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1 Introduction to Real Dynamics

In this chapter, our goal is to provide an introduction to discrete dynamical systems on the real line, which arise
by repeatedly iterating a function f de�ned on a subset of the line. We begin by studying orbits of points under
a function and various types of periodic behavior (�cycles�) that can arise in orbits. We then classify the behavior
of �xed points and cycles in terms of whether they attract or repel nearby points as we iteratively apply f using
various tools from calculus, and study the related notion of the attracting basin of an attracting �xed point or
cycle. We close with a brief discussion of Newton's method, a procedure often familiar from calculus that provides
a way to compute zeroes of di�erentiable functions numerically, both because it is a computational aid and because
it provides another source of interesting dynamical systems.

1.1 Dynamics on the Real Line

• A discrete dynamical system (X, f) consists of a space X and a function f : X → X from the space to itself.

• Our goal is to describe the behavior of a point P in X in the space as we iterate the function repeatedly on
P : in other words, to describe the sequence of iterates {P, f(P ), f(f(P )), f(f(f(P ))), . . . }.

◦ Example: The space is R and the transformation is the function f(x) = cos(x). What happens as we
apply f iteratively to a particular value of x (e.g., x = 2π)?

◦ Example: The space is R and the transformation is the function f(x) = x2 − 1. What happens as we
apply f iteratively?

◦ Example: The space is C and the transformation is the function f(z) =
z + i

z − i
. What happens as we

apply f iteratively?

◦ Example: The space is R3 and the transformation is the map T (x, y, z) = (x+ 2y, sin(z), cos(x)). What
happens as we apply T iteratively?
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1.1.1 Examples and Motivation for Dynamical Systems

• As it turns out, even simple-seeming dynamical systems can exhibit extremely complicated and unpredictably
chaotic behavior. We can illustrate some of these behaviors through the dynamics of a few simple population
models:

• Example (Island 1): A population of cats lives on an extremely large desert island with plentiful food. When
the population is small, the cats can essentially breed with no restrictions. If the population is currently P ,
then the population one year later will be 4P , with one pair of cats producing eight o�spring per year on
average.

◦ In this case, the population at arbitrary number of years later can be found by iterating the function
f(P ) = 4P : f(f(P )) = 16P , f(f(f(P ))) = 64P , and so forth.

◦ Thus, if the population at year 0 is 2 cats, then after n years, there will be 4n · 2 cats: i.e., we observe
exponential population growth.

◦ If we change the starting population or the growth parameter slightly, the system will still behave very
predictably over time: we will always observe exponential growth or decay, depending on the parameters.

• Example (Island 2): On another much smaller desert island there is also a population of cats. Since this
island is smaller, when the population grows su�ciently large the cats will begin to compete for resources and
breed more slowly, or even decrease in population if there are more cats than the island can sustain. After
careful study, it is determined that if the population is currently P , then the population one year later will

be 3.74P

(
1− P

1 000 000

)
.

◦ In this case, the population an arbitrary number of years later can be found by iterating the function

f(P ) = 3.74P

(
1− P

1 000 000

)
.

◦ Here are the results of a computer simulation for an initial population of 2 cats, and of 4 cats:

◦ After a few generations of nearly-exponential growth, the population for a starting population of 2 cats
seems to bounce around randomly for about 70 generations, but then settles into an extremely stable
pattern that oscillates between �ve population values which are (in order of how they appear from year
to year) equal to 227476, 657233, 842539, 496175, and 934945.

◦ For 4 cats, the behavior is very similar (and the cycling population values are the same), but the pattern
stabilizes much more quickly, after about 20 generations.

• Example (Island 3): On a very slightly di�erent desert island to the one considered above, the cats breed a very

tiny bit more rapidly: if the current population is P , then the next year's population is 3.75P

(
1− P

1 000 000

)
.

◦ Here are the results of a computer simulation for an initial population of 2 cats, and of 4 cats:
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◦ Unlike the previous example, the populations both appear to behave in a much less predictable manner.
There are some runs where the populations almost cycle between a small number of values (typically 5,
like the cats on the second island do), but they are not stable and degenerate into seemingly random
behavior quite rapidly.

◦ Our goal in this chapter is to explain the radically di�erent behaviors of these two seemingly similar
models, but just for completeness, the idea is that both models have a periodic cycle of length 5, but the
cycle is stable on Island 2 and unstable on Island 3.

1.1.2 Orbits and Fixed Points

• Our primary aim is to study the following question: given a function f de�ned on a subset of the real line R,
and a point x0, describe the behavior of the sequence x0, f(x0), f(f(x0)), f(f(f(x0))), ....

• De�nition: For a function f , we de�ne the nth iterate fn(x) to be the result of iterating f a total of n times
on x. Thus, f1(x) = f(x), f2(x) = f(f(x)), f3(x) = f(f(f(x))), and in general, fn(x) = f(fn−1(x)) for any
n ≥ 2. We also adopt the convention that f0(x) = x, the result of applying f �zero times�.

◦ This con�icts with the convention, often used elsewhere, that the expression sin2(x) is to be interpreted

as [sin(x)]
2
. We will therefore avoid iterated function notation with explicitly-written trigonometric

functions, and always write explicitly that a function is being squared when such a thing occurs.

◦ Additionally, we emphasize here the di�erence between notation for iterated functions and notation
for higher-order derivatives: f3(x) means the triple iterate f(f(f(x))), while f (3)(x) means the third
derivative f ′′′(x).

• De�nition: The orbit of x0 under f is the sequence x0, x1, x2, x3, ... where xn = fn(x0). The value x0 is
called the seed or initial point of the orbit.

◦ For additional emphasis, we will usually stylize orbits using arrows as x0 → x1 → x2 → x3 → · · · , with
the arrow representing a single application of the function f .

• Example: Describe the orbits of x0 = 2, 0, 1, and
1

2
under the function f(x) = x2.

◦ For x0 = 2, the orbit is 2→ 4→ 16→ 256→ 65536→ · · · and so forth. This orbit tends to ∞.

◦ For x0 = 0, the orbit is 0→ 0→ 0→ 0→ 0→ 0→ · · · and so forth. This orbit remains �xed at 0.

◦ For x0 = 1, the orbit is 1→ 1→ 1→ 1→ 1→ 1→ · · · and so forth. This orbit remains �xed at 1.

◦ For x0 =
1

2
, the orbit is

1

2
→ 1

4
→ 1

16
→ 1

256
→ 1

65536
→ · · · and so forth. This orbit approaches the

limiting value 0.

• Example: Describe the orbits of x0 = 0 and 0.5 under the function f(x) = cosx.

◦ For x0 = 0, to four decimal places the �rst 25 values on the orbit are 0 → 1 → 0.5403 → 0.8576 →
0.6543 → 0.7935 → 0.7014 → 0.7640 → 0.7221 → 0.7504 → 0.7314 → 0.7442 → 0.7356 → 0.7414 →
0.7375 → 0.7401 → 0.7383 → 0.7395 → 0.7388 → 0.7393 → 0.7389 → 0.7392 → 0.7390 → 0.7391 →
0.7391→ 0.7391→ · · ·
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◦ For x0 = 0.5, to four decimal places the �rst 25 values on the orbit are 0.5 → 0.8776 → 0.6390 →
0.8027 → 0.6948 → 0.7682 → 0.7192 → 0.7524 → 0.7301→ 0.7451 → 0.7350 → 0.7418 → 0.7372 →
0.7403 → 0.7382 → 0.7396 → 0.7387 → 0.7393→ 0.7389 → 0.7392 → 0.7390 → 0.7391 → 0.7390 →
0.7391→ 0.7391→ · · · .
◦ We can see in both cases that the orbits appear to be converging to a real number that is approximately
equal to 0.7391.

• Some of the orbits in the examples above remained stable and unchanging as we apply the function f . Such
points are quite important in understanding the dynamics of f :

• De�nition: A �xed point of a function f(x) is a point x0 such that f(x0) = x0.

◦ Example: The function f(x) = x2 has two �xed points, namely x = 0 and x = 1, since the solutions to
x2 = x are x = 0 and x = 1.

◦ Example: The function f(x) = x + 1 has no �xed points, because there are no values of x satisfying
x+ 1 = x.

◦ Example: The function f(x) = x cos(πx) has in�nitely many �xed points, namely x = 2k for any integer
k: solving x cos(πx) = x produces x = 0 or cos(πx) = 1, and the solutions to the latter are πx = 2πk
for an integer k.

• Since �nding �xed points is equivalent to solving the equation f(x) = x, we can qualitatively search for a
function's �xed points by drawing the graphs of y = f(x) and y = x and looking for intersection points.

• For complicated functions, it is often not possible to solve for �xed points or periodic points exactly.

◦ For example, a graph will indicate that f(x) = cos(x) has a �xed point, but it is not possible to solve
the equation x = cos(x) algebraically.

◦ To establish rigorously the existence of �xed points that we can identify using graphs, we can use the
intermediate value theorem1.

◦ To show the existence of a �xed point of a continuous function f , we apply the intermediate value theorem
to the function g(x) = f(x)− x, which is also continuous, to show that g takes the value zero. For this,
it is enough to �nd one place where g is negative and another where g is positive: then g must be zero
somewhere in between, and this place is a �xed point of f .

• Example: Show that f(x) = cos(x) has a �xed point.

◦ From a graph, we can see that y = cos(x) and y = x intersect once, somewhere in the interval [0, 1]:

◦ If we let g(x) = f(x) − x, then g(0) = 1 while g(π/2) = −π/2. Hence since g is continuous, the
intermediate value theorem dictates that g has some zero α in the interval (0, π/2). Then g(α) = 0
implies f(α) = α, meaning that α is a �xed point of f .

1The intermediate value theorem says that if f(x) is a continuous function on the interval [a, b], then for any value y between f(a)
and f(b), there is some value of c in (a, b) such that f(c) = y. In other words, somewhere in the interval (a, b), the function f attains

all �intermediate values� between f(a) and f(b).
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◦ By using the graph to get a better guess for the interval where the �xed point lies, or using more intelligent
root-�nding algorithms such as Newton's method (which we discuss at the end of the chapter), we can
rapidly approximate the value of the �xed point. In this case, to six decimal places, the value of the �xed
point is 0.739085: notice that this is the value to which the orbits of cos(x) seemed to be converging
earlier!

• An application of the intermediate value theorem is to prove that any continuous function that maps an
interval into itself must have a �xed point:

• Proposition (Existence of Fixed Points): If f : [a, b]→ [a, b] is a continuous function, then it has a �xed point.

◦ Note that the function need not be surjective (i.e., it does not need to have every point of [a, b] in its
image); its image just needs to be contained in [a, b].

◦ Remark: This is the 1-dimensional case of a much more general theorem known as the Brouwer �xed-
point theorem, one version of which states that any continuous function from a closed, bounded, convex
subset of Rn to itself must have a �xed point.

◦ Proof: Let g(x) = f(x) − x: we have g(a) = f(a) − a ≥ 0 since f(a) ∈ [a, b], and we also have
g(b) = f(b)− b ≤ 0 since f(b) ∈ [a, b]. Applying the Intermediate Value Theorem to g(x) on [a, b] shows
that g has a zero in [a, b], which is the desired �xed point of f .

1.1.3 Periodic Points and Cycles

• Some functions have �xed points, but �xed points are not the only kind of stable orbit behavior we can see.

