
E. Dummit's Math 4527 ∼ Number Theory 2, Spring 2025 ∼ Homework 10 Solutions

1. Find reduced quadratic forms equivalent to 17x2− 83xy− 24y2, 16x2− 70xy + 77y2, and 77x2− 56xy + 10y2.

• For 17x2 − 83xy − 24y2, apply T 2 to obtain 17x2 − 15xy − 122y2 . This form is reduced.

• For 16x2− 70xy + 77y2, apply T 2 to obtain 16x2− 6xy + y2. Apply S to obtain x2 + 6xy + 16y2. Apply

T−3 to obtain x2 + 7y2 . This form is reduced.

• For 77x2 − 56xy + 10y2, apply S to obtain 10x2 + 56xy + 77y2. Apply T−3 to obtain 10x2 − 4xy − y2.

Apply S to obtain −x2 + 4xy + 10y2. Apply T 2 to obtain −x2 + 14y2 . This form is reduced.

2. Find the reduced Dirichlet composition of each pair of binary quadratic forms:

(a) The forms x2 + xy + y2 and x2 + xy + y2 of discriminant ∆ = −3.

• Here gcd(a, a′, (b + b′)/2) = gcd(1, 1, (1 + 1)/2) = 1 so we can compose directly.

• Then we take A = aa′, B to be the unique integer in (−A,A] satisfying B ≡ b (mod 2a), B ≡ b′

(mod 2a′), and B2 ≡ ∆ (mod 4aa′), and C = (B2 −∆)/(4A).

• We obtain A = 1 · 1 = 1, B ≡ 1 (mod 2), B ≡ 1 (mod 2), and B2 ≡ −3 (mod 4), so that B = 1, and
then C = (B2 −∆)/(4A) = 1.

• Thus, the Dirichlet composition of x2 + xy + y2 and x2 + xy + y2 is x2 + xy + y2 which is reduced.

(b) The forms 2x2 + 7y2 and 3x2 − 2xy + 5y2 of discriminant ∆ = −56.

• Here gcd(a, a′, (b + b′)/2) = gcd(2, 3, (0− 2)/2) = 1 so we can compose directly.

• Then we take A = aa′, B to be the unique integer in (−A,A] satisfying B ≡ b (mod 2a), B ≡ b′

(mod 2a′), and B2 ≡ ∆ (mod 4aa′), and C = (B2 −∆)/(4A).

• We obtain A = 2 · 3 = 6, B ≡ 0 (mod 4), B ≡ −2 (mod 6), and B2 ≡ −56 (mod 24), so that B = 4,
and then C = (B2 −∆)/(4A) = 3.

• Thus, the Dirichlet composition of 2x2 + 7y2 and 3x2 − 2xy + 5y2 is 6x2 + 4xy + 3y2. This form is

not reduced, but applying S yields 3x2−4xy+6y2 and then T yields the reduced 3x2 + 2xy + 5y2 .

(c) The forms 4x2 + 3xy + 5y2 and 3x2 + xy + 6y2 of discriminant ∆ = −71.

• Here gcd(a, a′, (b + b′)/2) = gcd(4, 3, (1 + 3)/2) = 1 so we can compose directly.

• We obtain A = 2 ·3 = 12, B ≡ 3 (mod 8), B ≡ 1 (mod 6), and B2 ≡ −71 (mod 24), so that B = −5,
and then C = (B2 −∆)/(4A) = 2.

• Thus, the Dirichlet composition of 4x2 + 3xy + 5y2 and 3x2 + xy + 6y2 is 12x2 − 5xy + 2y2. This
form is not reduced, but applying S yields 2x2 + 5xy + 12y2 and then T−1 yields the reduced

2x2 + xy + 9y2 .

(d) The forms 4x2 + 3xy + 5y2 and 2x2 + xy + 9y2 of discriminant ∆ = −71.

• Here gcd(a, a′, (b + b′)/2) = gcd(4, 3, (1 + 3)/2) = 1 so we cannot compose directly.

• However if we apply S to the second form we get 9x2 − xy + 2y2 which will allow us to compose
since now gcd(4, 9, (3 + (−1))/2) = 1.

