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5 Introduction to Complex Dynamics

In this chapter, our goal is to discuss complex dynamical systems in the complex plane. As we will discuss, much
of the general theory of real-valued dynamical systems will carry over to the complex setting, but there are also a
number of new behaviors that will occur.

We begin with a brief review of the complex numbers C and the complex derivative of a complex-valued function,
and then turn our attention to the basic study of complex dynamical systems: �xed points and periodic points,
attracting and repelling �xed points and cycles, behaviors of neutral �xed points, attracting basins, and orbit
analysis. (We will invoke some general results from complex analysis as needed without proof.)

We will then study the structure of Julia sets, which are (roughly speaking) the sets on which a complex function
behaves chaotically, and which are often fractals. We close with a study of the famed Mandelbrot set, which is
another fractal-like set that arises in the study of the quadratic family qc(z) = z2 + c. Almost all major theorems in
these later sections require signi�cantly more theoretical development in order to provide proofs, so our discussion
will primarily be a survey.

5.1 Dynamical Properties of Complex-Valued Functions

• In this section we review complex arithmetic and complex derivatives, and then apply them to analyze
dynamical properties of complex-valued functions, such as attracting and repelling behavior of cycles. Many
of our results will parallel quite closely our analysis of the dynamics of real-valued functions.
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5.1.1 Complex Arithmetic

• De�nitions: A complex number is a number of the form a + bi, where a and b are real numbers and i is the
so-called �imaginary unit�, de�ned so that i2 = −1. (Frequently, i is written as

√
−1.) The set of all complex

numbers is denoted C.

◦ The real part of z = a+ bi, denoted Re(z), is the real number a, while the imaginary part of z = a+ bi,
denoted Im(z), is the real number b. The complex conjugate of z = a + bi, denoted z, is the complex
number a− bi.
◦ The modulus (also absolute value, magnitude, or length) of z = a + bi, denoted |z|, is the real number√

a2 + b2.

◦ Two complex numbers are added (or subtracted) simply by adding (or subtracting) their real and imag-
inary parts: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

◦ Two complex numbers are multiplied using the distributive law and the fact that i2 = −1: (a+bi)(c+di) =
ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i.

◦ For division, we rationalize the denominator:
a+ bi

c+ di
=

(a+ bi)(c− di)
(c+ di)(c− di)

=
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i.

◦ Example: If z = 3 + 2i and w = 2− 2i, then z + 2w = 7− 2i, zw = 10− 2i, and
z

w
=

1 + 5i

4
.

• Here are a few more simple properties of complex number arithmetic:

• Proposition (Complex Arithmetic): Suppose z and w are complex numbers.

1. We have Re(z) = (z + z)/2 and Im(z) = (z − z)/(2i).
2. We have z + w = z + w, zw = z · w, and z = z.

3. We have |z| = |z| and |zw| = |z| · |w|.
4. We have z = z if and only if z is real, while z = −z if and only if z is purely imaginary (of the form ri

where r is real).

5. We have Re(z) ≤ |z| and Im(z) ≤ |z|.
6. (Triangle Inequality) We have |z + w| ≤ |z|+ |w|.

◦ Proofs: (1)-(5) are easy algebraic calculations.

◦ For (6), use (1) and (2) to observe zw + wz = 2Re(zw), and (5) and (3) to observe 2Re(zw) ≤
2 |zw| = 2 |z| |w|.
◦ Then |z + w|2 = (z+w)(z + w) = zz+zw+wz+ww = |z|2+|w|2+2Re(zw) ≤ |z|2+|w|2+2 |z| |w| =

(|z|+ |w|)2. Since both |z + w| and |z|+ |w| are nonnegative, taking the square root yields the desired
|z + w| ≤ |z|+ |w|.

• We often think of the real numbers geometrically, as a line. The natural way to think of the complex numbers
is as a plane, with the x-coordinate denoting the real part and the y-coordinate denoting the imaginary part.
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◦ Once we do this, there is a natural connection to polar coordinates: namely, if z = x + yi is a complex
number which we identify with the point (x, y) in the complex plane, then the modulus |z| =

√
x2 + y2

is simply the coordinate r when we convert (x, y) from Cartesian to polar coordinates.

◦ Furthermore, if we are given that |z| = r, we can uniquely identify z given the angle θ that the line
connecting z to the origin makes with the positive real axis. (This is the same θ from polar coordinates.)

• From polar coordinates (or simple trigonometry), we see that we can write z in the form z = r [cos(θ) + i sin(θ)],
which is called the polar form of z.

◦ The length r is simply the modulus of z, while the angle θ is called the argument of z and sometimes
denoted θ = arg(z).

◦ We will emphasize that although r is unique, θ is not: since the sine and cosine are periodic with period
2π, any θ that di�ers by an integral multiple of 2π yields an equivalent polar form. We will implicitly
identify polar forms yielding the same complex number.

◦ Example: For r = 2 and θ = 0 we obtain z = 2[cos 0 + i sin 0] = 2. Taking r = 2 and θ = 2π also yields
z = 2[cos 2π + i sin 2π] = 2.

◦ Conversely, if we know z = x+ iy then we can compute the (r, θ) form fairly easily by solving x = r cos θ
and y = r sin θ for r and θ.

◦ Explicitly, we have r =
√
x2 + y2 = |z| and we can take θ = tan−1

(y
x

)
if x > 0 and θ = tan−1

(y
x

)
+ π

if x < 0. (The extra +π is needed when x < 0 because of the fact that the principal arctangent function
only has range (−π/2, π/2), so we would otherwise get the wrong value for θ if z lies in the second or
third quadrants.)

◦ Example: If z = 1 + i, then the corresponding values of r and θ above are r = |z| =
√

2 and θ =

tan−1(1) =
π

4
, so we can write z in polar form as z =

√
2
[
cos

π

4
+ i sin

π

4

]
. Indeed, we may check that

√
2
[
cos

π

4
+ i sin

π

4

]
=
√

2
[√

2
2 + i

√
2
2

]
= 1 + i, as it should be.

◦ Example: If z = −1 + i
√

3, then the corresponding values of r and θ above are r = |z| = 2 and

θ = π + tan−1(−
√

3) = 2π/3, so we can write z in polar form as z = 2

[
cos

2π

3
+ i sin

2π

3

]
.

• We can also repackage the polar form using complex exponentials:

• De�nition: If z = x+ iy is a complex number, we de�ne the complex exponential ez = ex(cos y + i sin y).

◦ Examples: We have eiπ/2 = e0(cos π2 + i sin π
2 ) = i and e1+iπ = e1(cosπ + i sinπ) = −e .

◦ The motivation here is that we want the complex exponential to obey the familiar rules for the real
exponential function, and so in particular we want ex+iy = exeiy.

◦ It therefore su�ces just to de�ne eiy, which we do via Euler's identity eiθ = cos(θ) + i sin(θ).

◦ Euler's identity encodes a lot of information: for example, we claim that eiθ · eiϕ = ei(θ+ϕ). Expanding
both sides with Euler's identity yields

eiθ · eiϕ = [cos θ + i sin θ] [cosϕ+ i sinϕ]

= [cos θ cosϕ− sin θ sinϕ] + i [sin θ cosϕ+ cos θ sinϕ]

= cos(θ + ϕ) + i sin(θ + ϕ) = ei(θ+ϕ)

where the key step in the middle uses the usual addition identities cos(θ + ϕ) = cos θ cosϕ − sin θ sinϕ
and sin(θ + ϕ) = sin θ cosϕ+ cos θ sinϕ for sine and cosine.

◦ Another way of interpreting this calculation is that the (initially rather arbitrary-seeming) sine and cosine
addition formulas actually just re�ect the natural structure of the multiplication of complex numbers.

• Another convenient result follows by applying Euler's identity to the simple relation ei(nθ) = (eiθ)n, which
when written out yields De Moivre's identity cos(nθ) + i sin(nθ) = [cos θ + i sin θ]n.
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◦ By expanding the right-hand side using the binomial theorem we can obtain identities for sin(nθ) and
cos(nθ) in terms of sin θ and cos θ.

◦ Example: Setting n = 2 produces cos(2θ)+ i sin(2θ) = [cos θ + i sin θ]
2

= (cos2 θ−sin2 θ)+ i(2 sin θ cos θ),
and so we recover the double-angle formulas cos 2θ = cos2 θ − sin2 θ and sin 2θ = 2 sin θ cos θ.

◦ Example: Setting n = −1 produces cos(−θ) + i sin(−θ) = [cos θ + i sin θ]
−1

=
cos θ − i sin θ

cos2 θ + sin2 θ
, and so we

recover the standard identities cos2 θ + sin2 θ = 1, cos(−θ) = cos θ, and sin(−θ) = − sin θ.

• Using Euler's identity and the polar form of complex numbers above, we see that every complex number can
be written in exponential form as z = r · eiθ for the same r and θ we described above.

◦ Example: We can draw 1 + i in the complex plane, or use the formulas, to see that |1 + i| =
√

2 and

arg(1 + i) =
π

4
, and so we see that 1 + i =

√
2 · eiπ/4 .

◦ Example: Either by geometry or trigonometry, we see that
∣∣1− i√3

∣∣ = 2 and arg(1− i
√

3) = −π
3
, hence

1− i
√

3 = 2 · e−iπ/3 .