• Example: Describe the orbits of x0 = 1, 2, 4, 5, and
1

2
under the function f(x) = |2x− 4| − x.

◦ For x0 = 1, we get the orbit 1→ 1→ 1→ 1→ · · · and so forth: we can see that 1 is a �xed point of f .

◦ For x0 = 2, we get the orbit 2 → −2 → 10 → 6 → 2 → −2 → 10 → 6 → 2 → · · · and so forth: we can
see that the values of f will repeat forever in the cycle 2, −2, 10, 6.
◦ For x0 = 4, we get the orbit 4 → 0 → 4 → 0 → · · · and so forth: we can see that the values of f will
alternate forever between 4 and 0.

◦ For x0 = 5, we get the orbit 5 → 1 → 1 → 1 → · · · and so forth: we can see that the orbit eventually
settles at the �xed point 1 of f .

◦ For x0 =
1

2
, we get the orbit

1

2
→ 5

2
→ −3

2
→ 17

2
→ 9

2
→ 1

2
→ · · · and so forth: we can see that the

values of f will repeat forever in the cycle
1

2
,
5

2
, −3

2
,
17

2
,
9

2
.

• Example: Describe the orbits of x0 = 0, 1, and
1

2
under the function f(x) = x2 − 1.

◦ For x0 = 0, we get the orbit 0 → −1 → 0 → −1 → 0 → −1 → · · · and so forth. The values will clearly
continue cycling between 0 and −1 as we continue applying f .

◦ For x0 = 1, we get the orbit 1→ 0→ −1→ 0→ −1→ 0→ · · · and so forth. These values likewise will
continue cycling between 0 and −1.

◦ For x0 =
1

2
, to four decimal places we get the orbit 0.5 → −0.75 → −0.4375 → −0.8086 → −0.3462 →

−0.8802 → −0.2253 → −0.9492 → −0.0990 → −0.0195 → −0.9996 → −0.0008 → · · · . As we continue
applying f , the values are clearly approaching an alternating pattern of −1 and 0, the orbit from the
starting point x0 = 0.

• In addition to �xed points, orbits can also fall into repeating cycles.

• De�nition: A value x0 is called a periodic point for f , and its orbit is called a periodic orbit (or an n-cycle),
if there is some value of n such that fn(x) = x. Any such value of n is called a period of x0, and the smallest
(positive) value of n is called the minimal period (or exact period).
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◦ A periodic orbit of length n will repeat every n steps: it is x0, f(x0), f
2(x0), ... , f

n−1(x0), x0, f(x0),
f2(x0), ....

◦ Notice by de�nition that if x0 is periodic with period n, then so is fk(x0) for any k, since their orbits
will all cycle through the same n values. Also by de�nition, x0 is a periodic point of period n precisely
when x0 is a �xed point of fn, since both statements say that fn(x0) = x0.

◦ Example: Fixed point are the same as periodic points of exact period 1.

◦ Example: The point x0 = −1 is a periodic point of period 2 for the function f(x) = x2 − 1, since
f(−1) = 0 and f2(−1) = −1. Likewise, 0 is also a periodic point of period 2 for f(x).

◦ Example: The point x0 = 1 is a periodic point of period 3 for the function f(x) = 1− 1

2
x− 3

2
x2, since

f(1) = −1, f2(1) = 0, and f3(1) = 1.

◦ Example: The point x0 = 1 is a periodic point of period 4 for the function f(x) =
√
2 − 1

x
, since

f(1) =
√
2− 1, f2(1) = −1, f3(1) =

√
2 + 1, and f4(1) = 1.

◦ Note: Some authors use the term �prime period� for the minimal period. This is somewhat misleading,
because the length of the minimal period need not be a prime number, as the previous example shows.

• We record here a pair of basic facts about periodic points:

• Proposition (Minimal Periods): If x0 is a periodic point with minimal period n, then fm(x0) = fm+n(x0) for
any m, and fk(x0) = x0 holds if and only if n divides k.

◦ Proof: For the �rst statement, simply apply fm to both sides of the statement fn(x0) = x0. For the
forward direction of the second statement, setting m = dn for d = 1, 2, 3, yields x0 = fn(x0) = f2n(x0) =
f3n(x0) = · · · , so fk(x0) = x0 if k is a multiple of n.

◦ For the reverse direction, suppose that n is the minimal period of x0 and that fk(x0) = x0 but n does
not divide k, so that k = qn+ r for some integer q and some integer r with 0 < r < n. By the de�nition
of the period, we have fr(x0) = fn+r(x0) = f2n+r(x0) = · · · = fqn+r(x0) = fk(x0) = x0, but this is a
contradiction because then r is a period for x0 that is smaller than n.

• Finding all the periodic points of order n for f requires solving fn(x) = x. For most functions this is
computationally quite di�cult: if f is a polynomial of degree d, then fn(x)− x is a polynomial of degree dn.

◦ For polynomials, we only have a hope of doing this (even with a computer) if f is a polynomial of small
degree and the order is small.

◦ For example, if f(x) = x2 − 1, then looking for periodic points of period 3 requires solving the degree-8
equation f(f(f(x))) = x, which when written out is x8−4x6+4x4−1 = x. It turns out that there are no
real periodic points of period exactly 3 for this function, but this is not at all easy to see by attempting
to solve the equation x8 − 4x6 + 4x4 − x− 1 = 0 directly.

◦ Just as with establishing the existence of �xed points, however, we can establish the existence of periodic
points using the intermediate value theorem: to show that f has an n-cycle, we apply the intermediate
value theorem to g(x) = fn(x)− x on an appropriate interval where g(x) changes sign.

◦ However, to ensure the cycle actually has length n (and not a smaller value) we must also show that
fk(x) − x does not have a zero for any value of k dividing n, since those k are also possible values of
the minimal period of the cycle, though as a more practical matter we could just compute the cycle
numerically and check that it really has length n.

• Example: Show that f(x) = x3−3x has a periodic point of order 2 lying in the interval (1, 1.5) and a periodic
point of order 3 lying in the interval (0.4, 0.5).

◦ The idea for the point of order 2 is to show that g(x) = f2(x) − x has a root in this interval but that
f(x)− x does not have a root in this interval: the �rst statement will imply the existence of a periodic
point of order dividing 2, and the second will imply it cannot have order 1.

◦ Similarly, for the point of order 3, we want to show that h(x) = f3(x) − x has a root in the interval
(0.4, 0.5) but that f(x)− x does not.
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◦ Since f(x)− x = x3 − 4x has roots x = 0,±2, it does not have roots in either interval.

◦ Now we compute g(1) = f2(1)− 1 = −3 and g(1.5) = 0.451, so we conclude that g must be zero in this
interval, and thus that f has a periodic point of order 2. (In fact, one can show that this periodic point
is x0 =

√
2.)

◦ Similarly, h(0.4) = 1.098 but h(0.5) = −1.527, so h has a zero in this interval and f has a periodic point
of order 3.

◦ Computing the exact value of this periodic point would require factoring the polynomial h(x), which has
degree 27 (not so easy to do!). But using a root-�nding procedure we can calculate the approximate
values on the cycle as {0.445042,−1.246980, 1.801938} to six decimal places.

• In some cases we can save a bit on the computational di�culty for computing n-cycles of a polynomial p(x)
by observing that if m|n, then every point of period m will satisfy pm(x) = x and hence also pn(x) = x. Thus,
we can save a small amount of e�ort by removing the factors of pn(x) − x that come from terms pm(x) − x
where m|n.

◦ This trick is especially helpful if f is a quadratic polynomial and n = 2: then f2(x) − x has degree 4,
but it is divisible by the quadratic f(x)− x, so we can take the quotient and obtain a quadratic, which
is much easier to solve than the original degree-4 polynomial.

• Example: Determine the values of λ, with 0 < λ ≤ 4, for which the logistic map pλ(x) = λx(1 − x) has a
real-valued 2-cycle.

◦ By the remarks above, p2λ(x) − x, whose zeroes are the points of period 1 or 2 for pλ, is necessarily
divisible by pλ(x)− x, whose zeroes are the points of period 1 (by properties of polynomials).

◦ Some algebra shows that p2λ(x) − x = −λ3x4 + 2λ3x3 − (λ2 + λ3)x2 + (−1 + λ2)x, so dividing it by
pλ(x)− x = −λx2 + (−1 + λ)x yields the quotient q(x) = λ2x2 − (λ+ λ2)x+ (1 + λ).

◦ We can straightforwardly compute that the roots of q are r1, r2 =
1 + λ± λ

√
λ2 − 2λ− 3

2λ
.

◦ If λ2 − 2λ − 3 is negative (which on the given range occurs whenever λ < 3), there are no real-valued
solutions and hence no real-valued 2-cycle.

◦ If λ = 3, then the �xed points are x = 0 and x =
2

3
, while the double root of the quadratic q is r =

2

3
.

So in this case, we do not get a 2-cycle (instead, one of the �xed points shows up repeatedly).

◦ If 3 < λ ≤ 4, then we get a 2-cycle: the polynomial pλ interchanges the two real roots r1 and r2 given

above. So, we get a 3-cycle precisely when 3 < λ ≤ 4 .

• In addition to points whose orbits cycle immediately, we also saw examples of orbits that were not immediately
periodic but eventually fell into a repeating cycle.

• De�nition: A value x0 is called a preperiodic point for f (or eventually periodic) if there exist positive integers
m and n such that fm(x0) = fm+n(x0). Equivalently, x0 is preperiodic if there exists some m so that fm(x0)
is periodic. In the event that n = 1, we say x0 is an eventually �xed point.

◦ Example: The point x0 = 1 is a preperiodic point for the function f(x) = x2 − 1, since the orbit of 1 is
1, 0, −1, 0, −1, 0, −1, ....
◦ Example: The point x0 = −1 is an eventually �xed point for the function f(x) = x2, since the orbit of
−1 is −1, 1, 1, 1, 1, 1, ....

◦ Example: The point x0 =
1

3
is a preperiodic point for the function f(x) = 1− 1

2
x− 3

2
x2, since the orbit

of
1

3
is

1

3
,
2

3
, 0, 1, −1, 0, ....

• A natural question at this point is: what kinds of orders of periodic points can occur for a given function?
We will return to this question repeatedly in the future, but we will give a few examples illustrating di�erent
kinds of behaviors:
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◦ First, a function f(x) need not have any �xed or periodic points at all: for example, f(x) = x + 1 has
no �xed points nor any periodic points, since fn(x) = x+ n is clearly never equal to x for any n > 0.

◦ Also, a function can have in�nitely many �xed points: an example is f(x) = x+ sin(x). Its �xed points
occur for x = πk for integers k.

◦ Furthermore, a periodic point can have any given order: for example, one may verify that the polynomial

fn(x) = (x+ 1)− n

(n− 2)!
x(x− 1)(x− 2) · · · (x− n+ 2) maps 0 to 1, 1 to 2, 2 to 3, ... , n− 2 to n− 1,

and n− 1 to 0. Then the orbit of 0 is 0→ 1→ 2→ · · · → n− 2→ n− 1→ 0, which is a cycle of length
n.

◦ In fact, it can even be the case that every point in the domain of a function is a periodic point: an
example is f(x) = a− x for any constant a.

• With all of these various examples, it might seem as if there are no restrictions on what kinds of behaviors can
occur, but as we will see, there are in fact many di�erent kinds of restrictions. Here is one simple restriction:

• Proposition (Nonexistence of Periodic Points): If f(x) is a continuous real-valued function that has no �xed
points, then f has no periodic or preperiodic points at all.

