
E. Dummit's Math 4527 ∼ Number Theory 2, Spring 2025 ∼ Homework 2 Solutions

1. Express the following continued fractions as real numbers:

(a) [3, 1, 4, 1, 5].

• Either using the convergent recurrence or just writing it out, we get [3, 1, 4, 1, 5] =
134

35
.

(b) [1, 2, 3].

• If α = [1, 2, 3], then α = 1 +
1

2 +
1

3 +
1

α

=
10α+ 3

7α+ 2
.

• Thus α(7α+ 2) = 10α+ 3, so α =
4±
√
37

7
. Since α > 1, we see α =

4 +
√
37

7
.

(c) [3, 2, 1].

• If α = [3, 2, 1], then α = 3 +
1

2 +
1

1 +
1

α

=
10α+ 7

3α+ 2
.

• Thus α(3α+ 2) = 10α+ 7, so α =
4±
√
37

3
. Since α > 3, we see α =

4 +
√
37

3
.

(d) [3, 1, 2].

• If α = [3, 1, 2], then α = 3 +
1

1 +
1

2 +
1

α

=
11α+ 4

3α+ 1
.

• Thus α(3α+ 1) = 11α+ 4, so α =
5±
√
37

3
. Since α > 3, we see α =

5 +
√
37

3
.

(e) [3, 1, 2].

• If α = [1, 2], then α = 1 +
1

2 +
1

α

=
3α+ 1

2α+ 1
.

• Thus α(2α+ 1) = 3α+ 1, so α =
1±
√
3

2
. Since α > 3, we see α =

1 +
√
3

2
.

• Then [3, 1, 2] = 3 +
1

α
= 2 +

√
3 .

(f) [1, 2, 1, 9, 1].

• If α = [1, 9, 1], then α = 1 +
1

9 +
1

1 +
1

α

=
11α+ 10

10α+ 9
.

• Thus α(11 + 10α) = 10α+ 9, so α =
1±
√
101

10
. Since α > 1, we see α =

1 +
√
101

10
.

• Then [1, 2, 1, 9, 1] = 1 +
1

2 +
1

α

=
45−

√
101

26
.

1



2. Find the continued fraction expansion, and the �rst �ve convergents, for each of the following:

(a)
√
3.

• We use the algorithm described in the notes: with α =
√
3, we set a0 = bαc, and then for each i ≥ 1

we take αi =
1

αi−1 − ai−1
, and ai = bαic.

• With α =
√
3, we �nd, successively,

n 0 1 2 · · ·

αn
√
3

√
3 + 1

2

√
3 + 1 · · ·

an 1 1 2 · · ·

αn − an
√
3− 1

√
3− 1

2

√
3− 1 · · ·

and since each term after this will repeat, we see that
√
3 = [1, 1, 2] . The �rst 5 convergents are

[1] = 1, [1, 1] = 2, [1, 1, 2] = 5/3, [1, 1, 2, 1] = 7/4, [1, 1, 2, 1, 2] = 19/11.

(b)
√
11.

• With α =
√
11, we �nd, successively,

n 0 1 2 · · ·

αn
√
11

√
11 + 3

2

√
11 + 3 · · ·

an 3 3 6 · · ·

αn − an
√
11− 3

√
11− 3

2

√
11− 3 · · ·

and since each term after this will repeat, we see that
√
11 = [3, 3, 6] . The �rst 5 convergents are

[3] = 3, [3, 3] = 10/3, [3, 3, 6] = 63/19, [3, 3, 6, 3] = 199/60, [3, 3, 6, 3, 6] = 1257/379.

(c)
4 +
√
13

5
.

• With α =
4 +
√
13

5
, we �nd, successively,

n 0 1 2 3 4 · · ·

αn

√
13 + 4

5

5
√
13 + 5

12

5
√
13 + 7

23

5
√
13 + 16

3

5
√
13 + 17

12
· · ·

an 1 1 1 11 2 · · ·

αn − an
√
13− 1

5

5
√
13− 7

12

5
√
13− 16

23

5
√
13− 17

3

5
√
13− 7

12
· · ·

and since each term after this will repeat, we see that
4 +
√
13

5
= [1, 1, 1, 11, 2] . The �rst 5

convergents are [1] = 1, [1, 1] = 2, [1, 1, 1] = 3/2, [1, 1, 1, 11] = 35/23, [1, 1, 1, 11, 2] = 73/48.
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3. Find the rational number with denominator less than N closest to each of the following real numbers α:

(a) α =
√
13, N = 100.