◦ Example: Using the formulas for r and θ above, we have 3 + 2i =
√

13 · ei·arctan(2/3) .

• The rectangular a+ bi form of a complex number is more convenient for addition, while the polar reiθ form is
more convenient for multiplication, since we may easily multiply (reiθ)(seiϕ) = (rs)ei(θ+ϕ). (This calculation
is often summarized as �lengths multiply, angles add�.)

◦ In particular, it is very easy to take powers of complex numbers when they are in exponential form: we
have (r · eiθ)n = rn · ei(nθ).

• Example: Compute (1 + i)8.

◦ From above we have 1 + i =
√

2 · eiπ/4, so (1 + i)8 =
(√

2 · eiπ/4
)8

= (
√

2)8 · e8iπ/4 = 24 · e2iπ = 16 .
(Note how much easier this is compared to multiplying 1 + i by itself eight times.)

• Example: Compute (1− i
√

3)9.

◦ From above we have 1− i
√

3 = 2 · e−iπ/3, so (1− i
√

3)9 = 29 · e−9iπ/3 = 512 · e−3iπ = −512 .

• Many textbooks introduce complex numbers as a tool for giving meaning to the formal symbols obtained
when using the quadratic formula to �solve� quadratic equations that do not have real solutions.

◦ Explicitly, if a, b, c are real numbers and a 6= 0, then we may complete the square in the expression

az2 + bz + c and write it as a(z + b
2a )2 + 4ac−b2

4a .

◦ We may then obtain the usual quadratic formula for the roots of the polynomial az2 +bz+c = 0; namely,

z =
−b±

√
b2 − 4ac

2a
.

◦ In the situation where b2−4ac < 0, the solutions are not real numbers but rather complex numbers. For

example, it indicates that the solutions to z2 + 2z + 2 = 0 are z =
−2±

√
−4

2
= −1± i.

◦ Indeed, we can check that if we evaluate the expression z2 + 2z+ 2 when z = −1 + i or −1− i, we obtain
0.

• More generally, the Fundamental Theorem of Algebra says that any polynomial equation anz
n + an−1z

n−1 +
· · ·+a0 can be completely factored as a product of linear terms over the complex numbers. (This a foundational
result in algebra and the �rst complete and correct proof was given by Argand and Gauss in the early 1800s.)
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5.1.2 Limits, Continuity, and Complex Derivatives

• Now that we have discussed the arithmetic of the complex numbers, we begin our study of complex-valued
functions f : C→ C.

• Our �rst main goal is to generalize the notion of the derivative of a function to the complex case. There is a
very natural way to try to do this; namely, by de�ning the complex derivative of a function as a limit in the
same way as with a real-valued function.

◦ This is in fact the de�nition we will take, but since it involves a limit, we brie�y mention complex limits.

• De�nition: A function f : C → C has the limit L as z → a, written as lim
z→a

f(z) = L if for any ε > 0 (no

matter how small) there exists a δ > 0 (depending on ε) such that for all z ∈ C with 0 < |z − a| < δ, we have
|f(z)− L| < ε.

◦ This is simply the usual ε-δ de�nition of limit but with the variables having domain C rather than R.
◦ We can mostly avoid using the formal de�nition, as with real-valued functions, by instead working with
various limit rules, such as the fairly obvious limz→a z = a and limz→a c = c for any constant c, along with
rules for combining limits: if lim

z→a
f(z) = Lf and lim

z→a
g(z) = Lg, then for example we have limz→a |f(z)| =

|Lf |, limz→a [f(z) + g(z)] = Lf +Lg, limz→a f(z)g(z) = LfLg, and lim
z→a

f(z)/g(z) = Lf/Lgwhen Lg 6= 0.

• We also have the natural notion of continuity:

• De�nition: If f : C→ C is a complex-valued function, we say f is continuous at a ∈ C if limz→a f(z) = f(a).
If f is continuous on its entire domain, we say f is continuous everywhere (or often, just continuous).

◦ In other words, a continuous function is one whose limit as z → a is simply the value of the function at
a.

◦ Per the basic limit properties, we see that sums, di�erences, products, and quotients (with nonzero
denominator) of continuous functions are continuous.

◦ Example: Since polynomials are constructed from constants and the variable z using addition, subtrac-
tion, and multiplication, any polynomial p(z) is continuous everywhere. More generally, any rational
function p(z)/q(z) is continuous whenever q(z) 6= 0.

• Now we can de�ne the complex derivative, quite analogously to the derivative of a real-valued function:

• De�nition: If f : C→ C is a complex-valued function, the complex derivative f ′(z0) at a point z0 ∈ C is the

limit lim
z→z0

f(z)− f(z0)

z − z0
, assuming it exists.

◦ As with the derivative of a real-valued function, we can equivalently state this de�nition as f ′(z) =

lim
h→0

f(z + h)− f(z)

h
.

◦ In some cases the �rst de�nition is easier to use, while in others the second de�nition is easier to use.

• Example: Verify that the complex derivative of f(z) = z2 exists everywhere and compute it.

◦ We compute lim
z→z0

f(z)− f(z0)

z − z0
= lim
z→z0

(z − z0)(z + z0)

z − z0
= lim
z→z0

(z + z0) = 2z0.

◦ Since the limit always exists, we can say that f ′(z0) = 2z0 everywhere.

◦ Note that this agrees with, and in fact extends, the (ordinary) real-valued derivative of the function
f(x) = x2 on the real line.

• Example: Show that the complex derivative of f(z) = z does not exist anywhere.

◦ The required limit is lim
z→z0

f(z)− f(z0)

z − z0
= lim
z→z0

z − z0
z − z0

. There does not seem to be a natural way to

simplify this expression further.
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◦ Let us try to compute the limit along di�erent paths approaching z0.

◦ Along the horizontal line z = z0+t, for a real parameter t→ 0, the limit becomes lim
t→0

(z0 + t)− z0
(z0 + t)− z0

= lim
t→0

t

t
= 1.

◦ Along the vertical line z = z0+it for a real parameter t→ 0, the limit becomes lim
t→0

(z0 + it)− z0
(z0 + it)− z0

= lim
t→0

−it
it

= −1.

◦ Along these two paths the limit has di�erent values, so the overall limit does not exist at any point z0.

This means the derivative does not exist anywhere.

• Since our de�nition of the complex derivative is exactly the same as that of the derivative of a real-valued
function, all of the usual di�erentiation rules carry over verbatim: the product and quotient rules, the chain
rule, the linearity of the derivative, etc.

◦ As a consequence of the basic di�erentiation rules, we can see that any complex polynomial p(z) =
anz

n + an−1z
n−1 + · · · + a1z + a0 is di�erentiable with complex derivative p′(z) = nanz

n−1 + (n −
1)an−1z

n−2 + · · ·+ a1.

◦ Example: The complex derivative of p(z) = iz4 − (3 + i)z + 5 is p′(z) = 4iz3 + (3 + i).

• We can extend this result to di�erentiate power series, as follows:

• Proposition (Complex Power Series): Suppose f(z) = a0+a1z+a2z
2+a3z

3+ · · · =
∑∞
n=0 anz

n is de�ned by a

complex power series where R = limn→∞ |an|−1/n exists. Then the power series converges absolutely1 for all z
with |z| < R and diverges for all z with |z| > R. On the region |z| < R, the power series is di�erentiable with
complex derivative obtained by di�erentiating term-by-term: f ′(z) = a1+2a2z+3a3z

2+· · · =
∑∞
n=1 nanz

n−1.

◦ The value R is called the radius of convergence of the power series, because the series converges inside the
circle |z| = R and diverges outside it. More generally, if we have any complex power series

∑∞
n=0 anz

n,

its radius of convergence can be shown to equal R = 1/ lim supn→∞ |an|
1/n

.

◦ Proof (outline): The convergence behavior of the series follows by noting that |an| ∼ 1/Rn for large n, so
when |z| < R the series

∑∞
n=0 |anzn| is bounded above by the convergent geometric series

∑∞
n=0 |z/R|

n
,

and when |z| > R the individual terms |anzn| ∼ |z/R|n do not tend to zero so the series diverges.
(Making the estimates rigorous requires some minor additional care.)

◦ The di�erentiability of the series follows by a direct calculation: f ′(z) = limh→0
1

h

∑∞
n=0 an[(z + h)n −

zn] = limh→0

∑∞
n=0 an[nzn−1+

(
n
2

)
hzn−2+· · ·+hn−1] =

∑∞
n=0 anz

n−1. To justify interchanging the limit
and in�nite sum requires various nontrivial results about uniform convergence of sequences of functions
(or equivalently, making an estimate on the di�erence and showing it does have limit zero), whose details
we omit.

• As a very pleasant consequence of these results, because we can di�erentiate complex power series term by
term inside their radius of convergence just as we di�erentiate real power series term by term, and because all
of the usual di�erentiation rules hold as well, complex derivatives of familiar real-valued functions will have
exactly the same formulas as their real counterparts.

◦ Example: The complex derivative of f(z) =
1

1 + z
is f ′(z) = − 1

(1 + z)2
by the chain and power rules.

◦ Example: For f(z) = ez = 1 + z+ z2/2 + z3/3! + · · · =
∑∞
n=0 z

n/n!, we have f ′(z) = 1 + z+ z2/2 + · · · =∑∞
n=1 nz

n−1/n! =
∑∞
k=0 z

k/k! = ez, just as we would expect.