◦ Proof: If f(x)− x is a continuous real-valued function that is never zero, then it must either be always
positive or always negative.

◦ Suppose it is always positive: then f(x) > x for all x. But then f2(x) > f(x) > x for all x, and, iterating,
we see that f3(x) > f2(x) > x, f4(x) > f3(x) > x, and in general, fn(x) > x for any positive n. Thus,
f cannot have any periodic points, nor any preperiodic points.

◦ We get a similar contradiction if f(x) − x is always negative, by the same argument with all of the
inequalities reversed.

1.1.4 The Doubling Function, the Logistic Maps, and Computational Di�culties

• It is tempting to believe that, although we cannot necessarily solve for �xed points and periodic points
algebraically, if we simply use a computer with high enough numerical precision, we will be able to study orbit
behaviors with no di�culty. Unfortunately (or fortunately, depending on one's perspective), this also turns
out not to be the case, even for some fairly simple functions!

• De�nition: The doubling function D : [0, 1) → [0, 1) is de�ned as D(x) =

{
2x if 0 ≤ x < 1/2

2x− 1 if 1/2 ≤ x < 1
. Equiva-

lently, D(x) is the residue of 2x modulo 1 (i.e., the result obtained by removing the �integer part� of 2x).

• It is simple to analyze orbits of rational numbers under the doubling function using exact arithmetic.

◦ Example: The orbit of 0 is 0, 0, 0, 0, ..., which is a �xed point. It is easy to see that 0 is the only �xed
point for D.

◦ Example: The orbit of
1

3
is

1

3
,
2

3
,
1

3
,
2

3
, ..., which is a 2-cycle.

◦ Example: The orbit of
3

7
is

3

7
,
6

7
,
5

7
,
3

7
,
6

7
,
5

7
, ..., which is a 3-cycle.

◦ Example: The orbit of
1

8
is

1

8
,
1

4
,
1

2
, 0, 0, 0, ..., so

1

8
is an eventually �xed point.

• Here are a few simple observations about the doubling function.

• Proposition (Basic Properties of Doubling Function): Let D : [0, 1)→ [0, 1) be the doubling function D(x) ={
2x if 0 ≤ x < 1/2

2x− 1 if 1/2 ≤ x < 1
.

1. Every rational number is a preperiodic point for D, and conversely all preperiodic points for D are
rational numbers.
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◦ Proof: If
p

q
is rational and in [0, 1), then D(

p

q
) =

2p

q
or

2p− q
q

is also a rational number in [0, 1)

with the same denominator q. Since there are only q such rational numbers (namely,
0

q
,
1

q
, . . . ,

q − 1

q
)

eventually the iterates of D on
p

q
must repeat some value, meaning that

p

q
is a preperiodic point.

◦ For the converse, suppose that x is a preperiodic point of D so that Dm+n(x) = Dm(x). By an easy
induction, since D(x) = 2x modulo 1, we see Dn(x) = 2nx modulo 1. Hence Dm+n(x) = Dm(x)
implies that 2m+nx− 2mx is congruent to 0 modulo 1, meaning that (2m+n − 2m)x is some integer

k. But then x =
k

2m+n − 2m
, so x is rational.

2. More speci�cally, any rational number with odd denominator is a periodic point for D, while any rational
number with an even denominator (in lowest terms) is a strictly preperiodic point.

◦ Proof: Note that if q is odd and
p

q
is in lowest terms, then D(

p

q
) actually also has denominator q in

lowest terms as well, since D(a) = D(b) can happen only if a and b are equal or di�er by
1

2
, and

1

2
cannot be written as

p

q
with q odd.

◦ This means the function D is a one-to-one function from the set {0
q
,
1

q
,
2

q
, · · · , q − 1

q
} to itself when

q is odd, hence it is a bijection and thus has an inverse function. Therefore, if Dm+n(
p

q
) = Dm(

p

q
),

applying (D−1)m to both sides yields Dn(
p

q
) =

p

q
, meaning that

p

q
is periodic.

◦ On the other hand, if q is even, then D(
p

q
) will have denominator q/2 in lowest terms, and all

subsequent iterates will have denominator at most q/2. Hence Dn(
p

q
) cannot equal

p

q
, so

p

q
is a

strictly preperiodic point.

3. If q is odd and p/q has period n under D, then q divides 2n − 1. In fact, the period is the smallest
positive integer n such that q divides 2n − 1.

◦ Proof: Suppose that q is odd and p/q has period n under D. Then by the same calculation as in

(1), we see that (2n − 1)
p

q
is some integer k: then

p

q
=

k

2n − 1
, but since

p

q
is in lowest terms, this

means q must divide 2n − 1.

◦ Conversely, suppose that q divides 2n − 1: then we can write
p

q
=

k

2n − 1
for some integer k, which

is to say, 2n
p

q
=
p

q
modulo 1. But this means Dn(

p

q
) =

p

q
modulo 1, but since

p

q
is in [0, 1), it must

equal
p

q
: hence Dn(

p

q
) =

p

q
, so the period of

p

q
is at most n. Thus, if we take the smallest such n, it

must equal the exact period of
p

q
.

◦ Remark: In number theory, the smallest positive integer n such that q divides 2n − 1 (equivalently,
the smallest n such that 2n ≡ 1 (mod q)) is called the order of 2 modulo q, and it represents the
period of the repeating decimal for p/q when written in base 2.

• Interestingly, if we try to use a decimal approximation to analyze the orbits of D, we will get very erroneous
results:

◦ Suppose we try to describe the orbit of
1

3
by using di�erent decimal approximations of

1

3
.

◦ Here is a table of the orbits of two decimal approximations:
Term 0 1 2 3 4 5 6 7 8 9 10 11

x0 = 1/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3
x0 = 0.33 0.33 0.66 0.32 0.64 0.28 0.56 0.12 0.24 0.48 0.96 0.92 0.84

x0 = 0.333 0.333 0.666 0.332 0.664 0.328 0.656 0.312 0.624 0.248 0.496 0.992 0.984
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◦ Notice that the �rst few elements of each approximate orbit are fairly close to the correct values. But
after 10 iterations, the orbits of 0.33 and 0.333 have wandered quite far away from the orbit of 1/3, and
from each other.

◦ Increasing the accuracy of the decimal approximation will not help signi�cantly, either: if ε is small and
x and x + ε are both either in (0, 1/2) or (1/2, 1), then it is easy to check that D(x + ε) − D(x) = 2ε.
Thus, each iteration of D will double the approximation error, at least until Dn(x + ε) and Dn(x) are
su�ciently far apart.

• Of course, for rational numbers, it is easy to use exact rational arithmetic, as we did above. But what can be
done to study orbits of irrational points under the map D?

◦ For example, how would one compute D20(
√
2− 1) to three decimal places?

◦ We would ultimately need to use a decimal approximation of
√
2− 1 at some stage, but we would need

to determine the proper number of decimal places to use in our computations, in order to ensure that
we do not lose too much accuracy by iterating the map D.

◦ Such calculations become increasingly computationally expensive as we travel further out in the orbit,
since we will need to keep �nding better decimal approximations as we continue.

◦ We can see that there is something fundamental about the doubling function that resists numerical
computation: precisely, the doubling function is sensitive to initial conditions. We will return in a
later chapter to study this property, and other related ones, in much more detail, but for now, the
main takeaway is that even this simple function causes great trouble when working with numerical
approximations.

• Another class of examples that cause computational problems are the logistic maps pλ(x) = λx(1− x), for a
�xed parameter 0 < λ ≤ 4. (The bound on λ is so that pλ is a map from [0, 1]→ [0, 1].)

◦ Let us attempt to compute the orbit of
1

3
under the map p4(x) = 4x(1 − x): the �rst six terms are

1

3
,

8

9
,
32

81
,
6272

6561
,
7250432

43056721
, and

1038154236987392

1853020188851841
.

◦ Clearly, using rational arithmetic is not going to be computationally e�cient, because the number of
digits in both the numerator and denominator will double at every stage. It is fairly easy to see that the
denominator of fn(1/3) is 32

n

, but there is not a nice formula for the numerators.

◦ Here is a table of a computation of the orbit of
1

3
under this map, where each step's computation was

rounded to the stated number of decimal places. (The results are stated to 4 decimal places so as not to
make the table too large, but the computations retained the stated amount of data.):

Term 0 1 2 3 4 5 10 20 30 50

4 places 0.3333 0.8889 0.3950 0.9559 0.1686 0.5607 0.8669 0.5655 0.9558 0.4139

8 places 0.3333 0.8889 0.3951 0.9560 0.1684 0.5603 0.8747 0.0158 0.1025 0.3208

15 places 0.3333 0.8889 0.3951 0.9560 0.1864 0.5603 0.8747 0.0163 0.7531 0.8049

◦ As should be clear, the �rst few terms are stable with only a few digits, but the computations diverge
from each other quite rapidly after 30 or so iterations of f .

◦ We can see, then, that it is a nontrivial problem in numerical analysis to determine the needed accuracy
to ensure that the orbit calculations are accurate, even for this simple quadratic polynomial. Our goal
in the next few chapters is to show that this kind of bad behavior is, in fact, typical of many families of
simple functions.

1.2 Qualitative and Quantitative Behavior of Orbits

• We would like to describe orbits in a more precise way than �plug in some values and hope it's possible to
guess what happens�. There are a number of di�erent approaches, some geometric, some algebraic.
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1.2.1 Orbit Analysis Using Graphs

• One graphical tool we can use to analyze orbits is the phase portrait: on a number line, we mark o� the points
in an orbit, and then draw arrows from one to the next.

◦ Example: Here is the phase portrait for the orbit of x0 = 0.95 under f(x) = x2, with the �rst 6 iterates
marked:

◦ Example: Here is the phase portrait for the orbit of x0 = −0.5 under f(x) = x2 − 1, with the �rst 9
iterates marked:

• By combining phase portraits for several orbits, we can see some of the behaviors of the system.

◦ Example: Here is the phase portrait for the orbits of −0.95 and 0.95 under f(x) = x3, with the �rst 4
iterates marked for each orbit:

◦ The portrait suggests that the other orbits lying in (−0.95, 0.95) are going to tend toward the �xed point
x = 0.

• Phase diagrams merely display the results of iterating a function repeatedly. But we can also use the graph
of a function itself to calculate these iterations geometrically, in the following manner: �rst, we plot y = f(x)
and y = x along with our initial point (x0, x0). Then we alternate the following two steps:

1. Draw a vertical line from the current point to meet the graph of y = f(x).

2. Draw a horizontal line from the current point to meet the graph of y = x.

This procedure will construct the sequence of points (x0, x0), (x0, f(x0)), (f(x0), f(x0)), (f(x0), f
2(x0)),

(f2(x0), f
2(x0)), (f2(x0), f

3(x0)), ...., whose coordinates describe the orbit of x0 under f . The resulting
diagrams are known variously as staircase diagrams or cobweb diagrams.

• Example: Plot the orbit of x0 = 1 for the function f(x) = x+ sin(x) + 2.

◦ Here are plots of the orbit after 4 and 16 iterations (respectively) of f , along with the graphs of y = f(x)
and y = x:
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◦ This function was intentionally chosen so that it would always lie above y = x in order to emphasize the
�staircase� behavior.

◦ We can see that the orbit of x0 = 1 will blow up to ∞, since it will continue moving to the right as we
continue iterating.