• We have the continued fraction expansion
√
13 = [3, 1, 1, 1, 1, 6], so the �rst few convergents are 3,

4, 7/2, 11/3, 18/5, 119/33, 137/38, 256/71.

• The last two convergents with denominator less than 100 are 137/38 and 256/71. There are no terms
of the Farey sequence of level 99 between them.

• We compute
√
13− 137/38 ≈ 2.8812 · 10−4 and

√
13− 256/71 ≈ −8.2528 · 10−5 so the best approxi-

mation is 256/71 .

(b) α =
√
2, N = 100.

• We have the continued fraction expansion
√
2 = [1, 2], so the �rst few convergents are 1, 3/2, 7/5,

17/12, 41/29, 99/70, 239/169, and so on.

• The last two convergents with denominator less than 100 are 41/29 and 99/70. The only term
between them in the Farey sequence of level 99 is their mediant, 140/99.

• We can then compute that
√
2−41/29 ≈ 4.205 ·10−4,

√
2−140/99 ≈ 7.2148 ·10−5, and

√
2−99/70 ≈

−7.2152 · 10−5. Thus, the best approximation is 140/99 (but just barely!).

(c) α = e, N = 10000. [Hint: See problem 9 for the continued fraction expansion of e.]

• From problem 7 we have the continued fraction expansion e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . . ]
so the �rst few convergents are 2, 3, 8/3, 11/4, 19/7, 87/32, 193/71, 1264/465, 1457/536, 2721/1001,
23225/8544, 25946/9545, 49171/18089, and so on.

• The last two convergents with denominator less than 10000 are 23225/8544 and 25946/9545. Since
their mediant is actually the next term 49171/18089, there are no terms between them in the Farey
sequence of level 10000.

• We can then compute e− 23225/8544 ≈ −6.7469 · 10−9 while e− 25946/9545 ≈ 5.5151 · 10−9, so the

best approximation is 25946/9545 .

4. Find a rational number with denominator less than the given bound that agrees with the given real number
to the number of decimal places shown:

(a) 0.2598425196850, denominator less than 1,000.

• We have 0.2598425196850 = [0, 3, 1, 5, 1, 1, 1, 1, 1574803149].

• We truncate the enormous �nal term to obtain [0, 3, 1, 5, 1, 1, 1, 1] = 33/127 .

• Computing the decimal expansion shows it is indeed equal to 0.2598425196850....

(b) 0.876638301211979, denominator less than 100,000.

• We have 0.876638301211979 = [0, 1, 7, 9, 2, 2, 2, 1, 5, 1, 1, 4, 1, 261056, 1, 4, 2, 1, 2, 1, 5, 4, 4, 1, 5].

• We truncate ahead of the very large middle term to obtain [0, 1, 7, 9, 2, 2, 2, 1, 5, 1, 1, 4, 1] = 78190/89193 .

• Computing the decimal expansion shows it is indeed equal to 0.876638301211979....

(c) 0.0104091625364964, denominator less than 1,000,000.

• We have 0.0104091625364964 = [0, 96, 14, 2, 4, 2, 2, 1, 2, 1, 1, 1, 12950, 1, 1, 3, 11, 1, 23, 2, 3, 6, 2].

• We truncate ahead of the very large middle term to obtain [0, 96, 14, 2, 4, 2, 2, 1, 2, 1, 1, 1] = 10100/970299 .

• Computing the decimal expansion shows it is indeed equal to 0.0104091625364964....
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5. Let α = [3] = [3, 3, 3, 3, 3, 3, 3, . . . ].

(a) Find α.

• We have α = 3 + 1/α so α2 − 3α− 1 = 0 so since 3 < α < 4 we have α = (3 +
√
13)/2 .