◦ In particular, rational functions of z are complex-di�erentiable on large regions (namely, their entire
domains, which consist of the entire complex plane except the �nite number of points where their de-
nominators are zero), and functions de�ned by power series will likewise be complex-di�erentiable on
their disc of convergence.

◦ Since our primary objects of study will be functions that are complex-di�erentiable on such large regions,
we give them a simpler name.

1A complex series
∑∞

n=0 bn converges when its the limit of its sequence of partial sums limk→∞
∑k

n=0 bn converges, and the series

converges absolutely when its absolute value series
∑∞

n=0 |bn| converges.
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• De�nition: A function whose complex derivative exists on a nonempty open region U is said to be holomorphic
on U .

◦ Although being holomorphic seems to be a relatively mild condition, it actually turns out to be quite
restrictive.

◦ For example, even though by de�nition a holomorphic function only possesses a �rst derivative, in fact
a holomorphic function necessarily has derivatives of all orders (compare with the situation with real-
di�erentiable functions, which may not even have a second derivative).

◦ Furthermore, as nearly an immediate consequence of having derivatives of all orders, holomorphic func-
tions may be represented locally by power series with a positive radius of convergence on which they
converge to the value of the original function. (Thus, in fact our statement about di�erentiability of
power series actually applies to any holomorphic function, since they can all be expressed as convergent
power series.)

5.1.3 Attracting, Repelling, and Neutral Fixed Points and Cycles

• Now that we have a notion of derivative for complex-valued functions, our next task is to de�ne the notion of
an attracting, repelling, or neutral �xed point (or cycle) in terms of the value of the complex derivative.

◦ In general, a polynomial function p(z) of degree d will usually have dn points of period dividing n: the
equation pn(z)− z = 0 is an equation of degree dn, which, by the fundamental theorem of algebra, will
have exactly dn roots (counted with multiplicity) in C.
◦ Unless something unusual happens (i.e., unless many of the roots occur with high multiplicity), a poly-
nomial will generally have a point of exact period n for each n: indeed, it is a theorem of I.N. Baker
that if f(z) is a polynomial of degree d > 1 that is not conjugate to the polynomial z2 − 3/4 by a linear
change of variables, then f(z) has a point of exact period n for every n ≥ 1.

• De�nition: If z0 is a �xed point of the holomorphic function f , we say z0 is an attracting �xed point if
|f ′(z0)| < 1, we say z0 is a repelling �xed point if |f ′(z0)| > 1, and we say z0 is a neutral �xed point if
|f ′(z0)| = 1.

• De�nition: We say that a periodic point x0 for f is attracting (respectively, repelling or neutral) if x0 is an
attracting (respectively, repelling or neutral) �xed point for fn.

◦ The key results, as with the real case, is that an attracting �xed point (or cycle) will attract nearby
orbits, and a repelling �xed point (or cycle) will repel nearby orbits.

• Theorem (Attracting Points): If z0 is an attracting �xed point of the holomorphic function f , then there
exists an open disc D of positive radius centered at z0 such that, for any z ∈ D, fn(z) ∈ D for all n ≥ 1.
Furthermore, for any z ∈ D, it is true that fn(z)→ z0 as n→∞, and the convergence is exponentially fast.

◦ The proof is essentially the same as in the real case.

◦ Proof: By de�nition, |f ′(z0)| = lim
z→z0

∣∣∣∣f(z)− f(z0)

z − z0

∣∣∣∣ < 1.

◦ Since
f(z)− f(z0)

z − z0
is a continuous function of z with a removable discontinuity at z = z0, there exists a

constant λ < 1 and a positive r such that for all z with |z − z0| < r, it is true that

∣∣∣∣f(z)− f(z0)

z − z0

∣∣∣∣ < λ.

◦ Rearranging yields|f(z)− z0| < λ |z − z0|.
◦ In particular, we see that |f(z)− z0| < λr < r, so f(z) also lies in the disc D = {z : |z − z0| < r}.
◦ Iterating the argument yields fn(z) ∈ D for all n ≥ 1. We then conclude that |fn(z)− z0| < λn |z − z0|
for all n ≥ 1.

◦ Since λ < 1, the right-hand term goes to zero as n→∞, so fn(z)→ z0.
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◦ Remark: In fact, we can take D to be any disc centered at z0 such that |f ′(z)| < λ for any �xed
λ < 1. To see this, if C is the line segment from z0 to z, the (complex) fundamental theorem of calculus
says that

´
C
f ′(z) dz = f(z) − f(z0). By the triangle inequality for integrals we have

∣∣´
C
f ′(z) dz

∣∣ ≤´
C
|f ′(z)| dz <

´
C
λ dz = λ |z − z0| since the integral of 1 along a curve is its arclength. Thus we see

|f(z)− f(z0)| < λ |z − z0|, and the rest of the argument follows as above.

• We also have an analogous result for repelling points:

• Theorem (Repelling Points): If z0 is a repelling �xed point of the holomorphic function f , then there exists
an open disc D of positive radius centered at z0 such that, for any z ∈ D with z 6= z0, there exists a positive
integer n such that fn(z) 6∈ D.

◦ As before, the proof is essentially identical to that given for the real case.

◦ Proof: By the same argument as for the theorem on attracting points, there exists a constant λ < 1 and

a positive r such that for all z with |z − z0| < r, it is true that

∣∣∣∣f(z)− f(z0)

z − z0

∣∣∣∣ < λ.

◦ Thus, |f(z)− z0| > λ |z − z0|, and then by a trivial induction we see that |fn(z)− z0| > λn |z − z0|,
assuming that fn−1(z) lies in D = {z : |z − z0| < r}.
◦ If the orbit of z never left D, then we would have |fn(z)− z0| > λn |z − z0|: but since λ > 1, the
right-hand side tends to in�nity as n→∞. But fn(x) is assumed to lie in D for all n, meaning that D
contains points arbitrarily far away from z0: contradiction.

• The next natural step would seem to be to give a classi�cation theorem for neutral �xed points. However, it
turns out that neutral �xed points for complex functions can be much more complicated than for real-valued
functions, so we will pause that discussion for now.

• Example: Find and classify the �xed points of f(z) = z2 − z + 2 as attracting, repelling, or neutral.

◦ The �xed points satisfy z2 − 2z + 2 = 0, whose solutions are
2±
√
−4

2
= 1± i.

◦ Since f ′(z) = 2z−1, we see that f ′(1+i) = 1+2i, so since |1 + 2i| =
√

5 > 1 we see that 1 + i is repelling .

◦ Similarly, |f ′(1− i)| = |1− 2i| =
√

5 > 1, so 1− i is repelling as well.

• Example: Find and classify the �xed points of g(z) = z3 − 2iz2 as attracting, repelling, or neutral.

◦ The �xed points of g(z) are the solutions to z3 − 2iz2 − z = 0, which factors as z(z − i)2 = 0.

◦ Thus, the �xed points are z = 0 and z = i.

◦ Since g′(z) = 3z2 − 4iz, we see that |g′(0)| = 0 so 0 is attracting .

◦ Similarly, |g′(i)| = |1| = 1 so i is neutral .

• For cycles, we can apply the chain rule to classify the attracting/repelling behavior in the same way as for
real-valued functions.

◦ Explicitly, if {z1, z2, · · · , zn} is an n-cycle, then it is attracting, neutral, or repelling precisely when the
value P = (fn)′(z1) =

∏n
i=1 |f ′(zi)| is respectively less than 1, equal to 1, or greater than 1.

• Example: Classify the periodic cycle containing 0 for f(z) = z3− 1 + i

2
(z2 + z) + i as attracting, repelling, or

neutral.

◦ We have f(0) = i, f(i) = i3− 1 + i

2
(−1+ i)+ i = 1, and f(1) = 1− (1+ i)+ i = 0, so {0, i, 1} is a 3-cycle.

◦ Since f ′(z) = 3z2 − 1 + i

2
(2z + 1) we can compute f ′(0) = −1 + i

2
, f ′(i) = −5 + 3i

2
, and f ′(1) =

3− 3i

2
.

◦ Then some additional arithmetic eventually yields f ′(0) · f ′(i) · f ′(1) =
15 + 9i

4
, whose absolute value is

clearly larger than 1. Thus, the cycle is repelling .
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• As with real-valued functions we can also de�ne the attracting basin of an attracting �xed point:

• De�nition: If z0 is an attracting �xed point of a (holomorphic) function f , then the basin of attraction (or
attracting basin) for z0 is the set of all points z such that fn(z)→ z0 as n→∞.

◦ As in the real case, we can compute the basin of attraction as a union of inverse images: if z0 is an
attracting �xed point of the holomorphic function f and D is any open set containing x0 that lies
in the basin of attraction, then the full basin of attraction Bz0 is given by Bz0 =

⋃∞
n=0 f

−n(D) =
D ∪ f−1(D) ∪ f−2(D) ∪ · · · .
◦ Unlike in the real case, however, it is much more di�cult to compute inverse images of regions in the
plane. Holomorphic functions map boundaries to boundaries, so to �nd general preimages, one may more
simply compute the entire inverse image of the boundary of the region. This is not so di�cult when the
region is an interval (since its boundary consists of the two endpoints) but is very hard even when the
region is a circle.

◦ In practice, to draw the attracting basin, it is generally faster to compute a large number of iterates of
individual points to determine their eventual orbit behaviors than to attempt to compute the basin using
inverse images.

