E. Dummit’s Math 4527 ~ Number Theory 2, Spring 2025 ~ Homework 2 Solutions

1. Express the following continued fractions as real numbers:

(a) [3,1,4,1,5].
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e Either using the convergent recurrence or just writing it out, we get [3,1,4,1,5] = 3 |
(b) [L,2,3].
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e Thus a(7a+2) = 10a + 3, s0 a = — Since a > 1, we see a = % .
(c) [3.2,1].
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e Thus a(3a+2) = 10a+ 7,80 a = — Since a > 3, we see @ = % .
(d) [3.1,2].
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e Thus a(3a+1) =1la+4,s0 a = —3 Since a > 3, we see o = % .
(e) [3,1,2].
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e Thus a(2a+1) =3a+ 1,80 a = 2\/3. Since a > 3, we see a = +2\[.
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(f) [1,2,1,9,1].
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2. Find the continued fraction expansion, and the first five convergents, for each of the following:

(a) V3.

o We use the algorithm described in the notes: with o = \/3, we set ag = |/, and then for each i > 1

1
we take oy = ——— and a; = |-
Qi1 — Qi1

e With o = /3, we find, successively,

n 0 1 2
3+1
an V3 \f; V3+1
G, 1 1 2
3-1
an —a, V3-1 \fz V3 -1

and since each term after this will repeat, we see that v/3 = [[1,1,2]| The first 5 convergents are
[1] =1, [17 ]-] =2, [L 172] = 5/37 [17 1,2, 1] = 7/47 [17 1,2, 172] = 19/11

(b) Vv11.
e With a = /11, we find, successively,

n 0 1 2
ViTl+3
an Vil TjL VIT+3
a, 3 3 6
Vil-3
n—an VIT-3 Y0 V-3

and since each term after this will repeat, we see that v/11 = |[3,3,6] | The first 5 convergents are
(3] =3, [3,3] = 10/3, [3,3,6] = 63/19, [3,3,6,3] = 199/60, [3,3,6,3,6] = 1257/379.

4413
(c) 5
4 13
e With a = +T\/>’ we find, successively,
n 0 1 2 3 4
N V13+4 5V13+5 513+ 7 513416 5V13+17
" 5 12 23 3 12
an 1 1 1 11 2
o V13—1 5V13—7 5V13—-16 5V13—-17 5V13-7
noon 5 12 23 3 12
4 1 —
and since each term after this will repeat, we see that %\/73 =|[1,1,1,11,2]| The first 5

convergents are [1] =1, [1,1] =2, [1,1,1] =3/2, [1,1,1,11] = 35/23, [1,1,1,11,2] = 73/48.




3. Find the rational number with denominator less than N closest to each of the following real numbers a:

(a) o =+/13, N = 100.
e We have the continued fraction expansion v/13 = [3,T,1,1, 1, 6], so the first few convergents are 3,
4,7/2,11/3, 18/5, 119/33, 137/38, 256/71.
e The last two convergents with denominator less than 100 are 137/38 and 256/71. There are no terms
of the Farey sequence of level 99 between them.
e We compute v/13 — 137/38 ~ 2.8812-10~* and /13 — 256/71 ~ —8.2528 - 10~° so the best approxi-

mation is | 256/71 |
(b) a=+/2, N = 100.
e We have the continued fraction expansion /2 = [1,2], so the first few convergents are 1, 3/2, 7/5,
17/12, 41/29, 99/70, 239/169, and so on.

e The last two convergents with denominator less than 100 are 41/29 and 99/70. The only term
between them in the Farey sequence of level 99 is their mediant, 140/99.

e We can then compute that v/2—41/29 ~ 4.205-107%, v/2—140/99 ~ 7.2148-107°, and v/2—99/70 ~
—7.2152-107°. Thus, the best approximation is | 140/99 | (but just barely!).

(c) @ =€, N =10000. [Hint: See problem 9 for the continued fraction expansion of e.]

e From problem 7 we have the continued fraction expansion e = [2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,...]
so the first few convergents are 2, 3, 8/3, 11/4, 19/7, 87/32, 193/71, 1264/465, 1457/536, 2721/1001,
23225/8544, 25946 /9545, 49171/18089, and so on.

e The last two convergents with denominator less than 10000 are 23225/8544 and 25946/9545. Since
their mediant is actually the next term 49171/18089, there are no terms between them in the Farey
sequence of level 10000.

e We can then compute e — 23225/8544 ~ —6.7469 - 10~° while e — 25946,/9545 ~ 5.5151 - 1072, so the

best approximation is | 25946,/9545 |.