• We obtain A = 4 · 9 = 36, B ≡ 3 (mod 8), B ≡ −1 (mod 18), and B2 ≡ −71 (mod 108), so that
B = 35, and then C = (B2 −∆)/(4A) = 9.

• Thus, the Dirichlet composition of 4x2 + 3xy + 5y2 and 9x2 − xy + 2y2 is 36x2 + 35xy + 9y2. This
form is not reduced, but applying S yields 9x2− 35xy + 3y2, applying T 2 yields 9x2 + xy + 2y2, and

�nally applying S yields the reduced form 2x2 − xy + 9y2 .
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3. For each discriminant ∆, �nd all reduced quadratic forms of discriminant ∆. For negative ∆, also compute
the class number.

(a) ∆ = 12.

• For f = ax2 + bxy + cy2 with b2 − 4ac = ∆ = 12 we have b even and |a| ≤ 1
2

√
∆ =

√
3 ≈ 1.732, so

a = ±1 and b = 0. So if a = 1 then c = (b2 − 12)/(4a) = −3 while if a = −1 then c = 3.

• This yields the reduced forms x2 − 3y2 and −x2 + 3y2 .

(b) ∆ = 13.

• For f = ax2 + bxy + cy2 with b2 − 4ac = ∆ = 13 we have b odd and |a| ≤ 1
2

√
∆ = 1

2

√
13 ≈ 1.8028,

so a = ±1 and b = 1. Then if a = 1 then c = (b2 − 13)/(4a) = −3 while if a = −1 then c = 3.

• This yields the reduced forms x2 + xy − 3y2 and −x2 + xy + 3y2 .

(c) ∆ = −24.

• For f = ax2 + bxy+ cy2 with b2−4ac = ∆ = −24 we have b even and |a| ≤
√
−∆/3 =

√
8 ≈ 2.8284,

so a = ±1 or ±2 and then b = 0 or b = 2.

• If a = 1 then b = 0 and c = (b2 + 24)/(4a) = 6, while if a = −1 then b = 0 and c = −6.

• If a = 2 and b = 0 then c = 3, while if a = −2 and b = 0 then c = −3.

• Finally, a = ±2 with b = 2 do not yield integral values of c.

• So we obtain four reduced forms: x2 + 6y2 , −x2 − 6y2 , 2x2 + 3y2 , −2x2 − 3y2 .

• There are two reduced positive-de�nite quadratic forms, so since all reduced forms for a �xed ∆ < 0
are inequivalent, the class number is 2 .

(d) ∆ = −23.

• For f = ax2+bxy+cy2 with b2−4ac = ∆ = −23 we have b odd and |a| ≤
√
−∆/3 =

√
23/3 ≈ 2.8284,

so a = ±1 or ±2 and then b = ±1.

• If a = 1 then b = 1 and c = (b2 + 23)/(4a) = 6, while if a = −1 then b = 1 and c = −6.

• If a = 2 and b = ±1 then c = 3, while if a = −2 and b = ±1 then c = −3.

• So we get six forms: x2 + xy + 6y2 , −x2 + xy − 6y2 , 2x2 + xy + 3y2 , 2x2 − xy + 3y2 , −2x2 − xy − 3y2 ,

−2x2 + xy − 3y2 .

• There are three reduced positive-de�nite quadratic forms, so as in (c), the class number is 3 .

(e) ∆ = 40.

• For f = ax2 + bxy + cy2 with b2 − 4ac = ∆ = 40 we have b even and |a| ≤ 1
2

√
∆ = 1

2

√
40 ≈ 3.1623,

so a = ±1,±2,±3 and b = 0,±2.

• If a = 1 then b = 0 and c = (b2 − 40)/(4a) = −10 while if a = −1 then b = 0 and c = 10.

• If a = ±2 and b = 0 then c = ∓5 while if b = ±2 then c = (b2 − 40)/(4a) = ∓9/2 is not integral.

• If a = ±3 and b = 0 then c = ∓10/3 is not integral, while if b = ±2 then c = ∓3. Since then |a| = |c|
we must also demand b ≥ 0.