◦ It is also more di�cult to decide what the �immediate� attracting basin is: ultimately, the right answer
is that it is the largest connected open set containing z0 that lies in the attracting basin.

◦ We will return shortly to the question of computing attracting basins, which for many functions turn out
to be closely related to Julia sets.

• Here are a few plots of attracting basins for some simple functions:

5.1.4 Orbits of Linear Maps on C

• Let us analyze the orbits of the linear maps p(z) = az + b in terms of a and b.

◦ If a = 1, then the map is simply a shift map p(z) = z + b, whose orbits are obvious.

◦ So now assume a 6= 1. We can see that p(z) has a unique �xed point z0 = b/(1− a).

◦ It is easy to check that the dynamical system (C, p) is conjugate via the homeomorphism h(z) = z −
b/(1− a) to the dynamical system (C, g), where g(z) = az, whose �xed point is now at z = 0.

◦ So we may equivalently analyze the behavior of the simpler �scaling map� where b = 0.

• Let g(z) = az and write a = reiθ.

◦ Since gn(z) = anz = rneniθz we see that if r < 1 then the attracting �xed point z = 0 attracts all
orbits, and if r > 1 then the orbit of every point except the �xed point �goes to ∞� in the sense that
|gn(z)| → ∞.

◦ Geometrically, multiplication by an = rneniθ will scale z by a factor of rn and rotate it by an angle θ
around the origin. Thus, for θ 6= 0, the orbits in general will have a �spiral� pattern toward the origin if
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r < 1 and away from the origin if r > 1:

• More interesting is the case r = 1, with a = eiθ. In this case, the origin is a neutral �xed point.

◦ Since |g(z)| = |z| we see that the orbit of each point moves around a circle centered at the origin. If we
restrict our attention to this circle, then g(z) is simply the map that rotates the circle counterclockwise
by θ radians.

◦ If θ is a rational multiple of 2π (the �rational rotation� case), say θ =
2πp

q
where

p

q
is in lowest terms,

then a is a qth root of unity (i.e., aq = 1) and gq(z) = z for every value of z. In this case, every point is
a periodic point of exact period q, except for z = 0 which is a �xed point.

◦ If θ is an irrational multiple of 2π (the �irrational rotation� case), then an will never be equal to 1 for
any n, so in this case that the orbit of z will roam around the circle of radius |z| without ever falling into
a periodic cycle.

◦ Notice in particular that the orbit behavior when 0 is a neutral �xed point can be very complicated and
depends very �nely on the precise nature of the value of the derivative g′(0). This behavior is in stark
contrast to the real case, where there are only two possible types of neutral �xed point.

• In fact, we can say more in the irrational rotation case: it turns out that the orbit is actually dense on the
circle of radius |z|. Explicitly:

• Theorem (Jacobi): The orbit of any point z ∈ C under the map g(z) = eiθz where θ is an irrational multiple
of 2π is dense on the circle of radius |z|.

◦ In fact the orbits are actually �asymptotically equally distributed� along the circle, in the sense that the

proportion of the �rst n orbits that land in any given arc of angle ε tends to
ε

2π
as n→∞. (We will not

prove this result, but it is a special case of a much more general class of results known as equidistribution
theorems.)

◦ Proof: It is su�cient to show that the orbit of any starting point z0 will enter any given arc of angle ε
on the circle of radius |z0|.
◦ To do this, choose k such that 2π/k < ε, and consider the points z0, g(z0), ... , gk(z0) on the circle of
radius z0, which (by hypothesis) are all distinct.

◦ Two of these points must have a (counterclockwise) angle of less than 2π/k < ε between them, since
there are k + 1 points subtending a total angle of 2π.

◦ Suppose these points are gi(z0) and gj(z0) where i < j: then gj−i corresponds to a rotation by an angle
less than ε.

◦ Therefore, the points gn(j−i)(z) for n ≥ 0 are spaced around the circle at successive angles less than ε,
so in particular at least one such point must lie inside any given arc of angle ε, as required.

5.1.5 Some Properties of Orbits of Quadratic Maps on C

• We now consider the orbits of quadratic maps of the form p(z) = a1z
2 + a2z + a3 on C.

◦ Like in the real case, by applying an appropriate conjugation it is su�cient to consider maps of the form
qc(z) = z2 + c, where now c is an arbitrary complex parameter.
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◦ Indeed, we can use the same conjugation as in the real case, namely, h(x) = ax + b where a = a1 and
b = a2/2. It is then straightforward to verify that h(p(x)) = qc(h(x)), where c = a1a3 + a2/2− a22/4.

• So let qc(z) = z2 + c, and observe that q′c(z) = 2z.

• Our �rst goal is to characterize the values of c for which qc(z) has an attracting or neutral �xed point.

◦ To do this, suppose one �xed point is z0 = reiθ.

◦ Then, since f ′(z) = 2z, we see that z0 will be attracting for 0 ≤ r < 1

2
, neutral when r =

1

2
, and repelling

for r >
1

2
.

◦ We have c = z0 − z20 = reiθ − r2e2iθ, and by factoring z2 − z + c = 0 we see that the other root is
z1 = 1− reiθ.

◦ By the triangle inequality, if r <
1

2
, then |z1| ≥ 1 − r > 1

2
, so if z0 is attracting then z1 is necessarily

repelling.

◦ Furthermore, if r =
1

2
, then |z1| ≥ 1 − r ≥ 1

2
with equality if and only if eiθ = 1: namely, when

z0 = z1 =
1

2
, with c =

1

4
. For c 6= 1/4, if z0 is neutral then z1 is also necessarily repelling.

◦ From this we conclude that, for c 6= 1/4 (so that there are two distinct �xed points), one of them is
always repelling, and the other can be attracting, repelling, or neutral.

◦ If we plot the values of c where 0 ≤ r <
1

2
in the complex plane for 0 ≤ θ ≤ 2π, we obtain the open

interior of the cardioid whose boundary is the set of points of the form c =
1

2
eiθ − 1

4
e2iθ:

◦ On the interior of the cardioid at the point c = reiθ − r2e2iθ for 0 ≤ r <
1

2
, the �xed point z0 = reiθ is

attracting and the other �xed point z1 = 1− reiθ is repelling.

◦ On the boundary of the cardioid at the point c =
1

2
eiθ − 1

4
e2iθ for 0 < θ < 2π, the �xed point z0 =

1

2
eiθ

is neutral and the other �xed point z1 = 1− 1

2
eiθ is repelling.

◦ Outside the cardioid, both �xed points are repelling.

• In a similar way, we can analyze the behavior of the 2-cycle for qc(z).

◦ The two period-2 points z0 and z1 are the roots of
q2c (z)− z
qc(z)− z

= z2 + z + (c+ 1). From the factorization

we see that z2 + z + (c+ 1) = (z − z0)(z − z1), and thus z0z1 = c+ 1.

◦ By the chain rule, we see that (q2c )′(z0) = qc(z0)qc(z1) = 4z0z1 = 4(c+ 1).
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◦ Therefore, the 2-cycle is attracting precisely when |c+ 1| < 1

4
, neutral when |c+ 1| =

1

4
, and repelling

when |c+ 1| > 1

4
, which is a circle in the plane:

• We can overlay these two plots to show where qc(z) has an attracting �xed point or 2-cycle:

◦ Note that the cardioid is tangent to the circle at c = −3/4, which is the location of the period-doubling
bifurcation of the quadratic family.

◦ We could continue this procedure, and also plot the regions for which qc(z) has an attracting 3-cycle,
4-cycle, 5-cycle, and so forth: this will ultimately produce the famous Mandelbrot set. (We will discuss
it in more depth very soon.)

5.2 Julia Sets For Polynomials

• We would now like to study the dynamics of a function f : C→ C on the set of points where the orbits of f
remain bounded, since ultimately this set is where all of the interesting behavior of f occurs.

◦ We will primarily focus our attention on polynomial and rational maps, especially the quadratic family
qc(z) = z2 + c, but the basic theory extends equally well to general holomorphic functions.

5.2.1 De�nition of the Julia Set and Basic Examples

• De�nition: If f : C→ C is a polynomial function, the �lled Julia set of f is the set of points whose orbits are
bounded. The Julia set of f , denoted Jf , is the boundary of the Julia set.

◦ Recall that, if S is a subset of C, the boundary of S, often denoted ∂S for shorthand, consists of all
points z ∈ C such that any open ball of positive radius around z contains some points in S and some
points not in S. (For su�ciently well-behaved regions the technical de�nition of �boundary� agrees with
the colloquial use; namely, it is the set of points lying on the �edge� of the region.)

◦ It turns out that for most functions, the Julia set will be rather complicated and have an irregular shape:
indeed, it can even have an empty interior, so that the �lled Julia set is the same as the Julia set itself.
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Here are some typical Julia sets:

• Example: Describe the orbits of the squaring map q0(z) = z2, as well as the Julia set and �lled Julia set.

◦ We have qn0 (z) = z2
n

, so for |z| < 1 the orbit of z tends to the attracting �xed point z = 0, and for
|z| > 1 the orbit of z tends to ∞.

◦ It remains to analyze the orbits when |z| = 1: if z = eiθ, then q0(z) = e2iθ, so, on the unit circle |z| = 1,
the squaring map is the same as the angle-doubling map, whose behavior we already understand fairly
well.