• Example: Plot the orbits of x0 = 0.01 and x0 = 2 for the function f(x) =
√
x.

◦ Here are plots of each orbit after 10 iterations:

◦ Note that the orbit of 0.01 travels to the right, while the orbit of 2 travels to the left: both are moving
toward the �xed point x0 = 1 of f .

• Example: Plot the orbit of x0 =
1

2
for the function f(x) = x2 − 1.

◦ Here are plots of the orbits after 5 iterations and 10 iterations respectively:

◦ From the picture, we can see that the orbit forms a sort of cobweb that spirals outward and approaches
the 2-cycle 0→ −1→ 0→ −1→ · · · of f(x).
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• Example: Plot the orbit of x0 = 0.4 for the function f(x) = 4x− 4x2.

◦ Here are plots of the orbits after 5 iterations, 15 iterations, 50 iterations, and 200 iterations:

◦ From the picture, we cannot really get any useful information about the orbit, except for the fact that it
seems to meander unpredictably around the interval [0, 1]. (It certainly does not appear to be converging
to anything obvious!)

◦ In fact, this is an example of a chaotic orbit, the speci�cs of which we will analyze in a later chapter.

• Although they can be useful for getting intuition about long-term qualitative behavior of orbits, we cannot
really use these pictures to prove very much about the behavior of the function in question. To do that
requires some stronger tools.

1.2.2 Attracting and Repelling Fixed Points

• We will begin by analyzing �xed points. As we have seen in the examples, some systems have orbits which
tend closer and closer to a �xed point (such as the �xed point x = 1 of the map f(x) =

√
x), while other

systems have orbits which move away from certain �xed points (such as the �xed point x = 1 of the map
f(x) = x2).

◦ We would like to explain why some �xed points �attract� nearby orbits while others �repel� them. So
suppose x0 is a �xed point of f , and x is a nearby point.

◦ Then f(x) will be closer to x0 than x is when |f(x)− x0| < |x− x0|. Since x0 = f(x0) and x− x0 is not

zero, we can equivalently write this statement as

∣∣∣∣f(x)− f(x0)x− x0

∣∣∣∣ < 1.

◦ As x approaches x0, notice that this quantity is the absolute value of the derivative f ′(x0), assuming
that f is di�erentiable. Indeed, by the mean value theorem2, if f is continuously di�erentiable on the

interval (x0, x), then
f(x)− f(x0)

x− x0
= f ′(c) for some c in (x0, x).

2Recall that the mean value theorem states that if f is continuous on the interval [a, b] and di�erentiable on (a, b), then there exists

a value c ∈ (a, b) such that f ′(c) =
f(b)− f(a)

b− a
.

13



◦ As x approaches x0, this value f
′(c) will approach f ′(x0) by the assumption that f ′ is continuous: thus

in particular if |f ′(x0)| < 1, then |f ′(c)| < 1 as well, which translates back to saying that |f(x)− x0| <
|x− x0|. In other words, f(x) will end up closer to x0 than x is.

◦ Likewise, if |f ′(x0)| > 1, then |f ′(c)| > 1 as well, and so |f(x)− x0| > |x− x0|. In other words, f(x) will
end up farther away from x0 than x is.

• We can see that the value of the derivative f ′(x0) characterizes the behavior of f near a �xed point x0, which
we make precise as follows.

• Theorem (Local Attracting and Repelling Behavior): Suppose f is a continuously di�erentiable function on
an open interval around a �xed point x0.

1. If |f ′(x0)| < 1, then there exists an open interval I containing x0 such that, for any x ∈ I, fn(x) ∈ I
for all n ≥ 1. Furthermore, for any x ∈ I, it is true that fn(x)→ x0 as n→∞, and the convergence is
exponentially fast. In fact, we can take I to be any interval containing x0 with the property that there
exists a constant λ < 1 such that |f ′(x)| < λ for all x ∈ I.
◦ Remark: The speed of the convergence will depend on the value of |f ′(x0)|. From the argument at
the end of the proof below, we see that the smaller this value is, the faster the orbits will converge
to x0. If f

′(x0) happens to be equal to zero, then the convergence can be faster than exponential.

◦ Proof: By hypothesis, |f ′(x)| is continuous and |f ′(x0)| < 1. Thus, by standard properties of
continuous functions3, there exists a constant λ < 1 and an open interval I centered at x0 such that
|f ′(x)| < λ for all x ∈ I.
◦ Now for any x ∈ I, apply the mean value theorem to f on the interval whose endpoints are x0 and

x: then there exists a value c between x0 and x for which
f(x)− f(x0)

x− x0
= f ′(c).

◦ Taking the absolute value gives

∣∣∣∣f(x)− x0x− x0

∣∣∣∣ = |f ′(c)| < λ, so that |f(x)− x0| < λ |x− x0|.

◦ Since λ < 1 this implies f(x) ∈ I. Now applying the result for f(x) ∈ I gives f2(x) ∈ I, and
repeating (by a trivial induction) we see that fn(x) ∈ I for all n ≥ 1.

◦ Furthermore, we also have
∣∣f2(x)− x0∣∣ < λ |f(x)− x0| < λ2 |x− x0|, and repeating (by a trivial

induction) we see that |fn(x)− x0| < λn |x− x0| for all n ≥ 1. Since λ < 1, as n → ∞ the
right-hand term goes to zero, so fn(x)→ x0, and the convergence is exponentially fast.

2. If |f ′(x0)| > 1, then there exists an open interval I containing x0 such that, for any x ∈ I with x 6= x0,
there exists a positive integer n such that fn(x) 6∈ I. In fact, we can take I to be any �nite interval such
that there exists a constant λ > 1 with |f ′(x)| > λ for all x ∈ I.
◦ Note that unlike in the case above, we cannot expect to say anything about the limit of fn(x) as
n→∞, because there is nothing to prevent the value of the function from being sent back into the
interval I once it escapes.

◦ Proof: By the same argument as in (1), there exists a constant λ > 1 and a �nite open interval I
centered at x0 such that |f ′(x)| > λ for all x ∈ I.
◦ By the mean value theorem, we can again conclude that |f(x)− x0| > λ |x− x0|, and then by a
trivial induction we see that |fn(x)− x0| > λn |x− x0|, assuming that fn−1(x) lies in I.

◦ If the orbit of x never left I, then we would have |fn(x)− x0| > λn |x− x0|, but since λ > 1, as
n→∞ the right-hand side tends to in�nity. But fn(x) is assumed to lie in I for all n, meaning that
I is an in�nite interval, which is a contradiction. Therefore, the orbit of x must eventually leave I,
as claimed.

• Per the theorem above, we can label �xed points based on their local behavior:

• De�nition: If x0 is a �xed point of the di�erentiable function f , we say x0 is an attracting �xed point if
|f ′(x0)| < 1, we say x0 is a repelling �xed point if |f ′(x0)| > 1, and we say x0 is a neutral �xed point if
|f ′(x0)| = 1.

3Explicitly, let g(x) = |f ′(x)| and suppose that g(x0) = 1−ε for some ε > 0. Since g(x) is continuous at x0, there exists some δ > 0 such
that |g(x)− g(x0)| < ε/2 for |x− x0| < δ. Then by the triangle inequality, for x ∈ (x0− δ, x0 + δ) we have g(x) < g(x0)+ ε/2 < 1− ε/2,
so we may take I = (x0 − δ, x0 + δ) and λ = 1− ε/2.
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◦ The idea is that an attracting �xed point will attract nearby orbits, and a repelling �xed point will repel
nearby orbits. Neutral �xed points can have more subtle behavior, as we will see shortly.

◦ If a �xed point x0 has f ′(x0) = 0, we sometimes call it a superattracting �xed point, because orbits will
approach it more quickly than a mere attracting �xed point.

• Example: Find and classify the �xed points of f(x) = x3 as attracting, repelling, or neutral.

◦ It is easy to solve x3 = x to see that the �xed points are x = 0, x = 1, and x = −1.

◦ Since f ′(x) = 3x2, we see that x = 0 is attracting and x = ±1 are repelling .

◦ We can see the attracting and repelling nature of the �xed points by computing a few orbits.

◦ For example, the orbit of 0.9 is 0.9, 0.729, 0.387, 0.058, 0.0002, ..., while the orbit of 1.1 is 1.1, 1.331,
2.358, 13.110, 2253, ....

◦ Similarly, the orbit of −0.9 is −0.9, −0.729, −0.387, −0.058, ... and the orbit of −1.1 is −1.1, −1.331,
−2.358, −13.110, −2253, ....

• Example: For each positive value of λ, �nd and classify the �xed points of the logistic map pλ(x) = λx(1−x)
as attracting, repelling, or neutral.

◦ Setting λx(1− x) = x and solving yields x = 0 and x = 1− 1

λ
.

◦ We also have p′λ(x) = λ− 2λx, so p′λ(0) = λ and p′λ

(
1− 1

λ

)
= 2− λ.

◦ So, the point x = 0 is attracting for 0 < λ < 1, becomes neutral (and coincides with the other �xed
point) for λ = 1, and is repelling for λ > 1.

◦ Similarly, we see that x = 1− 1

λ
is repelling for 0 < λ = 1, becomes neutral (and coincides with x = 0)

for λ = 1, is attracting for 1 < λ < 3 , is neutral for λ = 3 , and is repelling for λ > 3 .

1.2.3 Attracting and Repelling Cycles

• Since a periodic point of period n for f is the same as a �xed point of fn, we can naturally extend our
de�nitions of attracting and repelling behavior to periodic cycles:

• De�nition: We say that a periodic point x0 for f is attracting (respectively, repelling or neutral) if x0 is an
attracting (respectively, repelling or neutral) �xed point for fn.

◦ A natural and immediate question is: can it happen that some points on a cycle are attracting and others
are repelling?

◦ In fact, this cannot occur for attracting points: if x0 is an attracting �xed point for fn, then the sequence
fkn(x0) will have limit x0 as k →∞. Since a continuous function has the property that limi→∞ ai = L
implies limi→∞ f(ai) = f(L), applying this fact to f and the sequence with ai = fni(x0) shows that
fkn+1(x0) will have limit x1. Repeating this argument shows that all of the other points in the cycle will
attract nearby orbits.

◦ However, the above argument cannot be easily adapted for repelling points.

• Using the chain rule, we can easily compute whether a periodic point is attracting, repelling, or neutral:

• Proposition (Attracting and Repelling Cycles): Suppose f is a di�erentiable function and x1 → x2 → · · · →
xn → x1 → · · · is a periodic cycle of length n for f . Then (fn)′(xi) = f ′(xn) · f ′(xn−1) · · · f ′(x2) · f ′(x1) for
each 1 ≤ i ≤ n. In other words, the derivative (fn)′(xi) is equal to the product of the values of f ′ at each of
the points in the cycle. In particular, the points in the n-cycle are either all attracting, all repelling, or all
neutral.

◦ Proof: Let g(x) = fn(x). By a straightforward chain rule computation, we have g′(x) = f ′(fn−1(x)) ·
f ′(fn−2(x)) · · · · · f ′(f(x)) · f ′(x).
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◦ Setting x = x1 and noting that fk(x1) = xk+1 in the chain rule formula yields g′(x0) = f ′(xn) ·
f ′(xn−1) · · · f ′(x2) · f ′(x1), as claimed.