• So we get six forms x2 − 10y2 , −x2 + 10y2 , 2x2 − 5y2 , −2x2 + 5y2 , 3x2 + 2xy − 3y2 , −3x2 + 2xy + 3y2 .

(f) ∆ = −163.

• For f = ax2 + bxy + cy2 with b2 − 4ac = ∆ = −163 we have b odd and |a| ≤
√
−∆/3 =

√
163/3 ≈

7.3711, so a = ±1,±2,±3,±4,±5,±6,±7 and b = ±1,±3,±5.

• If a = ±1 then b = 1 and c = (b2 + 163)/(4a) = 41, while if a = −1 then b = 1 and c = −41.

• Then a = ±2 requires b = ±1 but c = 164/± 8 is not integral.

• If a = ±3 then either b = ±1 or ±3 but c = 164/± 12 or 172/± 12 is not integral.

• If a = ±5 then b2 ∈ {1, 9, 25} but c = (b2 + 163)/(4a) is 164/20, 172/20, or 198/20 is not integral.

• Finally, if a = ±7 then b2 ∈ {1, 9, 25, 49} but again c2 = (b2 + 163)/(4a) is 164/28, 172/28, 198/28,
or 212/28 and none of these are integers.

• So in fact there are just two reduced forms: x2 + xy + 41y2 and −x2 − xy − 41y2 .

• There is one reduced positive-de�nite quadratic form, so the class number is 1 .
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4. Suppose D is a squarefree integer congruent to 2 or 3 modulo 4. As you showed on homework 8, the prime 2
rami�es in O√D, so that (2) = P 2 for a prime ideal P .

(a) Suppose D < −2. Show that P is not a principal ideal. [Hint: Consider the norm of a generator.]

• If P were principal, then since its norm is 2, its generator would necessarily have norm 2.

• However, there are no such elements in O√D, since a
2 + |D| b2 = 2 has no solutions for D 6= −1,−2.

(b) Suppose D < −2. Show that the class number of O√D is even.

• From (a) we know that the ideal class [P ] is not trivial. However, its square is [P 2] = [(2)] which is
the trivial class.

• Thus, [P ] is an element of order 2 in the class group of O√D. Then by Lagrange's theorem, the
order of the class group (i.e., the class number) must be divisible by 2.

(c) Now suppose that D > 2 and that D is divisible by a prime congruent to 5 modulo 8. Show again that
the class number of O√D is even.

• If the prime ideal P with P 2 = (2) were principal then its generator a+ b
√
D would necessarily have

norm ±2, meaning that there is an integer solution to a2 −Db2 = ±2.

• However, if q ≡ 5 (mod 8) divides D, then reducing mod q yields a2 ≡ ±2 (mod q), but this is a
contradiction because 2 and −2 are both quadratic nonresidues modulo q.

• Thus P is a nonprincipal ideal whose square is principal, so as in (b) the ideal class [P ] has order 2,
and so the order of the class group is even.

5. Let r be a nonzero nonunit in O√D and suppose the prime factorization of the ideal (r) is (r) = P1P2 · · ·Pn

where each Pi is a prime ideal.

(a) Show that the product of the ideal classes [P1], [P2], . . . , [Pn] is the identity element in the class group.

• The product [P1][P2] · · · [Pn] equals the ideal class of (r), which is the trivial class since (r) is principal.

(b) If r is reducible in O√D show that there is a nonempty proper sublist of the ideal classes [P1], [P2], . . . , [Pn]
whose product is equal to the identity element in the class group.

• Suppose that r = bc where neither b nor c is a unit. Then each of the ideals (b) and (c) has a
nontrivial prime factorization, and the product of the respective prime ideals yields the factorization
of (r).

• But by the logic in (a), the subset corresponding to the prime factorization of (b) has product equal
to the identity element of the class group. This gives a nonempty proper subset of [P1], [P2], . . . , [Pn]
whose product is equal to the identity element in the class group.

(c) Suppose there is a nonempty proper sublist of the ideal classes [P1], [P2], . . . , [Pn] whose product equals
the identity element in the class group. Show that r is reducible.

