
E. Dummit's Math 4527 ∼ Number Theory 2, Spring 2025 ∼ Homework 10, due Tue Apr 1st.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Find reduced quadratic forms equivalent to 17x2− 83xy− 24y2, 16x2− 70xy + 77y2, and 77x2− 56xy + 10y2.

2. Find the reduced Dirichlet composition of each pair of binary quadratic forms:

(a) The forms x2 + xy + y2 and x2 + xy + y2 of discriminant ∆ = −3.

(b) The forms 2x2 + 7y2 and 3x2 − 2xy + 5y2 of discriminant ∆ = −56.

(c) The forms 4x2 + 3xy + 5y2 and 3x2 + xy + 6y2 of discriminant ∆ = −71.

(d) The forms 4x2 + 3xy + 5y2 and 2x2 + xy + 9y2 of discriminant ∆ = −71.

3. For each discriminant ∆, �nd all reduced quadratic forms of discriminant ∆. For negative ∆, also compute
the class number.

(a) ∆ = 12.

(b) ∆ = 13.

(c) ∆ = −24.

(d) ∆ = −23.

(e) ∆ = 40.

(f) ∆ = −163.

Part II: Solve the following problems. Justify all answers with rigorous, clear arguments.

4. Suppose D is a squarefree integer congruent to 2 or 3 modulo 4. As you showed on homework 8, the prime 2
rami�es in O√D, so that (2) = P 2 for a prime ideal P .

(a) Suppose D < −2. Show that P is not a principal ideal. [Hint: Consider the norm of a generator.]

(b) Suppose D < −2. Show that the class number of O√D is even.

(c) Now suppose that D > 2 and that D is divisible by a prime congruent to 5 modulo 8. Show again that
the class number of O√D is even.

5. Let r be a nonzero nonunit in O√D and suppose the prime factorization of the ideal (r) is (r) = P1P2 · · ·Pn

where each Pi is a prime ideal.

(a) Show that the product of the ideal classes [P1], [P2], . . . , [Pn] is the identity element in the class group.

(b) If r is reducible in O√D show that there is a nonempty proper sublist of the ideal classes [P1], [P2], . . . , [Pn]
whose product is equal to the identity element in the class group.

(c) Suppose there is a nonempty proper sublist of the ideal classes [P1], [P2], . . . , [Pn] whose product equals
the identity element in the class group. Show that r is reducible.

(d) Conclude that r is irreducible if and only if (r) = P1P2 · · ·Pn where no nonempty proper sublist of the
ideal classes [Pi] has product equal to the identity element in the class group.
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6. The goal of this problem is to prove that if O√D has class number 2 then for each nonzero nonunit r with
two irreducible factorizations s = x1x2 · · ·xn = y1y2 · · · ym we have m = n. In other words, although O√D

does not have unique factorization, the number of terms in a factorization is still unique.

(a) Suppose O√D has class number 2. Show that all non-principal ideals of O√D lie in the same ideal class,
and the product of any two non-principal prime ideals is principal.

(b) Suppose O√D has class number 2 and that r is irreducible in O√D. Show that (r) is either a prime ideal
or the product of two non-principal prime ideals. [Hint: Use 5(d).]

(c) Suppose O√D has class number 2 and that s is a nonzero nonunit with an irreducible factorization
s = x1x2 · · ·xn and prime ideal factorization (s) = P1P2 · · ·PkQ1Q2 · · ·Ql where each Pi is principal
and each Qi is non-principal. Show that l must be even and that n = k + l/2. Deduce that any two
irreducible factorizations of s have the same number of elements.

Remark: If the class number of O√D is greater than 1, then O√D does not have unique factorization of
elements. The point here is that even when the class number is greater than 1, some aspects of unique
factorization still remain in O√D. In fact, by studying the various non-unique factorizations of di�erent
elements, one can (with substantial e�ort) actually reconstruct the full ideal class group.

7. The goal of this problem is to show there are very few imaginary quadratic integer rings with class number
1: as mentioned in class, the rings O√−D for −D = −1, −2, −3, −7, −11, −19, −43, −67, −163 have class
number 1. Now let −D < 0 be squarefree and suppose O√−D has class number 1.

(a) Let p be a prime such that p < (1 +D)/4. Show that there are no elements of O√−D of norm p. Deduce
that p must be inert in O√−D, so that −D is a nonsquare modulo p for odd p.

(b) If −D < −7 show −D ≡ −3 (mod 8), and if −D < −11 show that −D ≡ −19 (mod 24).

(c) If −D < −11, show D must be prime. [Hint: Prime divisors of D ramify, hence exceed (1 + D)/4.]

(d) If −D < −27, show −D is congruent to one of −43, −67, −163, −403, −547, −667 modulo 840.

(e) Show that for −1000 ≤ −D < 0, the only O√−D of class number 1 are the nine values of D given above.

Remark: If −D < −1000 then in order to have class number 1, by (a) all of the primes less than (1 + D)/4
must be inert. There are already 52 odd primes less than 250, and taking the heuristic that each one
has a 50% chance of being inert, we see a proportion of only (1/2)52 ≈ 2 · 10−16 such D will be inert at
all 52 of those primes! (And of course the larger |D| is, the lower this heuristic probability will go.)

8. [Challenge] The goal of this problem is to establish the converse of problem 6 and complete the proof of the
following theorem of Carlitz: O√D has class number 2 if and only if O√D does not have unique factorization
but the number of terms in any irreducible factorization of a nonzero nonunit is unique.

(a) Suppose O√D has two distinct elements g, h of order 2 in its class group. Select distinct prime ideals

P1, P2, P3 with [P1] = g, [P2] = h, and [P3] = gh. Show that the ideals P 2
1 , P

2
2 , P

2
3 , and P1P2P3 are

all principal and that if P 2
1 = (x1), P 2

2 = (x2), P 2
3 = (x3), and P1P2P3 = (y1) then x1, x2, x3, y1 are all

irreducible and x1x2x3 = uy1 · y1 for some unit u. [Hint: For the irreducibility, use 5(d).]

(b) Suppose O√D has an element g of order n ≥ 3 in its class group. Select distinct prime ideals P1, P2, P3, P4

with [P1] = g, [P2] = g2, [P3] = gn−2, and [P4] = gn−1. Show that the ideals P1P4, P2P3, P
2
1P3, and

P2P
2
4 are all principal, and that if (x1) = P1P4, (x2) = P2P3, (y1) = P 2

1P3, and (y2) = P2P
2
4 then

x1, x2, y1, y2 are all irreducible and x1x1x2 = uy1 · y2 for some unit u.

(c) Show that if the class number of O√D is greater than 2, then there exists an element r ∈ O√D with two
irreducible factorizations of di�erent lengths. Deduce that O√D has unique factorization length but not
unique factorization if and only if its class number is 2.

Remark: For the purposes of this problem you may assume that there exist (in�nitely many) prime ideals
lying in each possible ideal class. This fact is not trivial to prove and is the analogue of Dirichlet's
theorem on primes in arithmetic progressions for quadratic integer rings; it follows from a more general
result known as the Chebotarev density theorem, which says that the prime ideals are (asymptotically)
uniformly distributed among all the ideal classes in the class group.
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