◦ Applying this result for each point in the n-cycle shows that g′(x0) = g′(x1) = · · · = g′(xn−1), so, by our
criteria for attracting, repelling, and neutral points, this means all the points on the cycle are either all
attracting, all repelling, or all neutral.

• Example: Show that the 2-cycle 0→ −1→ 0→ · · · for the function f(x) = x2 − 1 is attracting.

◦ We have f ′(x) = 2x, so we need to compute f ′(0)f ′(−1) = 0.

◦ This has absolute value less than 1, so the 2-cycle is attracting .

• Example: Show that every periodic cycle lying in (0, 1) for the doubling functionD(x) =

{
2x if 0 ≤ x < 1/2

2x− 1 if 1/2 ≤ x < 1

is repelling.

◦ Observe that D′(x) = 2 for every x ∈ (0, 1) except for x = 1/2 (where the derivative is unde�ned, due
to the discontinuity). Notice also that 1/2 does not lie in a periodic cycle, so we can safely ignore it.

◦ Thus, on any n-cycle, the value of the derivative of Dn will be 2n. Since this has absolute value larger

than 1, every n-cycle is repelling .

◦ From this calculation we can see another way to understand the unpredictable behavior of the function:
every rational number with odd denominator lies on a repelling n-cycle, so as we iterate the function,
any two nearby points will be pushed away from one another.

• Example: Classify the periodic cycle containing −1

3
for the function f(x) = x2 − 7

9
as attracting, repelling,

or neutral.

◦ The orbit of −1

3
is −1

3
→ 2

3
→ −1

3
→ · · · , which is a 2-cycle.

◦ We have f ′(x) = 2x, so f ′(−1

3
) = −2

3
and f ′(

2

3
) =

4

3
.

◦ Thus, if g = f2, we have g′ = −8

9
at both points on the 2-cycle, so the cycle is attracting .

• Example: Classify the periodic cycle containing 0 for the function f(x) = 1 − x

3
+ 2x2 − 2x3

3
as attracting,

repelling, or neutral.

◦ The orbit of 0 is 0→ 1→ 2→ 3→ 0→ · · · , so it is a 4-cycle.

◦ We have f ′(x) = −1

3
+ 4x− 4

3
x2, so f ′(0) = −1

3
, f ′(1) =

5

3
, f ′(2) = −1

3
, and f ′(3) = −19

3
.

◦ Thus, if g = f4, we have g′ =

(
−1

3

)(
5

3

)(
−1

3

)(
−19

3

)
= −85

81
at each point on the 4-cycle, so the

cycle is repelling .

• Example: Classify the periodic cycle containing 1 for the function f(x) =
√
3− 1

x
as attracting, repelling, or

neutral.

◦ The orbit of 1 is 1→
√
3− 1→ 1√

3 + 1
→ −1→

√
3 + 1→ 1√

3− 1
→ 1→ · · · , which is a 6-cycle.

◦ We have f ′(x) =
1

x2
, so f ′(±1) = 1, f ′(

√
3± 1) =

1(√
3± 1

)2 , and f ′( 1√
3± 1

)
=
(√

3± 1
)2
, where the

choices of ± correspond in each case.

◦ Thus, if g = f6, we have g′ = 1 at each point on the 6-cycle, so the cycle is neutral .
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• Example: For 3 < λ ≤ 4, determine (in terms of λ) when the 2-cycle of the the logistic map pλ(x) = λx(1−x)
is attracting, neutral, or repelling.

◦ We computed earlier that the points on the 2-cycle are the two roots of the quadratic q(x) = λ2x2− (λ+

λ2)x+ (1 + λ), which (explicitly) are r1, r2 =
1 + λ± λ

√
λ2 − 2λ− 3

2λ
, and that they are real-valued on

the given range for λ.

◦ To determine the behavior of the 2-cycle, we need to compute p′λ(r1) · p′λ(r2) = 4λ2(
1

2
− r1)(

1

2
− r2).

◦ One can compute this by slogging it out, but a slicker way is to observe that λ2(x− r1)(x− r2) = q(x),

so, upon setting x =
1

2
, we obtain

λ2

4
− 1

2
(λ+ λ2) + (1 + λ) = λ2(

1

2
− r1)(

1

2
− r2). Multiplying through

by 4 gives p′λ(r1) · p′λ(r2) = −λ2 + 2λ+ 4.

◦ On the interval (3, 4], this quadratic takes values in (−1, 1) for 3 < λ < 1+
√
6, is equal to −1 at 1+

√
6,

and is less than −1 for 1 +
√
6 < λ ≤ 4.

◦ Thus, we conclude that the 2-cycle is attracting for 3 < λ < 1 +
√
6 , is neutral when λ = 1 +

√
6 , and

is repelling when 1 +
√
6 < λ ≤ 4 .

1.2.4 Weakly Attracting and Weakly Repelling Points (and Cycles)

• We have determined the behaviors of attracting and repelling points and cycles. Let us now turn our attention
to studying orbits near neutral �xed points and cycles, after examining a few examples.

• Example: Examine the orbits near the neutral �xed point x0 = 0 of f(x) = x+ x2.

◦ To four decimal places, the �rst ten terms in the orbit of 0.1 are 0.1 → 0.11 → 0.1221 → 0.1370 →
0.1558→ 0.1800→ 0.2125→ 0.3240→ 0.4289→ 0.6129→ · · · .
◦ Similarly, the �rst ten terms in the orbit of −0.1 are −0.1→ −0.09→ −0.0819→ −0.0750→ −0.0700→
−0.0605→ −0.0569→ −0.0536→ −0.0507→ −0.0482→ · · · .
◦ It seems that the orbits with small positive x are repelled (slowly) from 0, while the orbits with small
negative x are attracted (slowly) towards 0.

• Example: Examine the orbits near the neutral �xed point x0 = 0 of g(x) = x+ x3.

◦ To four decimal places, the �rst ten terms in the orbit of 0.1 are 0.1 → 0.101 → 0.1020 → 0.1031 →
0.1042→ 0.1053→ 0.1065→ 0.1077→ 0.1089→ 0.1102→ · · · .
◦ Similarly, the �rst ten terms in the orbit of−0.1 are−0.1→ −0.101→ −0.1020→ −0.1031→ −0.1042→
−0.1053→ −0.1065→ −0.1077→ −0.1089→ −0.1102→ · · · .
◦ It seems that the orbits with near 0 seem to be repelled (quite slowly) from 0.

• Example: Examine the orbits near the neutral �xed point x0 = 0 of h(x) = x− x3.

◦ To four decimal places, the �rst ten terms in the orbit of 0.1 are 0.1 → 0.099 → 0.0980 → 0.0971 →
0.0962→ 0.0953→ 0.0944→ 0.0936→ 0.0928→ 0.0920→ · · · .
◦ Similarly, the �rst ten terms in the orbit of−0.1 are−0.1→ −0.099→ −0.0980→ −0.0971→ −0.0962→
−0.0953→ −0.0944→ −0.0936→ −0.0928→ −0.0920→ · · · .
◦ It seems that the orbits with near 0 seem to be attracted (quite slowly) to 0.

• In each case we see that points near a neutral �xed point are either attracted or repelled from the �xed point,
although the attracting behavior seems to be slower than the exponential attraction towards attracting points,
and the repelling behavior seems to be slower than the exponential repulsion away from repelling points. We
can use these notions to de�ne weak notions of attraction and repulsion from neutral �xed points:

• De�nition: If x0 is a neutral �xed point of the di�erentiable function f , we say x0 is weakly attracting if there
exists an open interval I containing x0 such that for any x ∈ I, fn(x)→ x0 as n→∞. We also say a neutral
periodic point for f of period n is weakly attracting if it is a weakly attracting �xed point for fn.
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◦ In other words, a weakly attracting �xed point (or cycle) is one that attracts nearby orbits. All of our
results for attracting �xed points (and cycles) that only invoke the �attracting orbit� property will also
hold for weakly attracting �xed points (and cycles).

◦ There is also a one-sided version of weak attraction that can occur when f ′(x0) = 1: a �xed point is
weakly attracting on the left if there is an ε > 0 such that every point x ∈ (x0 − ε, x0) has fn(x)→ x0.
(In other words, if it attracts orbits on its left.)

◦ Similarly, we say a point is weakly attracting on the right if there is an ε > 0 such that every point
x ∈ (x0, x0 + ε) has fn(x)→ x0. (In other words, if it attracts orbits on its right.)

• De�nition: If x0 is a neutral �xed point of the di�erentiable function f , we say x0 is weakly repelling if there
exists an open interval I containing x0 such that for any x ∈ I (except x = x0), there exists an n such that
fn(x) 6∈ I. We say a neutral periodic point for f of period n is weakly repelling if it is a weakly repelling �xed
point for fn.

◦ In other words, a weakly repelling �xed point is one that repels nearby orbits.

◦ Like with weakly attracting points, there are also �one-sided� versions of weak repulsion (which, likewise,
only occurs when f ′(x0) = 1): we say x0 is weakly repelling on the left if there exists an ε > 0 such that
for every x ∈ (x0 − ε, x0), there exists an n such that fn(x) 6∈ (x0 − ε, x0], and similarly we say x0 is
weakly repelling on the right if there exists an ε > 0 such that for every x ∈ (x0, x0 + ε), there exists an
n such that fn(x) 6∈ [x0, x0 + ε).

• We would like to determine when a neutral �xed point is weakly attracting or repelling on each side. The
main idea is that we can use the values of the higher derivatives of the function at the neutral �xed point to
classify weak attraction and weak repulsion.

• Theorem (Neutral Points): Suppose x0 is a neutral �xed point for a function f with f ′(x0) = 1. Furthermore,
assume that there is an integer k ≥ 2 such that (i) the (k + 1)st derivative of f is continuous at x0, (ii) the
value f (k)(x0) 6= 0, and (iii) that f (d)(x0) = 0 for all 1 < d < k. If k is odd, the point x0 is weakly attracting
if f (k)(x0) < 0 and it is weakly repelling if f (k)(x0) > 0. If k is even, the point x0 is weakly repelling on
the left and weakly attracting on the right if f (k)(x0) < 0, and it is weakly attracting on the left and weakly
repelling on the right if f (k)(x0) > 0.

◦ The statement requires some unpacking. Ultimately, it says that the behavior of a neutral �xed point is
controlled by the order and the sign of the �rst nonzero derivative of f (beyond f ′) at that point.

◦ The key ingredient in the proof is Taylor's remainder theorem4: we will �nd a polynomial approximation
to f(x) that is simple enough (but also accurate enough) for us to characterize the behavior of the orbits
near x0.

◦ Proof: For clarity, make the change of variables y = x− x0 and replace f with f − x0, so that the �xed
point of f is now at y = 0. Then by hypothesis, all terms except the 0th, 1st, and kth terms of the

degree- k Taylor polynomial are zero, so Tk(y) = y +
f (k)(0)

k!
yk.

◦ Now, since f (k+1) is continuous, there is an open interval I around 0 and someM such that
∣∣f (k+1)(y)

∣∣ ≤
M for y in I. If we let J be the subinterval of I where |y| < k + 1

2M

∣∣f (k)(0)∣∣, then by Taylor's remainder

theorem we have |f(y)− Tk(y)| ≤M ·
|y|k+1

(k + 1)!
≤ 1

2

∣∣∣∣f (k)(0)k!
yk
∣∣∣∣.

◦ So, for all y in this interval, we can conclude that f(y) always lies between y +
1

2
· f

(k)(0)

k!
yk and

y +
3

2
· f

(k)(y)

k!
yk.