4. Find a rational number with denominator less than the given bound that agrees with the given real number
to the number of decimal places shown:
(a) 0.2598425196850, denominator less than 1,000.
e We have 0.2598425196850 = [0,3,1,5,1,1,1, 1,1574803149].

e We truncate the enormous final term to obtain [0,3,1,5,1,1,1,1] =|33/127|.

e Computing the decimal expansion shows it is indeed equal to 0.2598425196850....
(b) 0.876638301211979, denominator less than 100,000.
e We have 0.876638301211979 = [0,1,7,9,2,2,2,1,5,1,1,4,1,261056,1,4,2,1,2,1,5, 4,4,1,5].
e We truncate ahead of the very large middle term to obtain [0,1,7,9,2,2,2,1,5,1,1,4,1] = .
e Computing the decimal expansion shows it is indeed equal to 0.876638301211979....
(c) 0.0104091625364964, denominator less than 1,000,000.
o We have 0.0104091625364964 = [0,96,14,2,4,2,2,1,2,1,1,1,12950,1,1,3,11,1,23,2,3,6,2).

e We truncate ahead of the very large middle term to obtain [0, 96,14, 2,4,2,2,1,2,1,1,1] =|10100/970299 |.

e Computing the decimal expansion shows it is indeed equal to 0.0104091625364964....




5. Let a = [3] = [3,3,3,3,3,3,3,...].

(a) Find «.

e We have o =3+ 1/ars0 a® — 3a — 1 = 0 so since 3 < a < 4 we have o =| (34 V13)/2|

(b) The first convergent to « is 3. Find the next five convergents to a.
e Using the magic box we obtain 10/3, 33/10, 109/33, 360,/109, 1189/360.

(c¢) Show that the nth convergent to « is the ratio s,/s,—1 where s = 1, 51 = 3, and for n > 2, s,4; =
38y + Sn—1. Deduce lim,,_, oo Spy1/8n = .

e The numerator and denominator recurrences are p,+1 = 3p, + pn—1 and gp4+1 = 3¢n + ¢n—1. Since
po =1, p1 =3, po = 10 while go =0, ¢1 = 1, g2 = 3 we see that pyp = q1 = sp and p1 = ¢2 = a3 so
by induction since the sequences satisfy the same recurrences and have the same initial conditions,
we see p, = S, and ¢, = s,_1 for all n.

e The last part follows immediately from the fact that the sequence of convergents converges to .

6. The goal of this problem is to give a method for manipulating continued fractions using linear algebra. So
suppose ag, a1, ..., 0, ... is a sequence of positive integers and set p,/q, = |ap, a1, ..., a,] for each n.

Pn qn _ | an 1 p-1 1 ] @o 1
(a) Prove that {pnl s } = [ 10 } [ 1 0 } [ 10 ]
Dn qn :| — |: AnpPn—1 +pn72 AnQn—1 +Qn72 :| — |: Qnp 1 :| |: Pn-1 4n-1 :|

Pn—1 gn-1 Pn—1 dn—1 1 0 Pn—2 (4n—2
which is simply a rewriting of the recurrence relation p, = anprn—1 + Pn—2, @n = @ndn-1 + Gn_2-

T . Dn Qn a1 ap_1 1 | a 1
e Therefore, by a trivial induction, we see that [ Pt Gnes } = [ 10 ] [ 1 0 } [ 1 0 ],

e First, we have [

since | P19 | = 10 is the identity matrix.
Po 9o 01

(b) Show that p,gn—1 — Pn_1¢n = (—1)"T1. [Hint: Determinant.|

e Take the determinant of the identity from (a): each of the matrices on the right has determinant —1,
so by the multiplicativity of the determinant we immediately deduce that p,g,—1—pn_1¢n, = (—1)" 1.

(c) Show that [an,an—1,...,a0] = Pn/Pn—1 and that [ay,an—_1,...,a1] = gn/qn—1. [Hint: Transpose.]

e Take the transpose of the identity from (a): each of the matrices on the right is symmetric, so the
transpose is simply the product in reverse order.

: DPn Pn—1 | _ | ao 1 ar 1| |an 1
oWeobtaln[qn %1}_[1 0}{1 0} [1 0}.