• Suppose there were some nonempty proper subset S of {1, 2, . . . , n} such that
∏

i∈S [Pi] is the identity
element in the class group. This means

∏
i∈S Pi is a principal ideal, say (b), and b is not a unit because

S is nonempty.

• Then since
∏n

i=1 Pi = [
∏

i∈S Pi][
∏

i6∈S Pi] and both
∏n

i=1 Pi and [
∏

i∈S Pi] are principal, the remain-
ing term [

∏
i 6∈S Pi] must also be principal: thus

∏
i 6∈S [Pi] is a principal ideal also, say (c): note that

c is not a unit since S is a proper subset.

• Then (r) = (b)(c) hence r = ubc for some unit u and some nonunits b and c. This means r is
reducible as claimed.

(d) Conclude that r is irreducible if and only if (r) = P1P2 · · ·Pn where no nonempty proper sublist of the
ideal classes [Pi] has product equal to the identity element in the class group.

• This is just the contrapositive of (b) and (c) put together.
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6. The goal of this problem is to prove that if O√D has class number 2 then for each nonzero nonunit r with
two irreducible factorizations s = x1x2 · · ·xn = y1y2 · · · ym we have m = n. In other words, although O√D

does not have unique factorization, the number of terms in a factorization is still unique.

(a) Suppose O√D has class number 2. Show that all non-principal ideals of O√D lie in the same ideal class,
and the product of any two non-principal prime ideals is principal.

• By hypothesis, since O√D has class number 2, the class group is a cyclic group {e, g} of order 2
where e is the identity and g is the element of order 2. The two ideal classes therefore consist of (i)
the trivial class e of principal ideals, and (ii) the nontrivial class g which must consist of all of the
nonprincipal ideals.

• So in particular, all the nonprincipal ideals lie in the same ideal class.

• Furthermore, if Qi and Qj are nonprincipal, then both ideal classes [Qi] and [Qj ] equal g, so that
[QiQj ] = [Qi][Qj ] = g2 = e, so QiQj lies in the trivial class hence is principal.

(b) Suppose O√D has class number 2 and that r is irreducible in O√D. Show that (r) is either a prime ideal
or the product of two non-principal prime ideals. [Hint: Use 5(d).]

• By 5(d), an element r is irreducible if and only if (r) = P1P2 · · ·Pn where no nonempty proper subset
of the ideal classes [Pi] has product equal to the identity element in the class group.

• Since the class group consists only of e and g, the ideal classes [Pi] on the list cannot have e or gg as
a proper subset, so there is at most one e and at most two gs, and we cannot have both. Furthermore
the product must be e so there are an even number of gs.

• This leaves only the possibilities of e and gg. In the �rst case (r) is the product of a single principal
prime ideal (so that (r) is itself prime) and in the second case (r) is the product of two non-principal
prime ideals.

(c) Suppose O√D has class number 2 and that s is a nonzero nonunit with an irreducible factorization
s = x1x2 · · ·xn and prime ideal factorization (s) = P1P2 · · ·PkQ1Q2 · · ·Ql where each Pi is principal
and each Qi is non-principal. Show that l must be even and that n = k + l/2. Deduce that any two
irreducible factorizations of s have the same number of elements.

• By (a) we have the product [(s)] = [P1][P2] · · · [Pk][Q1][Q2] · · · [Ql] = ekgl = gl, but since (r) is
principal, this product equals e, and so l must be even.

• For the second part, by (b) each xi factors either as a principal prime ideal Pi or the product of two
nonprincipal prime ideals QiQj . So each Pi contributes one irreducible factor xi and each two Qj

contribute one irreducible factor xj . In total the number of irreducible factors is therefore always
k + l/2, as desired.

Remark: If the class number of O√D is greater than 1, then O√D does not have unique factorization of
elements. The point here is that even when the class number is greater than 1, some aspects of unique
factorization still remain in O√D. In fact, by studying the various non-unique factorizations of di�erent
elements, one can (with substantial e�ort) actually reconstruct the full ideal class group.
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7. The goal of this problem is to show there are very few imaginary quadratic integer rings with class number
1: as mentioned in class, the rings O√−D for −D = −1, −2, −3, −7, −11, −19, −43, −67, −163 have class
number 1. Now let −D < 0 be squarefree and suppose O√−D has class number 1.