4Taylor's remainder theorem says that if f(y) is a function whose (k + 1)st derivative is continuous, and Tk(x) is the kth Taylor

polynomial Tk(y) =
k∑

d=0

f (d)(0)

d!
yd for f(y) at y = 0, then |f(y)− Tk(y)| ≤M ·

|y|k+1

(k + 1)!
, whereM is any constant such that

∣∣f (k+1)(t)
∣∣ ≤

M for all t in the interval [− |y| , |y|].
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◦ In particular, for small enough |y|, f(y) lies on the same side of 0 as y does, and f(y)− y has the same
sign as f (k)(0) · yk. Thus, we just need to determine whether f(y) is closer or farther from 0 than y is,
which is to say, whether f(y)− y has the same or opposite sign as y, respectively.

◦ If k is even, then f (k)(0) · yk has the same sign as f (k)(0), so 0 is weakly repelling on the left and weakly
attracting on the right if f (k)(0) < 0, and weakly attracting on the left and weakly repelling on the right
if f (k)(0) > 0.

◦ If k is odd and f (k)(0) > 0, then f(y)− y has the same sign as y so 0 is weakly repelling. If f (k)(0) < 0,
then f(y)− y has the opposite sign as y, meaning that 0 is weakly attracting.

◦ These are all the possible cases, so we are done.

• We can use the neutral �xed point theorem to classify the behavior near neutral �xed points of most functions.

• Example: Classify the neutral �xed point x0 = 0 for a(x) = x + x2, b(x) = x − x2, c(x) = x + x3, and
d(x) = x− x3 as weakly attracting or weakly repelling for orbits on each side.

◦ For a, we have a′(0) = 1 and a′′(0) = 2, so k = 2 and then x0 is weakly attracting on the left and

weakly repelling on the right .

◦ For b, we have b′(0) = 1 and b′′(0) = −2, so k = 2 and then x0 is weakly repelling on the left and

weakly attracting on the right .

◦ For c, we have c′(0) = 1, c′′(0) = 0, and c′′′(0) = 6, so k = 3 and then x0 is weakly repelling on both

sides.

◦ For d, we have d′(0) = 1, d′′(0) = 0, and d′′′(0) = −6, so k = 3 and then x0 is weakly attracting on

both sides.

• Example: Classify the neutral �xed point of f(x) = tan−1(x) as weakly attracting or weakly repelling for
orbits on each side.

◦ Notice that f(0) = 0 and f ′(x) =
1

1 + x2
, so the only neutral �xed point is x = 0. (In fact it is the only

�xed point.)

◦ Since f ′′(0) = 0 and f ′′′(0) = −2, we see that k = 3.

◦ By the classi�cation, we see that 0 is weakly attracting .

• Notice that the theorem above does not treat all possible neutral �xed points: we did not treat the case where
f ′(x0) = 1 but f (k)(x0) = 0 for all k ≥ 2, nor did we treat the case where x0 is a neutral �xed point with
f ′(x0) = −1.

◦ If we have a neutral �xed point with f ′(x0) = 1 but f (k)(x0) = 0 for all k ≥ 2, then the Taylor series of
f will just be T (x) = x, and so it will provide no useful information: some other kind of estimate on the
values of f near the �xed point are required to study the behavior of the orbits.

◦ Fortunately, aside from f(x) = x, whose orbits are obvious, it is rare to encounter such functions.

◦ For completeness, a standard example is f(x) =

{
x+ e−1/x

2

for x 6= 0

0 for x = 0
, which has f(0) = 0, f ′(0) = 1,

and f (n)(0) = 0 for all n ≥ 2. (It is not completely obvious that the higher derivatives of f even exist,
but they can be computed using some careful limit computations.)

• If we are given a neutral �xed point with f ′(x0) = −1, we can instead apply the theorem to analyze the
behavior of x0 as a �xed point of g = f2, because we have g′(x0) = f ′(x0)f

′(x0) = 1 by the chain rule.

◦ Ultimately, these neutral �xed points carry the additional complication that a point on one side of x0
will �ip to the other side after applying f . In some cases it is easy to see that both sides are attracting
or repelling, so the ��ipping� does not make a di�erence.
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◦ However, it can happen (e.g., with the function f(x) = −x + x2 below) that one side will move points
closer to x0, and the other side will move points farther away from x0. To decide which behavior wins
out, it is necessary to study x0 as a �xed point of f2.

◦ Explicitly: if x0 is weakly attracting as a �xed point of f2 then it is weakly attracting as a �xed point
of f , and similarly, if x0 is weakly repelling as a �xed point of f2 then it is weakly repelling as a �xed
point of f .

• Example: Classify the neutral �xed point x0 = 0 of f(x) = −x+ x2 as weakly attracting or weakly repelling
for orbits on each side.

◦ Observe �rst that that if x is small and positive, then |f(x)| = x− x2, so f moves positive points closer
to zero. However, if x is small and negative, then |f(x)| = |x| + x2, so f moves negative points farther
away from zero. Since f maps small positive numbers to small negative numbers (and vice versa), it is
not clear whether the �attracting� behavior or the �repelling� behavior will win the race (so to speak) as
we continue iterating f .

◦ Notice that f(0) = 0 and f ′(0) = −1, so to classify the orbit behavior we should look at 0 as a �xed
point of g(x) = f2(x) = x− 2x3 + x4.

◦ We have g(0) = 0, g′(0) = 1, g′′(0) = 0, and g′′′(0) = −2, so k = 3 and thus 0 is weakly attracting as a
�xed point of g.

◦ Thus, 0 is weakly attracting for f as well.

• Example: Classify the neutral �xed point x0 = 0 of f(x) = −x + x2 − x3 as weakly attracting or weakly
repelling for orbits on each side.

◦ Notice that f(0) = 0 and f ′(0) = −1, so to classify the orbit behavior we need to look at 0 as a �xed
point of g(x) = f2(x) = x+ 4x5 − 6x6 + 6x7 − 3x8 + x9.

◦ We have g(0) = 0, g′(0) = 1, g(2)(0) = g(3)(0) = g(4)(0) = 0, and g(5)(0) = 480, so k = 5 and thus 0 is
weakly repelling as a �xed point of g.

◦ Thus, 0 is weakly repelling for f as well.

◦ Notice that this example only di�ers from the previous one in the degree-3 term of f . In particular, we
can see that knowing the �rst two nonzero terms of the Taylor series for f is not enough to determine
the orbit behavior of x0 as attracting or repelling: later terms can also a�ect the result.

• We can also use the theorem to classify the behavior of orbits near a neutral periodic point x0: we simply
analyze the orbit behavior for x0 as a neutral �xed point of fn.

◦ In the event that x0 is weakly attracting (or weakly repelling) for fn, essentially by de�nition we can
conclude that x0 is a weakly attracting (or weakly repelling) periodic point for f .

◦ However, if x0 is weakly attracting in one direction and weakly repelling in the other direction as a �xed
point of fn, the behavior of the periodic cycle of f containing x0 is trickier.

◦ If the derivative of fn at x0 is +1, then cycles starting on one side of x0 will be attracting and cycles on
the other side will be repelling.

◦ If the derivative of fn at x0 is −1, then a point on the �attracting� side of x0 will �ip to the �repelling�
side after applying fn (and vice versa), so to decide which behavior wins out, it is necessary to study x0
as a �xed point of f2n.

• Example: Show that 0 lies on a neutral 2-cycle for p(x) = 1+ x− 6x2 + 4x3, and classify the behavior near 0
as weakly attracting or repelling on each side.

◦ We have p(0) = 1, p(1) = 0, and also p′(x) = 1 − 12x + 12x2 so p′(0) = p′(1) = 1. Thus, the 2-cycle
{0, 1} is neutral.
◦ We can expand (ideally with a computer) to �nd p(p(x)) = x−64x3+192x4+192x5−1344x6+1920x7−
1152x8 + 256x9.
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◦ Thus, by the neutral point classi�cation (here, k = 3, the �rst derivative is 1, and the third derivative is

negative) we see that the cycle is weakly attracting .

• Example: Show that q(x) = x2− 5

4
has a neutral 2-cycle, and classify the behavior near it as weakly attracting

or repelling on each side.

◦ We have
q(q(x))− x
q(x)− x

= x2 + x− 1

4
, whose roots are r1, r2 =

−1±
√
2

2
.

◦ Note that q′(x) = 2x, so q′(r1) = −1 +
√
2 and q′(r2) = −1 −

√
2, so since (−1 +

√
2)(−1 −

√
2) = −1,

the cycle is indeed neutral.

◦ To analyze the attracting behavior, we look at the behavior of r1 as a �xed point of g(x) = q2(x) =

x4 − 5

2
x2 +

5

16
.

◦ We have g(r1) = r1, g
′(r1) = −1, and g′′(r1) = 4−6

√
2. Thus, we have k = 2, and so the cycle is neither

weakly attracting nor weakly repelling: as a �xed point of g, we can check that r1 weakly attracting on
the left and weakly repelling on the right.

◦ To study the nearby orbits, we must look at h(x) = q4(x). Using a computer, we can evaluate h(r1) = r1,
h′(r1) = 1, h′′(r1) = 0, and h′′′(r1) = 120(

√
2− 2).

◦ Thus, by the neutral point classi�cation (here, k = 3, the �rst derivative is 1, and the third derivative
is negative), we see that r1 is a weakly attracting �xed point of q4: thus, we conclude that the 2-cycle

{r1, r2} for f is weakly attracting .

◦ Using a computer, we can compute that r1 = 0.207107, r2 = −1.207107, and that the orbit of 0.2 (to six
decimal places) is 0.2, −1.21, 0.2141, −1.204162, 0.200004, −1.209998, −0.214096, −1.204163, 0.200008,
....

◦ We can see that, after every four repetitions, the orbit inches closer to the 2-cycle (as the above analysis
dictates it will) but the convergence is exceedingly slow!

• We showed earlier that attracting �xed points attract nearby orbits exponentially, but per our examples that
does not appear to be the case for neutral �xed points. Let us brie�y investigate how fast a weakly attracting
�xed point actually does attract nearby orbits.

◦ For simplicity, let us suppose that f(x) = x − c xk for some positive constant c and some k ≥ 2, and
study the orbits of small positive x.

◦ Equivalently, we want to estimate how fast the sequence xn+1 = xn − c xkn approaches zero, for a given
x0.

◦ If we rewrite the de�nition as xn+1 − xn = −c xkn, then because the sequence is nearly constant, we can

approximate this di�erence equation with the di�erential equation
dx

dt
= −c xk, with initial condition

x = x0.

◦ This is a separable equation whose solution has the form x(t) = (Ct +D)−1/(k−1) for constants C and
D in terms of x0, k, and c. (One can compute the constants, but we are only interested in the rough
behavior.)

◦ The solution to the di�erence equation is then approximately xn ≈ (Cn+D)−1/(k−1). As n →∞, this
does tend to zero as we claimed, but it does so rather slowly: for k = 2, it goes to zero like n−1, and
for k = 3, it goes to zero like n−1/2. This is very slow compared to the exponential convergence λ−n for
some λ < 1 possessed by attracting �xed points.