/ /
e But by part (a), the right-hand side is equal to [ p,” p,”_l ], where py/qh, Pi/4%, - -, PL/4, are
n n—1
the convergents to the continued fraction [a,,a,—1,...,ap] with terms in reverse order. Thus, by
part (a) again, its nth convergent [a,, ap—1, ..., ap] must equal p, /p,—1 and its (n — 1)st convergent

[@n,@n_1,...,a1] must equal q,/qn_1.




7. The goal of this problem is to give another proof of Dirichlet’s Diophantine approximation theorem (in-
deed, this is essentially Dirichlet’s original proof, and it represents the first recognized use of the pigeonhole
principle). Let « be an irrational real number.

(a) Let n be a positive integer. Show that the fractional parts of some two of of 0, ¢, 2¢, ... , na must be

within

1 of each other. [Hint: Pigeonhole, paying attention to the intervals near 0.]
1 1 2

’T—Q—l)’ [7L+1’m)’ LI [nL_Hv 1)

e Each of the n fractional parts lands in one of these intervals. If there is a term in either of the
intervals at the end, then it is a distance less than %_H from zero.

e Following the hint, consider the n + 1 intervals [0

e Otherwise, by the pigeonhole principle, we have n nonzero fractional parts that land in n—1 intervals,

so some two must be in the same interval hence have a difference less than nT-l

(b) Let n be a positive integer. Show that there exists a positive integer ¢ < n and an integer p such that
go —p| < int: If ca and do have fractional parts near each other, consider (c — d)a.
n+1 Hint: If d da have fractional part h oth id d

e By (a), the fractional parts of some ca and da for 0 < ¢,d < n must differ by less than ?, which
1

n+1"*
e Taking ¢ = |c — d| and taking p to be that integer (with appropriate sign) we see that |ga — p| < n+1
as required.

is to say, the number ca — da = (¢ — d)« differs from an integer by less than

(c) Show that there exist infinitely many pairs of integers (p, ¢) such that |qo — p| < 1/q.

e Apply (b) to an increasing sequence of values of n; since ¢ < n we see |ga — p| < TH <1 g 8 needed.

e Now, since « is irrational, each of the values |ga — p| is positive, and so for any finite hst of pairs
(p,q), we can use (b) to construct a new one by choosing n large enough to force |gae — p| to be less
than the corresponding value for all of the pairs (p, q) on our list.

e Thus, there exist infinitely many pairs of integers (p, ¢) such that |ga — p| < 1/g, as claimed.

8. Let D > 1 be a nonsquare integer. The goal of this problem is to show that rational approximations of v/ D
cannot be “too good”.

(a) Suppose that p/q is rational. Show that ‘\/5— b
q

1
> —. int: — L.
32D [Hint: Suppose ‘p q\/D’ < 37D
Explain why ‘p + q\/D‘ < 2qvD + ﬁ, then multiply these inequalities.]

< # so that upon multiplying by ¢ we have

e Suppose by way of contradiction that ’\/ﬁ —t

D and then

1 .. . 1
’p*qxf’ 30D This is equivalent to—3 75

taking the absolute value yields ‘p + q\F’ < 2¢qvVD + % \/»

e Now multiplying ‘p — qf’ by ’p + qf‘ < 2¢vVD+

which is certainly less than 1.

1

2
yields [p* — D¢?| < = +9 )

\F
e But this is impossible because p? — Dg? is an integer and it cannot be zero because v/D is irrational.

1
\F—z‘<

q2+e

(b) Suppose that € > 0. Show that there are only finitely many rationals p/q such that

p 1
VD - = = 52VD
which forces ¢ < (E’n/»)l/6 whlch is finite.
e Thus there are only finitely many possible ¢ and so there are only finitely many possible p/q satisfying
the inequality.

e By (a) we have

1
If this must be less than e then we must have ¢>*t¢ < 3¢V D
q




9. [Challenge] The goal of this problem is to obtain the continued fraction expansion e = [2,1,2,1,1,4,1,1,6,1,1, ...

Let 8 =11,0,1,1,2,1,1,4,1,1,6,...] be the real number with continued fraction terms as; = 1, az;+1 = 24,
and ag; 2 = 1 for each ¢ > 0, and let C; = p;/qg; be its convergents.

