!
<

2

(n!)(n+1)!
=

2

qn+1
n

<
2

qnn
.

• Thus, by Liouville's theorem, this means α is transcendental, as claimed.

(b) Generalize (a) by showing that any number of the form β =

∞∑
k=1

(−1)sk
(k!)k!

is transcendental, for any choice

of signs (−1)sk = ±1 on each term.

• We use Liouville's criterion. If we let
pn
qn

=
∑n

k=1

(−1)sk
(k!)k!

then as in (a) the denominator qn equals

(n!)n! since all of the other denominators in the sum divide it.

• Furthermore, the tail of the sum
∑∞

k=n+1

1

(k!)k!
is bounded above in absolute value by

2

(n+ 1)!(n+1)!

so as before we see

∣∣∣∣β − pn
qn

∣∣∣∣ < 2

(n+ 1)!(n+1)!
<

2

(n!)(n+1)!
=

2

qn+1
n

<
2

qnn
.

• Thus, by Liouville's criterion, this means β is transcendental, as claimed.

(c) Show that all of the numbers in (b) are distinct and lie in (−2, 2). Deduce that there are uncountably
many transcendental numbers in the interval (−2, 2). [Hint: For distinctness, suppose that two of the
numbers in (b) are equal and have their �rst unequal signs in the dth term. Show that the tails of the
series are too small to account for the di�erence.]

• Suppose we had an equality
∑∞

k=1

(−1)sk
(k!)k!

=
∑∞

k=1

(−1)tk
(k!)k!

for some sign choices sk and tk that di�er

�rst in the dth term. Then subtracting yields
2

(d!)d!
+
∑∞

k=d+1

(−1)sk − (−1)tk
(k!)k!

= 0, and the tail

of the series has absolute value at most
∑∞

k=d+1

2

(k!)k!
<

2

(d+ 1)!(d+1)!
, but this is strictly smaller

than
2

(d!)d!
.

• This is impossible, so all of the numbers in (b) are distinct. Observe also that all of the numbers
in (b) are transcendental and that there are uncountably many of them since they are in bijection
with the in�nite binary decimal sequences.

• Observe that all of the numbers constructed in (b) are transcendental and also their absolute values

are less or equal to the number α from (a). Since α <
∑∞

k=0

1

2k
= 2 we see that all of them lie in

the open interval (−2, 2).
• Putting all of this together yields the claimed result that there are uncountably many transcendental
numbers in the interval (−2, 2).

(d) Conclude in fact that there are uncountably many transcendental numbers in any open interval (a, b) for
any a < b.

• We can just rescale (−2, 2) by a rational multiple and then translate by a rational amount to make it
land inside (a, b). Since these two operations preserve transcendentality and (−2, 2) has uncountably
many transcendentals by (c), so does (a, b).

5



7. [Challenge] It is a theorem of Hurwitz, mentioned in class, that if α is an arbitrary irrational number, then

there exist in�nitely many p/q with

∣∣∣∣α− p

q

∣∣∣∣ < 1√
5 q2

. The goal of this problem is to prove that
√
5 cannot

be replaced by any larger constant (i.e., that Hurwitz's theorem is sharp). So let C >
√
5.

(a) Let ϕ =
1 +
√
5

2
= [1, 1, 1, 1, . . . ] be the golden ratio and suppose that

∣∣∣∣ϕ− p

q

∣∣∣∣ < 1

Cq2
. Show that

p

q
=
Fn+1

Fn
for some positive integer n, where Fn is the nth Fibonacci number, de�ned by F1 = F2 = 1

and Fn+1 = Fn + Fn−1 for each n ≥ 1.

• Because C >
√
5 > 2, by our results we know that any rational number with

∣∣∣∣ϕ− p

q

∣∣∣∣ < 1

Cq2
must

be a continued fraction convergent to ϕ.

• As we noted in class, and is easy to prove via induction, the convergents to ϕ are ratios of consecutive

Fibonacci numbers. Thus,
p

q
=
Fn+1

Fn
for some n ≥ 1.

(b) Suppose α = [a0, a1, a2, . . . ]. Show that

∣∣∣∣α− pn
qn

∣∣∣∣ = 1

qn(αn+1qn + qn−1)
.

• Note that α = [a0, a1, a2, . . . , an, αn+1] =
αn+1pn + pn−1
αn+1qn + qn−1

, and so α− pn
qn

=
αn+1pn + pn−1
αn+1qn + qn−1

− pn
qn

=

pn−1qn − pnqn−1
qn(αn+1qn + qn−1)

=
(−1)n−1

qn(αn+1qn + qn−1)
.

• Taking the absolute value then gives the desired expression immediately.

(c) Show that

∣∣∣∣ϕ− Fn+1

Fn

∣∣∣∣ = 1

F 2
n(ϕ+ Fn−1/Fn)

and that lim
n→∞

[ϕ+ Fn−1/Fn] =
√
5.

• The �rst statement is immediate from the identity proven in (b), since the nth convergent of ϕ

is
Fn+1

Fn
as shown in (a) and the remainder term αn+1 is always ϕ from the continued fraction

expansion.

• For the second part, note lim
n→∞

Fn−1

Fn
=

1

ϕ
=

√
5− 1

2
, so lim

n→∞
[ϕ+

Fn−1

Fn
] =

√
5 + 1

2
+

√
5− 1

2
=
√
5.

(d) Deduce that if C >
√
5, then there are only �nitely many rational numbers p/q such that

∣∣∣∣ϕ− p

q

∣∣∣∣ < 1

Cq2
.

• Suppose C >
√
5 and that

∣∣∣∣ϕ− p

q

∣∣∣∣ < 1

Cq2
. By (a), we know that

p

q
=
Fn+1

Fn
for some n. So then by

(c) we know that

∣∣∣∣ϕ− Fn+1

Fn

∣∣∣∣ = 1

F 2
n(ϕ+ Fn−1/Fn)

.

• However, since the second term in the denominator has limit
√
5 as n → ∞, there are only �nitely

many n for which ϕ+Fn−1/Fn > C and therefore only �nitely many n for which

∣∣∣∣ϕ− Fn+1

Fn

∣∣∣∣ < 1

CF 2
n

.

Hence there are only �nitely many rational numbers with

∣∣∣∣ϕ− p

q

∣∣∣∣ < 1

Cq2
, as claimed.
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