◦ We will remark that a change of variables combined with a Taylor's theorem argument much like the
one in the classi�cation proof will allow us to extend this analysis extends to all weakly attracting �xed
points. (We will not bother with the details.)
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1.2.5 Basins of Attraction

• Our theorems on attracting �xed points and cycles are useful in describing the orbits of points �su�ciently
close� to the attracting point or cycle, but they su�er from the limitation that they do not tell us explicitly
what orbits will eventually fall towards them.

◦ It is possible to get actual numeric bounds out of the proof of the theorem for attracting �xed points,
namely: if x0 is an attracting �xed point, then on the largest interval I containing x0 with |f ′(x)| < 1
for all x ∈ I, every orbit will approach x0.

◦ Example: For the function f(x) = x3, clearly x0 = 0 is an attracting �xed point since f(0) = f ′(0) = 0.

Since f ′(x) = 3x2, our result implies that every orbit that starts in the interval

(
− 1√

3
,
1√
3

)
will tend

to 0 as we iterate f .

◦ But this is not the strongest possible result: in fact, any orbit in the larger interval (−1, 1) will tend to
0, since fn(x) = x3

n

clearly tends to 0 (quite rapidly!) for any such point.

◦ One reason we do not get this larger interval is that, in the proof of the attracting �xed point theorem

we gave, we actually wanted to analyze the function

∣∣∣∣f(x)− x0x− x0

∣∣∣∣, rather than |f ′(x)|. (For x near x0,

these two values are close together by the continuity of f ′(x), as we already saw.)

• De�nition: If x0 is an attracting (or weakly attracting) �xed point of f , the basin of attraction (or attracting basin)
for x0 is the set of all points x such that fn(x)→ x0 as n→∞. (In other words, it is the points whose orbits
attract to x0.) The immediate basin of attraction for x0 is the largest interval around x0 contained in the
basin of attraction.

◦ In general, the structure of the basin of attraction can be quite complicated: it is frequently an in�nite
union of disjoint intervals.

◦ For example, here are a few plots (on di�erent scales) of the attracting basin for the attracting �xed

point x0 = 1 of the function f(x) =
2x2(1− 5x+ 2x2)

(3− 5x)(1 + 2x− x2)
:

◦ It is generally much easier to compute the immediate basin of attraction than the full basin (though of
course, if f is su�ciently complicated, we can usually only compute an approximation).

• A starting point for computing the immediate basin of attraction is to �nd the set of points that f moves
closer to x0:

• Proposition: Suppose that x0 is a (weakly) attracting �xed point of f and λ be any positive constant less

than 1. If S is the set of points x such that x = x0 or

∣∣∣∣f(x)− x0x− x0

∣∣∣∣ < λ, and I is the largest interval of the

form (x0 − c, x0 + c) lying in S, then I lies in the immediate basin of attraction for x0 under f .

◦ Proof: Let I be the interval de�ned above. By de�nition, if x ∈ I, then |f(x)− x0| < (1 − ε) |x− x0|:
thus f(x) is closer to x0 than x is. Furthermore, because I is symmetric about x0, we see that f(x) also
lies in I.

◦ We can then apply the result repeatedly to see that (by a trivial induction) |fn(x)− x0| < λn |x− x0|,
so fn(x) → x0 as n → ∞, meaning x is in the basin of attraction for x0. Since I is an open interval
around x0 and every point in it lies in the basin of attraction, I lies in the immediate basin.
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• Example: Find the immediate basin of attraction for the attracting �xed point x0 = 0 of f(x) = x3.

◦ We start by determining when

∣∣∣∣f(x)− 0

x− 0

∣∣∣∣ = ∣∣x2∣∣ is less than 1. Clearly, this holds for −1 < x < 1, so

the immediate basin contains the interval (−1, 1).
◦ Observe that the basin is bounded by the points x = −1 and x = 1, which are both �xed points for f ,

so the immediate basin does not contain them. So, the immediate basin is actually (−1, 1) .

◦ In fact, the interval (−1, 1) is actually the entire basin of attraction for x0 = 0, because any value in
(−∞,−1) will have orbit tending to −∞, and any value in (1,∞) will have orbit tending to ∞.

• Example: Find the immediate basin of attraction for the weakly attracting �xed point of f(x) = x− x3.

◦ The �xed point is x = 0, so we start by �nding those x 6= 0 such that

∣∣∣∣f(x)x
∣∣∣∣ < 1: namely, such that∣∣1− x2∣∣ < 1.

◦ This relation is satis�ed whenever |x| <
√
2 (except for x = 0, but it is certainly in the immediate basin)

so the immediate basin of attraction contains
(
−
√
2,
√
2
)
.

◦ But now note that f(
√
2) = −

√
2 and f(−

√
2) =

√
2, so since these two points lie on a 2-cycle, neither

of them is in the basin of attraction.

◦ Thus, we conclude that the immediate basin is (−
√
2,
√
2) .

• In each of the above examples, the endpoints of the immediate basin for the (weakly) attracting �xed point
have been �xed points, or points lying in a 2-cycle. This is not a coincidence:

• Theorem (Immediate Attracting Basin): If x0 is a (weakly) attracting �xed point of the continuous function
f with immediate basin of attraction I, then I is an open interval of one of the following types: (i) (−∞,∞),
(ii) (−∞, a) or (a,∞) for a a �xed point, (iii) (a, b) for both a and b �xed points or with one a �xed point
and the other a preimage of it, or (iv) (a, b) where {a, b} is a 2-cycle.

◦ Remark: Recall that we say x is a preimage (or inverse image) of y under the map f if f(x) = y.

◦ Proof: Note that I is always an interval containing x0, and it is also open because if it contained an
endpoint, continuity would allow us to extend the interval past the endpoint. Let I be the topological
closure of I: namely, I along with any �nite endpoints, so that (for example) we have (a, b) = [a, b].

◦ By continuity, f(I) is contained in I, since f(I) is contained in I by the de�nition of the immediate
basin. If a is a �nite endpoint of I (assuming it has one), then f(a) cannot be contained in I: otherwise
the orbit of a would attract to x0, contrary to the assumption that a is not in the attracting basin. Thus,
f(a) must also be a �nite endpoint of I.

◦ If I = (−∞,∞) we are done. If I = (a,∞) or (−∞, a), then we must have f(a) = a since a is the only
�nite endpoint of I.

◦ Now suppose I = (a, b). Then f(a) and f(b) are each either a or b. If f(a) = a and f(b) = b they are
both �xed points of f .

◦ If f(a) = f(b) = a or f(a) = f(b) = b one is a �xed point and the other is a preimage of it.

◦ Finally, if f(a) = b and f(b) = a, then {a, b} forms a 2-cycle. This exhausts all the possibilities, so we
are done.

• Using the theorem, we can compute the immediate basin of attraction of any (weakly) attracting point x0:
we need only compute all the �xed points of f , their preimages, and the 2-cycles of f . Then the closest such
points on each side of x0 will be the endpoints of the immediate basin. (Or −∞ or ∞, if there are no such
points.)

• Example: For 1 < λ < 3, �nd the immediate basin of attraction inside [0, 1] for the attracting �xed point of
the logistic map pλ(x) = λx(1− x).
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◦ We computed earlier that the �xed point x0 = 1− 1

λ
is attracting when 1 < λ < 3, and we also showed

that there is no real-valued 2-cycle for these values of λ.

◦ We can also easily compute that the preimages of 0 are 0 and 1.

◦ Thus, the possible endpoints of the immediate basin are −∞, 0, 1, ∞. Since x0 = 1 − 1

λ
is between 0

and 1, the attracting basin must be (0, 1) , independent of λ.

◦ Note that this proof is essentially nonconstructive: we do not know anything about how long it will take
the orbit of any particular point in (0, 1) to move close enough that it will be exponentially attracted to
the �xed point; all we know is that it will eventually happen.

• Example: Find the immediate basin of attraction for each attracting �xed point of f(x) = −1

2
x− 5

2
x2 − x3.

◦ Solving f(x) = x produces x = 0, −1, −3

2
. Since f ′(−1) =

3

2
it is repelling, but f ′(0) = −1

2
and

f ′(−3

2
) =

1

4
, so both 0 and −3

2
are attracting.

◦ To compute the immediate basins, we will look for possible endpoints. Numerically solving the degree-

6 polynomial
f(f(x))− x
f(x)− x

= 0 yields one real-valued 2-cycle: {−2.4275, 0.7867}. We can also easily

compute that the preimages of −1 are −1, 1
2
, and −2.

◦ Thus, the possible endpoints for the immediate basins are −∞, −2.4275, −2, −1, 0.5, 0.7867, ∞.

◦ Since 0 lies in (−1, 1
2
), the immediate basin of 0 must be (−1, 1

2
) . Similarly, since −3

2
lies in (−2,−1),

the immediate basin of −3

2
is (−2,−1) .

• Assuming we can compute an open interval lying in the immediate basin of attraction for a �xed point, we
can give a description of the entire basin of attraction:

• Proposition (Full Attracting Basin): If x0 is a (weakly) attracting �xed point of the continuous function f
and I is any open interval containing x0 that lies in the immediate basin of attraction, then the full basin of

attraction Bx0 is given by Bx0 =

∞⋃
n=0

f−n(I) = I ∪ f−1(I) ∪ f−2(I) ∪ · · · .

◦ Recall that if S is a set, then f−1(S) = {x : f(x) ∈ S} is the inverse image (or preimage) of S under f ,
the set of all points which f maps into S. We then take f−n(S) to be the nth iterate of the preimage
operation, or, equivalently, f−n(S) = {x : fn(x) ∈ S}.
◦ Proof: Suppose x is in the basin of attraction of x0. Then f

n(x) → x0 so by de�nition, for su�ciently
large n we must have fn(x) ∈ I: but this is immediately equivalent to x ∈ f−n(I). Conversely, if
fn(x) ∈ I, then since I is in the immediate basin of attraction we see that fk(fn(x)) → x0 as k → ∞,
and this is equivalent to saying that fk(x)→ x0 as k →∞.

• What the previous proposition says is: we can compute the full basin of attraction simply by �nding an
interval I that lies in the immediate basin, computing the sequence of preimages f−n(I) as n → ∞, and
taking the union.

◦ In fact, each preimage will contain the previous one because f(I) ⊆ I, so taking the union is (vaguely)
super�uous.

◦ Computing preimages rapidly becomes intractable to do exactly (even for polynomials of small degree),
and the iterated inverse image can become very complicated. As a theoretical tool, the proposition is
therefore somewhat limited.

◦ Computationally, however, the proposition is quite useful: if f is continuous on I, then f−1([a, b]) is a
union of intervals whose endpoints lie in the sets f−1(a) and f−1(b): thus, computing the inverse image
reduces to solving the equations f(y) = a and f(y) = b, arranging the solutions in increasing order, and
then determining which of the resulting intervals are mapped into [a, b] by f .
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◦ Here is a geometric picture of this procedure for computing the inverse image of [1, 2] under the function
f(x) = x3 − 3x+ 1:

• Example: Find three intervals lying in the attracting basin of the attracting �xed point x0 = 0 for the function

p(x) =
1

2
x+ 3x2 − 4x3 + x4.

◦ Clearly 0 is an attracting �xed point. As our starting point, we look for values of x for which

∣∣∣∣p(x)− 0

x

∣∣∣∣ <
1: namely, with

∣∣∣∣12 + 3x− 4x2 + x3
∣∣∣∣ < 1.

◦ Solving this inequality numerically gives three intervals, which are (−0.336, 0.237), (0.684, 1.675), and
(2.661, 3.078). We want the largest interval containing x0 = 0 that is symmetric about 0 contained in
one of those intervals, so we take I = (−0.237, 0.237), rounded to three decimal places.