◦ From our earlier analysis, we know that the angle-doubling map on the circle is chaotic, and its preperiodic
points are the points eiθ where θ is a rational multiple of 2π. In other words, the preperiodic points are
the roots of unity; namely, the solutions to zk = 1 for some k ≥ 1.

◦ The �lled Julia set is the set of points whose orbit does not go to ∞, namely, the closed unit disc
D = {z : |z| ≤ 1}, and the Julia set is the boundary of this region, the unit circle ∂D = {z : |z| = 1}:

◦ By essentially the same analysis, we can in fact see that the nth power map p(z) = zn for any integer
n ≥ 2 will behave in essentially the same way: all orbits inside the open disc |z| < 1 tend to the attracting
�xed point at z = 0, all orbits with |z| > 1 will tend to ∞.

◦ On the unit circle, the nth power map is the same as the multiplication-by-n map on R modulo 1, and
by the same arguments as above we see that the preperiodic points, the �lled Julia set, and the Julia set
for the nth power map are the same as for the squaring map.

• Example: Find the Julia set and �lled Julia set for the map q−2(z) = z2 − 2.

◦ We have already studied the behavior of this map on the real line: it is chaotic on the interval [−2, 2],
and outside this interval all orbits tend to −∞.

◦ It turns out that we have essentially found all of the interesting dynamical properties of this function
already: we will show that the dynamical system (U1, q−2) is conjugate to (U2, q0), where U1 is C with
the real interval [−2, 2] removed, and U2 is the set {z : |z| > 1}.
◦ In particular, this will imply that every orbit of q−2 except those lying in [−2, 2] tends to ∞, since the
same is true for the orbits of any point in U2 under the squaring map q0.
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◦ We will show that h(z) = z +
1

z
is a conjugacy from (U2, q0) to (U1, q−2):

∗ For injectivity, suppose w, z ∈ U2 and h(z) = h(w): then z +
1

z
= w +

1

w
, which has the obvious

solutions w = z, w = 1/z and no others, because it is a quadratic equation in w (or just by factoring).
If z ∈ U2 then 1/z is not in U2, so since w ∈ U2 then we must have w = z, as required.

∗ For surjectivity, if ζ ∈ U1 then we can �nd z ∈ U2 with h(z) = ζ by solving the quadratic equation

z +
1

z
= ζ to obtain z =

ζ ±
√
ζ2 − 4

2
. The product of these two solutions is 1, so either (i) one of

them lies in U2, or (ii) they both lie on the unit circle. In case (i) we are done, and in case (ii), if
z = eiθ then ζ = eiθ + e−iθ = 2 cos θ is a real number in the interval [−2, 2], which is excluded from
U1.

∗ Clearly, h(z) is continuous (since it is, in fact, holomorphic on U2), and its inverse is also continuous
by the chain rule (or equivalently, by the implicit function theorem, since h′ is never zero on U2).

∗ Finally, we see that h(q0(z)) = h(z2) = z2 + z−2 = (z + z−1)2 − 2 = q−2(h(z)), so h is a conjugacy
as required.

◦ We will remark that this map does not simply spring out of nowhere: on the unit circle, we see that
h(eiθ) = eiθ + e−iθ = 2 cos θ, so this map is secretly the same as the (semi)-conjugacy we gave between
the dynamical systems ([−2, 2], q−2) and the angle-doubling map.

◦ From all of this, we see that the �lled Julia set (and thus also the Julia set itself) for f is simply the
interval [−2, 2] on the real line.

5.2.2 Computing the Filled Julia Set: Escape-Time Plotting

• In general it is very di�cult to describe the Julia set of even simple functions like the quadratic maps
qc(z) = z2 + c except in very special cases like the two we analyzed earlier. We will now turn our focus
toward describing computational methods for plotting Julia sets and �lled Julia sets.

◦ A natural method for plotting the �lled Julia set is simply to test whether a given point in the plane has
its orbit blow up to ∞ after some small number of iterations.

◦ In order to make this more precise we will require an �escape criterion�: namely, a criterion for when the
orbit of a point under a map is guaranteed to blow up to ∞.

◦ For polynomials, there is always an escape criterion that only depends on the absolute value of the
starting point:

• Proposition (Polynomial Escape Criterion): Suppose p(z) = anz
n + an−1z

n−1 + · · · + a0 is a polynomial of
degree n ≥ 2. Then there exists a constant R > 0, depending only on n and the coe�cients ai, such that the
orbit of any point z with |z| > R blows up to ∞.

◦ Proof: We will show, more speci�cally, that for any λ > 1 there exists an R such that |z| > R implies
|p(z)| ≥ λ |z|.
◦ We can then repeatedly apply this result to see that

∣∣pd(z)∣∣ ≥ λd |z| > λdR, and the lower bound goes

to ∞ by the assumptions λ > 1 and R > 0, so that
∣∣pd(z)∣∣→∞ as d→∞.

◦ To show this, let p(z) = anz
n + an−1z

n−1 + · · ·+ a0 where n ≥ 2 and an 6= 0, and let C =

n−1∑
i=0

|ai|.

◦ We claim that if |z| ≥ max(1, 2C/ |an| , (2λ/ |an|)1/(n−1)), then |q(z)| ≥ λ |z|. Thus in particular, we can
take R = max(1, 2C/ |an| , (2λ/ |an|)1/(n−1)).

◦ So suppose |z| ≥ max(1, 2C/ |an| , (2λ/ |an|)1/(n−1)). Then by repeatedly using the triangle inequality,

14



we have

|q(z)| ≥ |anzn| −
[∣∣an−1xn−1∣∣+ · · ·+ |a1x|+ |a0|

]
≥ |anzn| − [|an−1|+ · · ·+ |a1|+ |a0|]

∣∣zn−1∣∣
= |zn| · [|an| − C/ |z|]

≥ |zn| · 1

2
|an| = |z| ·

1

2
|an| · |z|n−1

≥ |z| · λ

where the �rst inequality follows because
∣∣zn−1∣∣ ≥ ∣∣zk∣∣ for k ≤ n− 1 by the hypothesis that |z| ≥ 1, the

second inequality follows because |z| ≥ 2C/ |an| so that C/ |z| ≤ 1

2
|an|, and the last inequality follows

because |z|n−1 ≥ 2λ/ |an|.

• As an immediate corollary of this bound, we see that the Julia set for a polynomial map is always bounded
since it is contained in the disc of radius R.

◦ In general, the Julia set for more general types of maps, like rational functions, can be unbounded.

• For speci�c polynomial maps, we can sharpen the constant that appears in the proof:

• Proposition (Quadratic Escape Criterion): For the quadratic map qc(z) = z2 + c, if |z| > max(|c| , 2) then the
orbit of z blows up to ∞.

◦ The argument is essentially the same as the one we gave above for general polynomials, but sharpened
slightly to take advantage of the low degree.

◦ Proof: By assumption since |z| > 2 there is a λ > 1 such that |z| − 1 > λ.

◦ Then by the triangle inequality, we have |qc(z)| ≥ |z|2 − |c| ≥ |z|2 − |z| = |z| (|z| − 1) ≥ λ |z|.
◦ Since λ > 1 this implies |qc(z)| ≥ λ |z| > |z| > max(|c| , 2).

◦ Thus, qc(z) > max(|c| , 2), so so we may iteratively apply the argument to see that
∣∣qdc (z)

∣∣ ≥ λd |z|, and
since λ > 1 and |z| > 2 we conclude that

∣∣qdc (z)
∣∣→∞ as d→∞.

• Using the escape criterion we can give a method for plotting the �lled Julia set:

• (Semi)-Algorithm (Escape Time): To plot the �lled Julia set for the polynomial p(z), let R be the escape
radius given by the escape-criterion proposition. Choose a large number of points inside the disc |z| < R,
evaluate the �rst 100 iterates of p on each point, and then color in each of the points that do not escape the
disc |z| < R.

◦ In principle, this procedure will completely characterize the points lying in the �lled Julia set, but it is
not always possible to check computationally whether a point will actually leave the disc |z| < R within
a �nite amount of time, since there are points that will take an arbitrarily large number of iterations
before leaving the disc.

◦ We can also re�ne the picture slightly by plotting the points that escape the disc |z| < R in various colors
depending on how many iterations they require to leave the disc. In cases where the Julia set happens
to have very little interior (or none at all) this procedure will help show the structure.

• Here are some examples of Julia set plots2 for a number of quadratic maps:

2Thanks to the coders of Mathematica 10 for implementing easy Julia set plotting.
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• It is equally straightforward to plot Julia sets for other polynomial maps:

5.2.3 Computing the Julia Set: Backwards Iteration

• The escape-time plotting method allows us to plot the �lled Julia set for a function p(z), and in turn we can
visually extract a rough picture of the Julia set itself as the boundary of the �lled Julia set.

◦ However, it would be nice to have an explicit way to plot the Julia set itself, without having to compute
a large number of iterates of points most of which are not in the Julia set.
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◦ Since the Julia set seems to have a fractal shape (much of the time, anyway), it is reasonably natural to
hope that there might be a way to plot Julia sets using iterated function systems.

◦ Speci�cally, if we can exhibit the Julia set as the invariant set of a collection of contractions, or at least
maps that are close to contractions, then it is reasonable to hope that we might be able to create an
iterated function system related to the map p in some way.