(b) The �rst convergent to α is 3. Find the next �ve convergents to α.

• Using the magic box we obtain 10/3, 33/10, 109/33, 360/109, 1189/360.

(c) Show that the nth convergent to α is the ratio sn/sn−1 where s0 = 1, s1 = 3, and for n ≥ 2, sn+1 =
3sn + sn−1. Deduce limn→∞ sn+1/sn = α.

• The numerator and denominator recurrences are pn+1 = 3pn + pn−1 and qn+1 = 3qn + qn−1. Since
p0 = 1, p1 = 3, p2 = 10 while q0 = 0, q1 = 1, q2 = 3 we see that p0 = q1 = s0 and p1 = q2 = a1 so
by induction since the sequences satisfy the same recurrences and have the same initial conditions,
we see pn = sn and qn = sn−1 for all n.

• The last part follows immediately from the fact that the sequence of convergents converges to α.

6. The goal of this problem is to give a method for manipulating continued fractions using linear algebra. So
suppose a0, a1, . . . , an, . . . is a sequence of positive integers and set pn/qn = [a0, a1, . . . , an] for each n.

(a) Prove that

[
pn qn
pn−1 qn−1

]
=

[
an 1
1 0

] [
an−1 1
1 0

]
· · ·

[
a0 1
1 0

]
.

• First, we have

[
pn qn
pn−1 qn−1

]
=

[
anpn−1 + pn−2 anqn−1 + qn−2

pn−1 qn−1

]
=

[
an 1
1 0

] [
pn−1 qn−1
pn−2 qn−2

]
,

which is simply a rewriting of the recurrence relation pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

• Therefore, by a trivial induction, we see that

[
pn qn
pn−1 qn−1

]
=

[
an 1
1 0

] [
an−1 1
1 0

]
· · ·

[
a1 1
1 0

]
,

since

[
p1 q1
p0 q0

]
=

[
1 0
0 1

]
is the identity matrix.

(b) Show that pnqn−1 − pn−1qn = (−1)n+1. [Hint: Determinant.]

• Take the determinant of the identity from (a): each of the matrices on the right has determinant −1,
so by the multiplicativity of the determinant we immediately deduce that pnqn−1−pn−1qn = (−1)n+1.

(c) Show that [an, an−1, . . . , a0] = pn/pn−1 and that [an, an−1, . . . , a1] = qn/qn−1. [Hint: Transpose.]

• Take the transpose of the identity from (a): each of the matrices on the right is symmetric, so the
transpose is simply the product in reverse order.

• We obtain

[
pn pn−1
qn qn−1

]
=

[
a0 1
1 0

] [
a1 1
1 0

]
· · ·

[
an 1
1 0

]
.

• But by part (a), the right-hand side is equal to

[
p′n p′n−1
q′n q′n−1

]
, where p′0/q

′
0, p

′
1/q
′
1, . . . , p

′
n/q
′
n are

the convergents to the continued fraction [an, an−1, . . . , a0] with terms in reverse order. Thus, by
part (a) again, its nth convergent [an, an−1, . . . , a0] must equal pn/pn−1 and its (n− 1)st convergent
[an, an−1, . . . , a1] must equal qn/qn−1.
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7. The goal of this problem is to give another proof of Dirichlet's Diophantine approximation theorem (in-
deed, this is essentially Dirichlet's original proof, and it represents the �rst recognized use of the pigeonhole
principle). Let α be an irrational real number.

(a) Let n be a positive integer. Show that the fractional parts of some two of of 0, α, 2α, ... , nα must be

within
1

n+ 1
of each other. [Hint: Pigeonhole, paying attention to the intervals near 0.]

• Following the hint, consider the n+ 1 intervals [0, 1
n+1 ), [

1
n+1 ,

2
n+1 ), ... , [

n
n+1 , 1).

• Each of the n fractional parts lands in one of these intervals. If there is a term in either of the
intervals at the end, then it is a distance less than 1

n+1 from zero.

• Otherwise, by the pigeonhole principle, we have n nonzero fractional parts that land in n−1 intervals,
so some two must be in the same interval hence have a di�erence less than 1

n+1 .