(a) Let p be a prime such that p < (1 +D)/4. Show that there are no elements of O√−D of norm p. Deduce
that p must be inert in O√−D, so that −D is a nonsquare modulo p for odd p.

• Observe that the norm N [a+b
√
−D

2 ] = (a2 + Db2)/4 is either the square of an integer (when b = 0)
or is at least (1 + D)/4 (when b 6= 0). Thus, if p < (1 + D)/4 is prime, p cannot equal the norm of
any element.

• If O√−D has class number 1, then the prime ideals dividing (p) must be principal. But there are no
elements of norm p for p < (1 + D)/4 by the above, so any ideal of norm p cannot be principal.

• We conclude that there are no ideals of norm p: thus p cannot split or ramify (since then the ideal
factors would have norm p), so it must remain inert.

• Finally, Dedekind-Kummer immediately yields that p is inert if and only if −D is a nonsquare modulo
p for odd primes p.

(b) If −D < −7 show −D ≡ −3 (mod 8), and if −D < −11 show that −D ≡ −19 (mod 24).

• By (a) if D < −7 then 2 must be inert.

• By Dedekind-Kummer, since the minimal polynomial of 1+
√
−D

2 is x2 − x + 1−D
4 , to be irreducible

modulo 2 we need the constant term to be 1 mod 2, so −D ≡ −3 mod 8.

• Likewise, if −D < −11 then by (a) we also need 3 to be inert, which again by the above occurs when
−D ≡ −2 (mod 3).

• Then −D ≡ −3 (mod 8) and −D ≡ −2 (mod 3) which are together equivalent to −D ≡ −19 (mod
24).

(c) If −D < −11, show D must be prime. [Hint: Prime divisors of D ramify, hence exceed (1 + D)/4.]

• Suppose instead that D is composite. Then from Dedekind-Kummer, any prime divisor of D rami�es
hence by (b) must be less than (1 + D)/4.

• But D is squarefree and composite, so it must have at least two such prime divisors. But then their

product would be at least (
1 + D

4
)(

5 + D

4
) which exceedsD when−D < −11, since (

1 + D

4
)(

5 + D

4
) >

D for D > 5 + 2
√

5 ≈ 9.47.

(d) If −D < −27, show −D is congruent to one of −43, −67, −163, −403, −547, −667 modulo 840.

• By (a) if D < −27 then 5 and 7 must be inert.

• By Dedekind-Kummer, this requires −D to be a nonsquare modulo 5 and modulo 7, which means
−D is congruent to 1 or 4 modulo 5 and to 3, 5, or 6 modulo 7.

• Putting these together with −D ≡ −19 (mod 24) using the Chinese remainder theorem, we obtain
six residue classes for −D modulo 24 · 5 · 7 = 840: these are −43, −67, −163, −403, −547, −667.

(e) Show that for −1000 ≤ −D < 0, the only O√−D of class number 1 are the nine values of D given above.

• First we have −D = −1,−2,−3,−7. We have shown in class that −D = −5,−6 don't have class
number 1. Then if −D < −7 then we must have −D ≡ 1 (mod 4) and so −D = −11 works.

• For −D < −11 we see D must be prime and have −D ≡ −19 mod 24 by (b) and (c), so the next
possible values are −D = −19,−43,−67.

• Now by (d) any lower value must be congruent to one of −43, −67, −163, −403, −547, −667 modulo
840, which yield possible values −43, −67, −163 (which work) and also −403, −547, −667, −883,
−907 above −1000.

• But 403 = 13 ·31 and 667 = 23 ·29 are composite (impossible by (c)), while −547 is a square modulo
11 and both −883 and −907 are squares modulo 13 (impossible by (a)).

• So in fact the only values that work are the ones listed in part (a).

Remark: If −D < −1000 then in order to have class number 1, by (a) all of the primes less than (1 + D)/4
must be inert. There are already 52 odd primes less than 250, and taking the heuristic that each one
has a 50% chance of being inert, we see a proportion of only (1/2)52 ≈ 2 · 10−16 such D will be inert at
all 52 of those primes! (And of course the larger |D| is, the lower this heuristic probability will go.)
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8. [Challenge] The goal of this problem is to establish the converse of problem 6 and complete the proof of the
following theorem of Carlitz: O√D has class number 2 if and only if O√D does not have unique factorization
but the number of terms in any irreducible factorization of a nonzero nonunit is unique.