• In the explicit examples we computed earlier, we saw that the set of repelling periodic points was dense in
the Julia set. This turns out to be true in general:

• Theorem (The Julia Set as a Repelling Set): If f is any polynomial of degree ≥ 2, then every repelling periodic
point of f is in the Julia set, and in fact every repelling preperiodic point of f lies in the Julia set as well.

◦ Proof (outline): It is easy to see that any periodic point (repelling or otherwise) certainly lies in the �lled
Julia set, since its orbit remains bounded. Indeed, all eventually periodic points will lie in the �lled Julia
set for the same reason.

◦ If z0 is a repelling �xed point, then points in a su�ciently small disc around z0 will have orbits that
eventually land outside the disc: we claim in fact that some points in this disc must actually have orbits
that blow up to ∞, meaning that z0 is actually on the boundary of the �lled Julia set (and thus, in the
Julia set).

◦ For the last statement, it is su�cient to show the result when z0 is a repelling �xed point. For simplicity,
conjugate f by a translation to move z0 to the origin, and then suppose |f ′(0)| = λ > 1. By the chain
rule, |(fn)′(0)| = |f ′(0)|n = λn, so we have fn(z) = λnz +O(z2) for su�ciently small |z|.

◦ Then it is possible to arrange matters so that |fn(z)| > λn

2
|z| for some values of z, so by taking n large

enough we can force fn(z) to land outside the escape radius of the function f , meaning that the orbit of
z will escape to ∞. (We omit the rather delicate estimates required to show that this argument actually
succeeds.)

• There is a natural extension of this result, due to Fatou and Julia:

• Theorem (Fatou-Julia): For any polynomial f of degree ≥ 2, the set of all repelling periodic points for f is a
dense subset of the Julia set Jf .

◦ We will not prove this result, which relies on some deeper results of complex analysis involving normal
families.

◦ However, it certainly agrees with the analysis we made for the function f(z) = z2, whose Julia set is the
unit circle |z| = 1: the periodic points were those points e2πi(p/q) where q was odd, and these points are
dense on the unit circle.

• Corollary: If f is a polynomial, then the Julia set of f is completely invariant under f . In other words,
f(Jf ) = Jf and f−1(Jf ) = Jf also.

◦ Proof: Let S be the set of repelling periodic or eventually periodic points for f .

◦ If z ∈ S, then f(z) is also a repelling eventually periodic point, so f(z) ∈ S.
◦ Similarly, any point in f−1(z) will be a repelling eventually periodic point, so f−1(z) ⊂ S as well.

◦ Since this holds for every z ∈ S we see that f(S) ⊆ S and f−1(S) ⊆ S.
◦ Applying f to the second statement yields S ⊆ f(S), so f(S) ⊆ S ⊆ f(S). Equality must hold so
S = f(S), and thus S = f(S) = f−1(S).

◦ Now from the theorem of Fatou and Julia, if we take the topological closure of each of S, f(S), and f−1(S),
by the continuity of f and f−1 we obtain Jf , f(Jf ), and f−1(Jf ) respectively. Since S = f(S) = f−1(S)
we conclude Jf = f(Jf ) = f−1(Jf ).

• This corollary suggests a way to compute the Julia set using iteration.

◦ Speci�cally, if f is a polynomial of degree d, then f−1(z), for most values of z, will be a set of d points,
so we can think of f−1(z) as a collection of d di�erent functions {g1, g2, · · · , gd} of z.
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◦ Each of these component functions gi(z) will in general be a continuous function that is a contraction

on a su�ciently large starting set: roughly speaking, since |f(z)| ≈ zd, we must have |gi(z)| ≈ |z|1/d for
large |z|.
◦ By our results on iterated function systems, we immediately see that the Julia set is the invariant set of
the iterated function system {g1, g2, · · · , gd}.
◦ There are some minor issues to work out regarding the �branch cuts� required to give a consistent
de�nition to each function gd, but this is the main idea.

• Algorithm (Backwards Iteration): To draw the Julia set for a polynomial f(z), choose an arbitrary starting
point y0 ∈ C, and then plot the points {y0, y1, y2, y3, y4, . . . } where ym is obtained by randomly choosing one
of the d points with f(ym) = ym−1. Equivalently, we take ym to be a random one of the d backwards iterates
of ym−1.

◦ It can be proven that this algorithm will converge to the Julia set for almost all starting points y0.

∗ The exceptions are called �exceptional points�, and it can be proven that, for polynomial maps, they
will only show up only for polynomials that are conjugate via a linear homeomorphism to a power
map z 7→ zn for some n.

∗ It is easy to see that the Julia set for the power map is the circle |z| = 1, so exceptional points will
only arise for polynomial maps whose Julia set is a circle. Thus, we do not lose anything by ignoring
these cases, since we do not need the backwards iteration procedure in order to draw a circle!

◦ In practice, one often chooses the starting point y0 = 0. By the above remark, for every map in the
quadratic family qc(z) = z2 + c except for q0(z) = z2, the backwards iteration procedure applied to
y0 = 0 will indeed converge to the Julia set.

◦ However, unlike with the iterated function systems of similarities we studied, the backwards iteration
algorithm does not generally produce points that are evenly distributed through the Julia set: some
parts of the Julia set are di�cult to reach using the backwards iteration procedure, and so they will have
comparatively few points plotted.

• Here are some examples of Julia set plots created using backwards iteration:

• It is also possible to re�ne the algorithm to sample more points near di�cult-to-reach areas of the Julia set, to
produce better pictures. Here is a comparison of two plots, one with the �naive� backward iteration method
and another with an algorithm that searches for additional points:
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• From all of the discussion above, we see that (Jf , f) is a dynamical system which has a dense set of periodic
points, which is one of the three components in the de�nition of a chaotic dynamical system, and that all of
the repelling periodic points lie in Jf , which is reminiscent of having sensitive dependence.

• Theorem (Chaotic Julia Sets): If f is a polynomial, then f is chaotic on its Julia set Jf .

◦ This result also holds for other classes of functions, but the proof is more intricate.

◦ Proof (outline): We already showed that f has a dense set of periodic points on Jf .

◦ Transitivity follows from the fact (noted earlier) that for almost any point y ∈ J , the backward iterates
of y are dense in J . By choosing appropriate elements in the chain of backward iterates, one can deduce
that f is transitive.

◦ Sensitive dependence follows because, for any point z ∈ J , there are repelling periodic points arbitrarily
close to z: thus, |f(z)− f(w)| > |z − w| for any w su�ciently close to z. Since Jf is compact by
the assumption that f is a polynomial, there necessarily exists a constant λ > 1 and r > 0 such that
|f(z)− f(w)| > λ |z − w| for all z, w ∈ J with |z − w| < r. Iterating this result shows that for any z 6= w,
there is some k for which

∣∣fk(z)− fk(w)
∣∣ ≥ r: thus, f has sensitive dependence on J .

5.3 Additional Properties of Julia Sets, The Mandelbrot Set

• We will now brie�y outline some deeper results about Julia sets for more general functions such as the rational
functions f(z) = p(z)/q(z) of degree d ≥ 2 (the degree of a rational function is the maximum of the degrees of
the numerator and denominator when written in lowest terms). Most of the results require signi�cantly more
theoretical background than we can develop at the moment, so we will focus primarily on giving a survey of
important properties of Julia sets.

◦ When possible we will attempt to motivate and explain each of the results using the examples we have
already seen, as well as give some general discussion of the ingredients of the proofs.

• To cap our discussion, we will construct and study the Mandelbrot set, which is the set of points c ∈ C for
which the map qc(z) = z2 + c has a connected Julia set.

5.3.1 General Julia Sets

• The notion of the Julia set can be extended to general holomorphic functions, but the correct general de�nition
is slightly di�erent from the one we have given.

• One way is simply to de�ne the Julia set as the closure of the set of repelling periodic points.

◦ However, it is not so clear in general that most holomorphic functions have repelling periodic points at
all (nor is it clear how to �nd them), so we will not take this as our de�nition.

• De�nition: A family {fn} of holomorphic functions on an open set U is a normal family if every sequence
of functions in the family has a subsequence which either converges uniformly on compact subsets of U , or
converges uniformly to ∞ on U .

◦ Roughly speaking, a normal family is a collection of maps which all either converge together or diverge
to ∞ together, in a consistent way.

• De�nition: If f : U → C is a holomorphic function, the Fatou set of f is the set of points z ∈ U on which the
set of iterates {fn} is a normal family. The Julia set Jf of f is the set of points z ∈ U on which the set of
iterates {fn} fails to be a normal family.

◦ We will remark that the de�nition above was actually the original historical de�nition of the Julia set.

◦ Roughly speaking, the Fatou set is the set of points where f behaves in a predictable manner: the orbits
of points near a point in the Fatou set stay bounded (in a predictable way) or blow up to∞ (in a uniform
way).
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◦ The Julia set is the complement of the Fatou set.

◦ If f is a holomorphic function on the entire complex plane (e.g., if f is a polynomial or a function like
ez), then the Julia set Jf is the boundary of the set of points whose orbits escape to ∞.

• Algorithms for plotting Julia sets can be adapted, often with some di�culty, for many classes of general
holomorphic maps.

◦ In general, most holomorphic functions will not have a simple escape criterion, and so instead we will
have to resort to other procedures to generate escape-time plots. (To illustrate, notice that |ez| = eRe(z),
so even when |z|is very large, ez can be very close to zero.)