(b) Let n be a positive integer. Show that there exists a positive integer q ≤ n and an integer p such that
|qα− p| < 1

n+1 . [Hint: If cα and dα have fractional parts near each other, consider (c− d)α.]

• By (a), the fractional parts of some cα and dα for 0 ≤ c, d ≤ n must di�er by less than 1
n+1 , which

is to say, the number cα− dα = (c− d)α di�ers from an integer by less than 1
n+1 .

• Taking q = |c− d| and taking p to be that integer (with appropriate sign) we see that |qα− p| < 1
n+1

as required.

(c) Show that there exist in�nitely many pairs of integers (p, q) such that |qα− p| < 1/q.

• Apply (b) to an increasing sequence of values of n; since q ≤ n we see |qα− p| < 1
n+1 <

1
q as needed.

• Now, since α is irrational, each of the values |qα− p| is positive, and so for any �nite list of pairs
(p, q), we can use (b) to construct a new one by choosing n large enough to force |qα− p| to be less
than the corresponding value for all of the pairs (p, q) on our list.

• Thus, there exist in�nitely many pairs of integers (p, q) such that |qα− p| < 1/q, as claimed.

8. Let D > 1 be a nonsquare integer. The goal of this problem is to show that rational approximations of
√
D

cannot be �too good�.

(a) Suppose that p/q is rational. Show that

∣∣∣∣√D − p

q

∣∣∣∣ ≥ 1

3q2
√
D
. [Hint: Suppose

∣∣∣p− q√D∣∣∣ < 1
3q
√
D
.

Explain why
∣∣∣p+ q

√
D
∣∣∣ < 2q

√
D + 1

3q
√
D
, then multiply these inequalities.]

• Suppose by way of contradiction that
∣∣∣√D − p

q

∣∣∣ < 1
3q2
√
D

so that upon multiplying by q we have∣∣∣p− q√D∣∣∣ < 1
3q
√
D
. This is equivalent to − 1

3q
√
D
< p− q

√
D < 1

3q
√
D

hence adding 2q
√
D and then

taking the absolute value yields
∣∣∣p+ q

√
D
∣∣∣ < 2q

√
D + 1

3q
√
D
.

• Now multiplying
∣∣∣p− q√D∣∣∣ < 1

3q
√
D

by
∣∣∣p+ q

√
D
∣∣∣ < 2q

√
D+

1

3q
√
D

yields
∣∣p2 −Dq2∣∣ < 2

3
+

1

9q2D
which is certainly less than 1.

• But this is impossible because p2−Dq2 is an integer and it cannot be zero because
√
D is irrational.

(b) Suppose that ε > 0. Show that there are only �nitely many rationals p/q such that

∣∣∣∣√D − p

q

∣∣∣∣ < 1

q2+ε
.

• By (a) we have

∣∣∣∣√D − p

q

∣∣∣∣ ≥ 1

3q2
√
D
. If this must be less than

1

q2+ε
then we must have q2+ε < 3q2

√
D

which forces q < (3
√
D)1/ε which is �nite.

• Thus there are only �nitely many possible q and so there are only �nitely many possible p/q satisfying
the inequality.
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9. [Challenge] The goal of this problem is to obtain the continued fraction expansion e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, . . . ].
Let β = [1, 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, . . . ] be the real number with continued fraction terms a3i = 1, a3i+1 = 2i,
and a3i+2 = 1 for each i ≥ 0, and let Ci = pi/qi be its convergents.

(a) Show that the convergents Ci = pi/qi have numerators and denominators satisfying the recurrences

p3n = p3n−1 + p3n−2 q3n = q3n−1 + q3n−2

p3n+1 = 2np3n + p3n−1 q3n+1 = 2nq3n + q3n−1

p3n+2 = p3n+1 + p3n q3n+2 = q3n+1 + q3n

with initial values p0 = p1 = q0 = q2 = 1, q1 = 0, and p2 = 2.