(a) Show that the convergents C; = p;/¢; have numerators and denominators satisfying the recurrences

P3n = DP3n—1 T D3n—2 Q3n = q3n—1 + q3n—2
DP3ntl = 2np3, + P3n—1 G3n+1 = 2NG3n + q3n—1
P3n+2 = P3n+1 + P3n d3n+2 = 43n+1 + d3n

with initial values pg =p1 =qo=¢2 =1, ¢1 =0, and py; = 2.
e These all follow from the recursive definitions py = agpr—1 + pr—2 and qx = axqr—1 + qr—2. The
initial values are also immediate from the initial expansion: po/qo = [1] = 1/1, p1/q1 = [1,0] = 1/0,
pg/gg = [1,0, 1] = 2/1

(b) Now define the integrals A,, = ' ' '
n! n! n!

0 0
Show that A, = —B,_1—C,_1, B, = —2nA, + C,_1, and C,, = B,, — A,,, and also that lim,,_,. 4, =

limy, 00 By, = lim,, o0 Cp, = 0. [Hint: For the first two, compute the derivatives of %x"(a: —1)"e® and

La"(z —1)"*'e” and then integrate both sides from z =0 to z = 1.]

d |1 1 1
e Following the hint, we compute e [n'x"(x - 1)"6"”} = mm”_l(x —1)"e” + mw”(m
1 1
1) te® + —a"(x —1)"e”. Integrating both sides from 0 to 1 yields Cp,—1 + Bn—1 + Ap = —a"(z —
n! n!
H"e*|l_, =0, and so 4, B,_1—Ch_q.
d |1 1 1
e Similarly, we also have o [n'x"(:): - 1)"“69”] = mm”*(x —1)ntleT 4 %x”(x —1)"e” +
1 1 n
_en _1\n+1l,x ; n—1 _1\n—1 _ _ _ T _ " n _1\npT _
i (x—1)"*1e®. The first term is = 1)!36 (z—1)"tz(z—-1)—(x—1)e i (x—1)"e

ﬁx"‘l(az—l)”e? Thus, integrating both sides from 0 to 1 yields nA,,— B,+(n+1)A,+C,, =0,
so that B, = —2nA, + C,_1.
e Finally, for the third relation, we have z"(z — 1)" + 2™(xz — 1)"*! = z"*!(z — 1)", so scaling
appropriately and integrating yields A,, + C,, = B,, and thus C,, = B,, — A,,.
" (x —1)2
n!

x

e For the limits as n — oo, on [0,1] note that e

e .
< — since all the other terms are
nl

between 0 and 1 on [0, 1] Therefore, |A,| < 3 — 0 as n — co. The integrands in B,, and C,, are
also bounded above by in the same way, so thelr limits are also 0 as n — oo.

(c) With notation as in part (b), show that A, = —(psn — ¢3n€), Bn = D3nt1 — @ant+16, and Cp, = P3pyo —
g3n+2e. [Hint: Show that A,, B,,C, satisfy the same recurrences as the given combinations of p,, qn
and also have the same initial values.]

e Note Ag = f? e?dr =el—e’ =e—1, By = fol re® drv = (ze®—e®)|L_
(xe® —2e®)|,_g=2—e.
e By (b) we see that A,, B,,C, satisfy the same recurrences as p,,q, and hence also any linear

o=1,and Cy = fol(x—l)e” dr =

combination of p,, g,. By the calculation above we see that A,, = —(psn—qsne), Bn = D3n+1—Gq3n+16,
and C), = psp+2 — @3n+2¢€ all hold when n = 0, so by a trivial induction, we obtain the relations
above.

(d) Conclude that § = lim p;/q; = e, and from this fact deduce the continued fraction expansion of e.
11— 00

A B C
ONote@fef—n%O,aner:f B %O,andpigwﬂfe:f " 0. Thus lim 2 =,

4q3n q3n q3n+1 q3n+1 q3n+2 q3n+2 1—00 [
e The continued fraction of e is therefore given by the same expansion as 3, except with the zero term

cleaned up: this yields e = [2,1,2,1,1,4,1,1,6,1,1,...] as claimed.

Remark: This argument was originally given by Hermite, and is adapted from an article of H.A. Cohn.

1, n(,__1\n 1 . n+1l(,._ 1\n 1, n(,.__ 1\n+1
x"(x—1) ¢ dr, B, /x (x—1) ¢ d, O, — x"(x—1)

].

e” dx.