◦ The theorem on plotting Julia sets using backwards iteration will still mostly hold in the general setting,
but again they can require some modi�cation when implementing them computationally since Julia sets
for general maps can extend to ∞.

• Here are some plots of Julia sets for more general maps:

• We will also remark that, although Julia sets often have a fractal shape and possess self-similarities, it is
generally very di�cult to compute their exact box-counting dimension.

5.3.2 Julia Sets and Cantor Sets

• When we studied the quadratic maps qc(x) = x2 + c on the real line, we saw that when c < −2 the set of
points where the orbit remained bounded was a Cantor set.

◦ In general, if S is a subset of a metric space, we say S is a Cantor set if S is homeomorphic to the Cantor
ternary set.

• This is also true in the complex plane for values of c su�ciently far away from the origin:

• Theorem (Symbolic Dynamics in C): If |c| is su�ciently large, the Julia set Jc of the quadratic map qc(z) =
z2 + c is a Cantor set. More speci�cally, the dynamical system (Jc, qc) is homeomorphic to (Σ2, σ) where σ is

the shift map on the binary sequence space Σ2 whenever |c| > 5+2
√
6

4 ≈ 2.4747.

◦ The proof of this result is quite similar to the proof in the real case mentioned above: the only di�erence
is that the nested sequences of intervals instead become nested sequences of sets resembling discs.

◦ We will also remark that one can prove a similar theorem for other families of polynomial maps of higher
degree, although the statements and the results are correspondingly more complicated.

◦ Proof (outline): Assume |c| > 2. By the escape criterion, any point z with |z| > |c| has orbit that blows
up to ∞. Thus, any point outside the circle |z| = |c| does not lie in the Julia set.

◦ Now let Λ be the set of points all of whose orbits lie inside the closed disc D = {z : |z| ≤ |c|}. Then Λ
is given by the in�nite intersection Λ =

⋂∞
n=1 q

−n
c (D), so it su�ces to study these inverse image regions.

◦ One can compute the preimage q−1c (D) to see that it is a ��gure-eight� region lying inside D that consists
of two lobes joined at the origin, one copy for each of the two possible choices of square root:
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◦ It is then mostly straightforward to verify that q−nc (D) is the union of 2n distinct regions in the plane
(which we can label using the appropriate binary string of length n in the same manner as we did with
the intervals in the real case).

◦ Now de�ne an itinerary map for a point lying in the region Λ using the two lobes D0 and D1 of the
�gure-eight: if z ∈ Λ, set S(z) = (d0d1d2 · · · ), where dn = 0 if qnc (x) ∈ D0 and dn = 1 if qnc (x) ∈ D1.

◦ Using a higher-dimensional analogue of Cantor's nested intervals theorem and the labelings we have
attached to the components of q−nc (D), we can show that the itinerary map is a bijection, and we can
also verify that the map is continuous and has continuous inverse using the de�nition of continuity
provided that |c| is su�ciently large.

◦ Furthermore, if |c| is large enough, then it will be the case that |q′c(z)| > 1 on each of the regions: if B is
the disc of radius 1/2 centered at the origin, then qc(B) is the disc of radius 1/4 centered at c. For large
enough c, this disc will be disjoint from q−1c (D), since the lobed region only extends a distance

√
2 |c|

away from the origin. This disc contains all the points such that
∣∣q′c(q−1c (z))

∣∣ ≤ 1, so any point in Λ not
lying in this disc will have |q′c(z)| > 1.

◦ So since |q′c(z)| > 1 on all of Λ, all of the periodic points in Λ will be repelling. Since the periodic points
in Σ2 are dense, we conclude that the periodic points in Λ are also dense, and so Λ must actually be the
Julia set for qc.

◦ Finally, for the explicit bound on c, we can in fact see that it is su�cient to assume that |c|− 1
4 >

√
2 |c|,

which (it is straightforward to check) is equivalent to |c| > 5+2
√
6

4 .

• As a corollary of the result above, we see that if |c| is su�ciently large, then the Julia set Jc for qc(z) = z2 + c
will be homeomorphic to the Cantor ternary set.

◦ Thus, the Julia set will be totally disconnected, so in particular this means that the �lled Julia set and
the Julia set are necessarily the same.

◦ Furthermore, if we try to plot the �lled Julia set using the escape-time method, we will essentially never
be able to identify any points that actually lie in the set itself due to rounding errors.

◦ This is why, when drawing the �lled Julia set, we do not simply plot the points whose orbits remain
bounded, but also points whose orbits escape based on how long their escape takes: when the Julia set
is a Cantor set, we are unlikely to �nd any points at all whose orbits do not eventually escape, so we
would not plot anything in our picture.

• Here are some plots of Julia sets that are Cantor sets:
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5.3.3 Critical Orbits and the �Fundamental Dichotomy�

• For real-valued functions with negative Schwarzian derivative, we know that every attracting cycle of f attracts
at least one critical point of f . There is a corresponding (and simpler) result for holomorphic functions:

• Theorem (Critical Orbits): If {z1, · · · , zn} is an attracting cycle of the rational function f of degree d ≥ 2,
then its basin of attraction is either in�nite or contains at least one critical point of f . If f is a polynomial of
degree d, then it has at most d− 1 attracting cycles.

◦ We remark that the count of critical points may include ∞ as a critical point, depending on the relative
degrees of the numerator and denominator of f . (We de�ne f(∞) = lim|z|→∞ f(z) if this limit exists.)

◦ Like in the real case, it is su�cient to prove the result for the attracting basin of an attracting �xed
point of f , since the chain rule allows us to convert a statement about the attracting basin for a �xed
point of fn to a statement about the attracting basin for an n-cycle of f .

◦ The proof of this theorem is quite di�erent from the real case, and again requires some rather deep results
from complex analysis. (Note that we no longer require any information about the Schwarzian derivative
of the function f , for example.) We will omit the details.

• As a corollary of the previous theorem, we see that qc(z) = z2 + c has at most one attracting cycle, and that
if there is an attracting cycle it will attract the orbit of the critical point z = 0.

• In fact, whether qc(z) possesses an attracting cycle is closely related to whether the Julia set is a Cantor set:

• Theorem (The Fundamental Dichotomy): For qc(z) = z2 + c, either (i) the orbit of 0 escapes to ∞ in which
case the Julia set of qc is a totally disconnected Cantor set consisting of in�nitely many disjoint components,
or (ii) the orbit of 0 remains bounded in which case the Julia set of qc has a single connected component.

◦ A set S is connected if it cannot be written as the disjoint union of two (relatively) closed subsets: in
other words, if there do not exist closed subsets C1 and C2 of C such that (S ∩ C1) and (S ∩ C2) have
union S and empty intersection. (Roughly speaking, a connected set cannot be split apart into two
separate pieces that do not touch one another.)

◦ More generally, if p is a polynomial then the Julia set Jp is totally disconnected if every critical orbit
escapes to ∞, and Jp is connected if every critical orbit is bounded.

◦ Proof (outline): Let Dr be a disc of arbitrary radius r > 2. By the escape criterion, all points on the
boundary of Dr escape to ∞.

◦ It is a straightforward geometric calculation that if R is a connected region in C, then q−1c (R) is connected
if R contains c and q−1c (R) consists of two connected pieces if R does not contain c.

◦ Now consider the iterated inverse images q−1c (Dr), q
−2
c (Dr), ....: the �lled Julia set is necessarily the

intersection of these sets, since any point lying in the intersection will never escape, and conversely any
point that lies outside one of these sets will escape.

◦ Suppose �rst that the orbit of 0 escapes to ∞. Then
∣∣qkc (0)

∣∣ > 2 for some k. Set r =
∣∣qkc (0)

∣∣: then each

of q−1c (Dr), q
−2
c (Dr), ... , q

−k
c (Dr) is a single region bounded by a simple closed curve, but q

−(k+1)
c (Dr)

will consist of two separate regions (since it will not contain the point c).

◦ Each additional inverse iterate will then double the number of connected components, and it can also be
shown that the size of each component goes to zero as the number of inverse iterates grows.

◦ So by the 2-dimensional version of Cantor's nested intervals theorem, the �lled Julia set consists of an
in�nite number of disjoint components and is totally disconnected. Since it is totally disconnected, every
point lies on the boundary, so the �lled Julia set and the Julia set are the same.

◦ Finally, we can de�ne an itinerary map in essentially the same way as we did before to show that the
�lled Julia set is homeomorphic to the Cantor ternary set.

◦ Now suppose that the orbit of 0 does not escape to ∞. Let r > 2. Since the orbit of 0 does not escape,
qkc (0) never lies outside the circle of radius 2. Thus, q−kc (Dr) always contains qc(0) = c for every value
of k.

◦ So, for each k, we see that q−kc (Dr) consists of a single connected component.

◦ It then follows from the 2-dimensional version of Cantor's nested intervals theorem that the intersection
of a nested sequence of connected closed sets is connected, so we immediately see that the �lled Julia set
is connected. It can be shown that this implies the Julia set itself is also therefore connected.
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5.3.4 The Mandelbrot Set

• From the fundamental dichotomy, we see that the Julia set for the map qc(z) = z2 + c is either a totally
disconnected Cantor set or a set with a single connected component, according to whether the orbit of 0
escapes to ∞ or not.