(a) Suppose O√D has two distinct elements g, h of order 2 in its class group. Select distinct prime ideals

P1, P2, P3 with [P1] = g, [P2] = h, and [P3] = gh. Show that the ideals P 2
1 , P

2
2 , P

2
3 , and P1P2P3 are

all principal and that if P 2
1 = (x1), P 2

2 = (x2), P 2
3 = (x3), and P1P2P3 = (y1) then x1, x2, x3, y1 are all

irreducible and x1x2x3 = uy1 · y1 for some unit u. [Hint: For the irreducibility, use 5(d).]

• We have [P 2
1 ] = [P1]2 = g2 = e, [P 2

2 ] = [P2]2 = h2 = e, [P 2
3 ] = [P3]2 = (gh)2 = g2h2 = e,

[P1P2P3] = [P1][P2][P3] = (g)(h)(gh) = g2h2 = e so these ideals are principal.

• By 4(d) since no nonempty proper sublist of [P1], [P1] or [P2], [P2] or [P3], [P3] or [P1], [P2], [P3] has
product equal to the identity we see x1, x2, x3, y1 are all irreducible.

• Finally, (x1x2x3) = P 2
1P

2
2P

2
3 = (P1P2P3)2 = (y21) so x1x2x3 = uy21 = uy1 · y1 for some unit u.

(b) Suppose O√D has an element g of order n ≥ 3 in its class group. Select distinct prime ideals P1, P2, P3, P4

with [P1] = g, [P2] = g2, [P3] = gn−2, and [P4] = gn−1. Show that the ideals P1P4, P2P3, P
2
1P3, and

P2P
2
4 are all principal, and that if (x1) = P1P4, (x2) = P2P3, (y1) = P 2

1P3, and (y2) = P2P
2
4 then

x1, x2, y1, y2 are all irreducible and x1x1x2 = uy1 · y2 for some unit u.

• We have [P1P4] = [P1][P4] = gn = e, [P2P3] = [P2][P3] = gn = e, [P 2
1P3] = [P1]2[P3] = gn = e,

[P2P
2
4 ] = [P2][P4]2 = g2n = e, so these ideals are all principal.

• By 4(d) since no nonempty proper sublist of [P1], [P4] = g, gn−1 or [P2], [P3] = g2, gn−2 or [P1], [P1], [P3] =
g, g, gn−2 or [P2], [P4], [P4] = g2, gn−1, gn−1 has product equal to e, so x1, x2, y1, y2 are irreducible.

• Finally, (x1x1x2) = (P1P4)2(P2P3) = (P 2
1P3)(P 2

4P2) = (y1y2), so x1x1x2 = uy1 · y2 for some unit u.

(c) Show that if the class number of O√D is greater than 2, then there exists an element r ∈ O√D with two
irreducible factorizations of di�erent lengths. Deduce that O√D has unique factorization length but not
unique factorization if and only if its class number is 2.

• Suppose the class number of O√D is > 2. If there is an element in the class group of order n ≥ 3
then by (b) we obtain an element r = x1x2x3 = (uy1)y2 with two factorizations of di�erent lengths.

• The only other possibility is that all nonidentity elements in the class group have order 2. Since the
class number is > 2 there must be two distinct elements of order 2, and then by (a) we again obtain
an element r = x1x1x2 = (uy1)(y1) with two factorizations of di�erent lengths.

• The last statement follows immediately from these observations along with the result of 6(c).

Remark: For the purposes of this problem you may assume that there exist (in�nitely many) prime ideals
lying in each possible ideal class. This fact is not trivial to prove and is the analogue of Dirichlet's
theorem on primes in arithmetic progressions for quadratic integer rings; it follows from a more general
result known as the Chebotarev density theorem, which says that the prime ideals are (asymptotically)
uniformly distributed among all the ideal classes in the class group.
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