• These all follow from the recursive de�nitions pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2. The
initial values are also immediate from the initial expansion: p0/q0 = [1] = 1/1, p1/q1 = [1, 0] = 1/0,
p2/q2 = [1, 0, 1] = 2/1.

(b) Now de�ne the integralsAn =

ˆ 1

0

xn(x− 1)n

n!
ex dx, Bn =

ˆ 1

0

xn+1(x− 1)n

n!
ex dx, Cn =

ˆ 1

0

xn(x− 1)n+1

n!
ex dx.

Show that An = −Bn−1 −Cn−1, Bn = −2nAn +Cn−1, and Cn = Bn −An, and also that limn→∞An =
limn→∞Bn = limn→∞ Cn = 0. [Hint: For the �rst two, compute the derivatives of 1

n!x
n(x− 1)nex and

1
n!x

n(x− 1)n+1ex and then integrate both sides from x = 0 to x = 1.]

• Following the hint, we compute
d

dx

[
1

n!
xn(x− 1)nex

]
=

1

(n− 1)!
xn−1(x − 1)nex +

1

(n− 1)!
xn(x −

1)n−1ex+
1

n!
xn(x− 1)nex. Integrating both sides from 0 to 1 yields Cn−1 +Bn−1 +An =

1

n!
xn(x−

1)nex|1x=0 = 0, and so An = −Bn−1 − Cn−1.

• Similarly, we also have
d

dx

[
1

n!
xn(x− 1)n+1ex

]
=

1

(n− 1)!
xn−1(x− 1)n+1ex +

n+ 1

n!
xn(x− 1)nex +

1

n!
xn(x−1)n+1ex. The �rst term is

1

(n− 1)!
xn−1(x−1)n−1[x(x−1)−(x−1)]ex =

n

n!
xn(x−1)nex−

1

(n− 1)!
xn−1(x−1)nex. Thus, integrating both sides from 0 to 1 yields nAn−Bn+(n+1)An+Cn = 0,

so that Bn = −2nAn + Cn−1.

• Finally, for the third relation, we have xn(x − 1)n + xn(x − 1)n+1 = xn+1(x − 1)n, so scaling
appropriately and integrating yields An + Cn = Bn and thus Cn = Bn −An.

• For the limits as n → ∞, on [0, 1] note that

∣∣∣∣xn(x− 1)2

n!
ex
∣∣∣∣ ≤ e

n!
since all the other terms are

between 0 and 1 on [0, 1]. Therefore, |An| ≤
e

n!
→ 0 as n → ∞. The integrands in Bn and Cn are

also bounded above by
e

n!
in the same way, so their limits are also 0 as n→∞.

(c) With notation as in part (b), show that An = −(p3n − q3ne), Bn = p3n+1 − q3n+1e, and Cn = p3n+2 −
q3n+2e. [Hint: Show that An, Bn, Cn satisfy the same recurrences as the given combinations of pn, qn
and also have the same initial values.]

• Note A0 =
´ 1
0
ex dx = e1−e0 = e−1, B0 =

´ 1
0
xex dx = (xex−ex)|1x=0 = 1, and C0 =

´ 1
0
(x−1)ex dx =

(xex − 2ex)|1x=0 = 2− e.
• By (b) we see that An, Bn, Cn satisfy the same recurrences as pn, qn and hence also any linear
combination of pn, qn. By the calculation above we see that An = −(p3n−q3ne), Bn = p3n+1−q3n+1e,
and Cn = p3n+2 − q3n+2e all hold when n = 0, so by a trivial induction, we obtain the relations
above.

(d) Conclude that β = lim
i→∞

pi/qi = e, and from this fact deduce the continued fraction expansion of e.

• Note
p3n
q3n
−e = An

q3n
→ 0,

p3n+1

q3n+1
−e = − Bn

q3n+1
→ 0, and

p3n+2

q3n+2
−e = − Cn

q3n+2
→ 0. Thus lim

i→∞

pi
qi

= e.

• The continued fraction of e is therefore given by the same expansion as β, except with the zero term
cleaned up: this yields e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, . . . ] as claimed.

Remark: This argument was originally given by Hermite, and is adapted from an article of H.A. Cohn.
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