• We can graphically depict the di�erent cases by plotting the values of c for each possibility:

• De�nition: The Mandelbrot set is the set of values of c ∈ C such that the orbit of 0 under qc(z) = z2 + c does
not escape to ∞.

◦ The Mandelbrot set is often displayed using the same escape-time algorithm used for plotting �lled Julia
sets: namely, choose a large number of values of c inside the disc |c| < 2, evaluate the �rst 100 iterates
of 0 under qc for each c, and then color in the values of c for which the orbit of 0 does not escape the
disc of radius 2. (We can further re�ne the picture by plotting points that do escape in a color indicating
how many iterations were required.)

◦ Here are some plots of the Mandelbrot set, without and with the escape-time coloring:

• Using our previous results we can establish a few basic properties of the Mandelbrot set:

◦ By the escape criterion, we can equivalently characterize the Mandelbrot set as the set of points c ∈ C
for which |qnc (0)| ≤ 2 for all n ≥ 0. In particular, since the set |qnc (0)| ≤ 2 is closed for each n, the
Mandelbrot set is an intersection of closed sets and is therefore closed.

◦ Since qc(0) = c, if |c| > 2 then the orbit of 0 will necessarily escape to ∞ by the escape criterion. Thus,
the Mandelbrot set is contained inside the circle of radius 2 centered at 0.

◦ From the fundamental dichotomy, the Mandelbrot set is also the set of values of c for which the Julia set
Jc is connected.

◦ The intersection of the Mandelbrot set with the real axis is the interval [−2, 1/4]: this result follows
immediately from our previous analysis of quadratic maps on the real line. Explicitly, if c > 1/4 then
all real points have orbit diverging to ∞, and if c < −2 then 0 escapes by the escape criterion. For
−2 ≤ c ≤ 1/4 we know that the orbit of 0 will remain bounded, since qc maps the interval between the
two �xed points into itself, and 0 lies in that interval.

• There are a number of very deep theorems about the structure of the Mandelbrot set (and about the closely
related Julia sets for quadratic maps). Here are a few:

• Theorem (Douady/Hubbard, 1982): The Mandelbrot set is connected.

◦ It is somewhat plausible based on the picture to conjecture that the Mandelbrot set is connected, as the
escape-time algorithm suggests the existence of �tendrils� that join the small bulbs to the main cardioid.
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◦ In fact, Mandelbrot originally conjectured that the Mandelbrot set was disconnected � although it should
be noted that he was only working with lower-resolution monochrome pictures that did not make use of
the escape-time method, and he revised his original conjecture once better algorithms were available.

◦ Although the Mandelbrot set is known to be connected, it is still an open question whether it is locally
connected (i.e., if for every open subset V of the Mandelbrot set and any x ∈ V , there exists a connected
open set U with x ∈ U that is contained in V ).

• Theorem (Shishikura, 1998): The Hausdor� dimension (and therefore also the box-counting dimension) of the
boundary of the Mandelbrot set is 2.

◦ Although the boundary of the Mandelbrot set has a fractal appearance, much like Julia sets, it is actually
su�ciently complicated that it has dimension 2, the same dimension as the plane itself.

5.3.5 Attracting Orbits and Bulbs of the Mandelbrot Set

• From the theorem about critical orbits, if qc has an attracting cycle, then 0 will be attracted to it, and
therefore cannot go to ∞. Thus, if qc has an attracting cycle, then c lies in the Mandelbrot set.

◦ In particular, we can see that the Mandelbrot set contains all points inside the curve z = 1
2e
iθ − 1

4e
2iθ,

since these values of c produce an attracting �xed point for qc. This part of the Mandelbrot set is called
the main cardioid.

◦ We also see that the Mandelbrot set contains the points inside the circle of radius 1/4 centered at −1,
since these values of c produce an attracting 2-cycle for qc.

◦ In a similar way, there are further bulbs (also called �decorations�) attached to the main cardioid, and
to other bulbs, containing values of c producing attracting cycles of larger periods.

◦ Each bulb consists of a main disc that in turn has additional smaller �decorations� attached to it, including
a large antenna that branches o� in roughly the opposite direction to the main cardioid.

◦ Here is a typical Mandelbrot bulb:

• Theorem (Mandelbrot Bulb Labeling): For each rational number p/q in lowest terms strictly between 0 and

1, there is a bulb attached to the main cardioid of the Mandelbrot set at the point
1

2
e2πi(p/q) − 1

4
e4πi(p/q).

For any c inside the main disc of this bulb, the function qc has an attracting cycle of exact period q, and this
cycle has rotation number p/q. (We call this bulb the p/q-bulb.) The size of the p/q bulb depends primarily
on q, and shrinks as q grows.
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◦ We say a periodic cycle for a function f has rotation number p/q if each iteration of f rotates by p/q full
rotations on average. (The prototypical example is the �xed point at 0 of the function f(z) = e2πi(p/q)z.)

◦ We will not prove any of the parts of this theorem. However, for z0 =
1

2
e2πi(p/q)− 1

4
e4πi(p/q), we can see

that q′c0(z0) = e2πi(p/q), meaning that z0 is a neutral �xed point with rotation number p/q.

◦ Roughly speaking, as we move out from c0 into the main disc of the bulb, the neutral �xed point z0
splits into an attracting q-cycle each point of which has rotation number p/q.

• Corollary: If a/b and c/d are consecutive bulbs on the main cardioid of the Mandelbrot set, then the largest
bulb that appears between them will be the (a+ c)/(b+ d) bulb.

◦ There are a number of connections between the bulb labelings and the so-called Farey sequences of
rational numbers. The nth Farey sequence is obtained by writing all rational numbers in [0, 1] whose
denominators are ≤ n (in lowest terms) in increasing order.

◦ Thus, for example, the 4th Farey sequence is
0

1
,

1

4
,

1

3
,

1

2
,

2

3
,

3

4
,

1

1
.

◦ From the bulb-labeling theorem, if we read the nth Farey sequence in order, we will obtain an ordered list

of the largest bulbs around the perimeter of the main cardioid (where we interpret
0

1
and

1

1
as referring

to the main cardioid itself).

◦ In particular, since the largest bulbs will correspond to terms with the smallest denominators, the
corollary follows from the elementary number theory fact that if a/b and c/d are consecutive members
of the nth Farey sequence, then the �rst term in any subsequent Farey sequence that appears between
them is (a+ c)/(b+ d).

• It also turns out that we can identify the rotation number p/q of the bulb (and the period) using the geometric
shape of the antenna:

• Theorem (Mandelbrot Bulb Antenna): The antenna of the p/q bulb has precisely q spokes emanating from
its central point (including the spoke joining the bulb to the antenna). Furthermore, if the spokes are labeled
0, 1, . . . , q − 1 counterclockwise starting with a 0 on the spoke joining the bulb to the antenna, the smallest
spoke has label p.

◦ Again, we will not prove this theorem3, but instead settle for giving some suggestive examples.

◦ We remark that the correct de�nition of �smallest spoke� does not always quite agree with the Euclidean
distance in the plane (and it is di�cult to de�ne �smallest� in a precise enough way to prove the theorem).
However, in practice, the spoke that appears visually smallest is usually the correct one.

• Here are plots of the 3/5 and 3/7 Mandelbrot bulbs as a demonstration of the antenna theorem:

3The paper �The Mandelbrot Set, the Farey Tree, and the Fibonacci Sequence� by R. Devaney, from the April 1999 issue of the

American Mathematical Monthly, has an accessible discussion of the proof of each of the results we have discussed.
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◦ Observe that for the 3/5 bulb, the main antenna has �ve spokes, and the third one (counterclockwise from
the one connecting the antenna to the main disc) is the smallest. Also, by the bulb-labeling theorem, the

bulb should be attached to the main cardioid at the point c0 =
1

2
e2πi(3/5)− 1

4
e4πi(3/5) ≈ −0.482−0.532i,

which indeed it appears to be.

◦ Similarly, for the 4/7 bulb, the main antenna has seven spokes, and the fourth one (counterclockwise
from the one connecting the antenna to the main disc) is the smallest. The bulb should be attached to

the main cardioid at c0 =
1

2
e2πi(4/7) − 1

4
e4πi(4/7) ≈ −0.606− 0.412i, which indeed it appears to be.

• To close our discussion, we will mention one �nal connection between the p/q-labeling of the Mandelbrot bulb
and the structure of the �lled Julia set for points lying in the main disc of the bulb:

• Theorem (Filled Julia Set for Main Disc Points): If c is any point lying in the main disc of the p/q bulb of the
Mandelbrot set, then the �lled Julia set for qc possesses in�nitely many �junctions� at which exactly q lobes
of the �lled Julia set narrow and join together. If the lobes are labeled 0, 1, . . . , q − 1 clockwise starting with
a 0 on the largest lobe, the second-largest lobe has label p.

◦ We will not prove this theorem either, but here is a pair of reasonably convincing examples:

◦ In the �rst �lled Julia set (for a c-value in the 3/5 bulb), observe that there are 5 �lobes� centered around
each point, and if we label the largest one 0 and proceed clockwise, then the second-largest has label 3.

◦ Similarly, in the second �lled Julia set (for a c-value in the 4/7 bulb), observe that there are 7 �lobes�,
and if we label the largest one 0 and proceed clockwise, then the second-largest is indeed labeled 4.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2015-2025. You may not reproduce or distribute this
material without my express permission.
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