◦ Now we numerically compute p−1(I), which is a union of three intervals, which we have rounded inward
to three decimal places: (−0.300, 0.237), (1.138, 1.307), and (2.894, 2.925). These three intervals all lie
in the attracting basin.

◦ We could continue this process and compute p−1 of each of these intervals: we end up with seven
intervals (−0.717,−0.715), (−0.538,−0.513), (−0.300, 0.237), (1.138, 1.327), (2.890, 2.925), (2.980, 2.989),
(3.070, 3.071).

◦ If we continue computing the inverse images, the union of the resulting in�nite number of intervals will
be the full basin of attraction. Here is a plot of the results of �ve iterations of the inverse image map,
starting with the initial interval I:

◦ Notice that the immediate basin appears to have endpoints roughly given by −0.300 and 0.237. Indeed,
p(−0.300) = 0.237 and p(0.237) = 0.237, so one endpoint of the immediate basin is a �xed point and
the other is one of its preimages (which is indeed one of the possibilities given by our theorem about the
immediate basin).
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1.3 Newton's Method

• Newton's method is an algorithm for �nding a numerical approximation to a zero of a di�erentiable function
f .

◦ In particular, Newton's method provides us with a way to compute the locations of �xed points and
(pre)periodic points of functions numerically.

◦ As we will see, it also provides us with another collection of dynamical systems to study, and we can
apply some of our techniques to analyze how and why Newton's method works.

• The method is as follows: we begin at some starting point x0. Then we draw the tangent line at x0 to
y = f(x) and set x1 to be the x-intercept of the tangent line. Now we iterate the process, by setting xn to be
the x-intercept of the tangent line at x = xn−1 to y = f(x), for each n ≥ 2.

◦ The idea is that, if x0 is close to the root r, then the tangent line is a good approximation to the function
y = f(x), so the x-intercept of the tangent line (which is easy to compute) will, hopefully, be closer to
the root r than x0 is, as a typical picture suggests will be the case:

◦ By iterating this procedure, we obtain a sequence of values that (ideally) yield better and better approx-
imations of the root r.

◦ Since the tangent line to y = f(x) at x = x0 has equation y − f(x0) = f ′(x0) · (x− x0), the x-intercept

is x1 = x0 −
f(x0)

f ′(x0)
.

◦ Thus, the points given by Newton's method the points in the orbit of x0 under the map N(x) = x− f(x)

f ′(x)
.

• De�nition: If f(x) is a di�erentiable function, the Newton iteration function N(x) is de�ned as N(x) =

x− f(x)

f ′(x)
, and Newton's method is the result of computing the orbit of a point x0 under N(x).

◦ Observe that, as long as f is always de�ned and f ′(x) 6= 0, ∞, the �xed points of the Newton iteration
function are the same as the zeroes of f .

• Example: Use Newton's method to approximate the root of f(x) = x2−0.2 illustrated in the diagrams above,
with starting value x0 = 1.

◦ Here, the Newton iteration function is N(x) = x− f(x)

f ′(x)
= x− x2 − 0.2

2x
=
x

2
+

0.1

x
.

◦ To four decimal places, the orbit of 1 under N is 1→ 0.6→ 0.4667→ 0.4476→ 0.4472→ 0.4472→ · · · .
◦ We can see that the algorithm converges quite rapidly to the value 0.4472, which is indeed the positive
root

√
0.2 ≈ 0.4472136 of f(x).

• Example: Use Newton's method to approximate the value of
√
2.

◦ By de�nition,
√
2 is the positive root of f(x) = x2 − 2.
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◦ For this f , the Newton iteration function is N(x) = x− f(x)

f ′(x)
=
x

2
+

1

x
.

◦ To six decimal places, the orbit of 1 under N is 1 → 1.5 → 1.416667 → 1.414216 → 1.414214 →
1.414214→ · · · .
◦ To six decimal places, the orbit of 3 under N is 3 → 1.833333 → 1.462121 → 1.414998 → 1.414214 →
1.414214→ · · · .
◦ To six decimal places, the orbit of 10 under N is 10 → 5.1 → 2.746078 → 1.737195 → 1.444238 →
1.414526→ 1.414214→ · · · .
◦ We can see that the algorithm converges quite rapidly to

√
2, even when the starting point is rather far

away.

• Example: Use Newton's method to approximate the �xed point of cos(x).

◦ We want to �nd a zero of the function f(x) = cos(x)− x.

◦ Here, the Newton iteration function is N(x) = x+
cos(x)− x
sin(x) + 1

.

◦ The orbit of 0 under N is 0→ 1→ 0.750364→ 0.739113→ 0.739085→ 0.739085→ · · · .
◦ So we see the �xed point is approximately 0.739085 .

• Example: Use Newton's method to approximate the real root of f(x) = x3 − 2x− 5.

◦ Notice that f(2) = −1 and f(3) = 16, so f has a root in (2, 3) by the intermediate value theorem. (In
fact, since f ′(x) = 3x2 − 2 is only zero at x = ±

√
2/3, and f is negative at both values, f actually has

only one real root.)

◦ Here, the Newton iteration function is N(x) = x− f(x)

f ′(x)
= x− x3 − 2x− 5

3x2 − 2
=

2x3 + 5

3x2 − 2
.

◦ The orbit of 2 under N is 2 → 2.1 → 2.094568 → 2.094552 → 2.094552 → · · · . So the root appears to
have numerical value 2.094552.

◦ The orbit of 3 under N is 3 → 2.36 → 2.127197 → 2.095136 → 2.094552 → 2.094552 → · · · . This orbit
also approaches the root.

◦ However, not all orbits will approach the root quickly (or even at all). For example, the orbit of 0 under
N is 0 → −2.5 → −1.5672 → −0.5026 → −3.8207 → −2.5494 → −1.6081 → −0.5761 → −4.5977 →
−3.0835→ −2.0222→ · · · : it does not seem to be approaching the root 2.094552.

• Example: Use Newton's method to approximate the real root of f(x) = x3 − 4x+ 2 lying in (1, 2).

◦ Notice that f(1) = −1 and f(2) = 2, so f does have a root in (1, 2) by the Intermediate Value Theorem.
In fact f has three real roots: one in (−3,−2), one in (0, 1), and one in (1, 2).

◦ The Newton iteration function is N(x) = x− f(x)

f ′(x)
= x− x3 − 4x+ 2

3x2 − 4
.

◦ The orbit of 1 under N is 1 → 0 → 0.5 → 0.538462 → 0.539189 → 0.539189 → · · · . This does converge
to a root of f , but not the one we were looking for!

◦ The orbit of 2 under N is 2 → 1.75 → 1.680723 → 1.675166 → 1.675131 → 1.675131 → · · · . This does
converge to the root we were looking for.

◦ For completeness, of course, we could also use Newton's method to �nd the last root using a nearby
orbit. For example, the orbit of −2 is −2→ −2.25→ −2.215084→ −2.214320→ −2.214320→ · · · .

• Example: Try to �nd the real root of f(x) = x1/3 using Newton's method. (Of course, the root is clearly
x = 0.)

◦ The Newton iteration function is N(x) = x− f(x)

f ′(x)
= −2x.

◦ The orbit of 0.1 under N is 0.1→ −0.2→ 0.4→ −0.8→ 1.6→ −3.2→ 6.4→ · · · : notice that this orbit
does not converge to 0!
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◦ We can see rather easily from N(x) that 0 is a repelling �xed point for N , so indeed no nearby orbit will
converge to the real root of f . Ultimately, the issue here is that f ′(0) is in�nite.

• We would naturally like to know under what conditions a given �xed point of the Newton iteration function
will be attracting.

◦ From our previous results, if the �xed point is attracting, then the convergence of nearby orbits will be
(at least) exponentially fast, with rate dictated by the value of N ′ at the �xed point.

◦ If the value x0 is a multiple root of f , then the analysis can be a bit trickier.

• De�nition: If x0 is a root of the continuous function f , the multiplicity of x0 (as a root of f) is the smallest
positive k such that there exists a continuous function g(x) such that f(x) = (x− x0)k · g(x) and g(x0) 6= 0,
if such a k exists. (If there is no largest k such that f(x) = (x − x0)k · g(x) for a continuous function g, we
say the multiplicity is in�nite.)

◦ The multiplicity of a root of a general function agrees with the usual sense of �multiple root� when
referring to polynomials: for example, 1 is a root of multiplicity 2 for the function (x2 + 1)(x− 1)2 and
of multiplicity 3 for the function x(x− 1)3.

◦ Example: If f(x) = x4/3, then x0 = 0 is a root of multiplicity 4/3.

◦ Example: If f(x) = 0 is the identically zero function, then x0 = 0 is a root of in�nite multiplicity.

◦ Most reasonable functions will only have roots of �nite multiplicity. A nontrivial function having a root of

in�nite multiplicity is f(x) =

{
e−1/x

2

for x 6= 0

0 for x = 0
: for gk(x) =

{
e−1/x

2

x−k for x 6= 0

0 for x = 0
, one may check

that gk is continuous and that f(x) = xkgk(x) for all x.

• Proposition (Multiplicity and Derivatives): If x0 is a root of f of multiplicity k, then f (d)(x0) = 0 for all
d < k. Furthermore, if k ≥ 1 is an integer, then x0 is a root of f of multiplicity k if and only if f (d)(x0) = 0
for all d < k and f (k)(x0) is nonzero and �nite.

◦ This proposition provides an easy way to compute the multiplicity of a root for a di�erentiable function:
for example, if f(x) = sin(x), then x0 = kπ is a root of multiplicity 1 for each integer k, since the
derivative f ′(x0) is nonzero at each such point.

◦ Remark: Note the similarity to the statement of the classi�cation of neutral �xed points. (Indeed, the k
from that theorem is the multiplicity of the value x0 as a root of the function f(x)− x.)
◦ Proof: If f(x) = (x−x0)kg(x), then applying the product rule shows that f (d) is a sum of terms involving
the �rst d derivatives of (x− x0)k and g(x). For d < k all of the derivatives of (x− x0)k are zero, so we
see f (d)(x0) for d < k, giving the �rst statement. Also, if d = k then we will get a single term k! · g(x0),
so f (k)(x0) = k! · g(x0) is nonzero since g(x0) 6= 0.

◦ Conversely, if x0 is a root of f of integral multiplicity k, then by k applications of L'Hôpital's rule we see

that lim
x→x0

f(x)

(x− x0)k
= f (k)(x0), so the function

f(x)

(x− x0)k
(de�ned for x 6= x0) can be extended to be

continuous and nonzero at x = x0. We can then simply take g(x) to be the resulting continuous function.

• The multiplicity of a root will control how fast Newton's method will converge near that root:

• Theorem (Newton's Fixed Point Theorem): Suppose f is continuously di�erentiable and N is its Newton
iteration function. If x0 is a root of f of �nite multiplicity k ≥ 1, then x0 is an attracting �xed point of N ,
and if x0 is a root of multiplicity k = 1, then x0 is a superattracting �xed point of N .

◦ Proof: By de�nition, x0 will be an attracting �xed point of N if |N ′(x0)| < 1, and it will be superat-
tracting if N ′(x0) = 0. We also note that because f ′ is continuous, there are no points where f ′ is ∞, so
the only �xed points of N are the zeroes of f .

◦ By the quotient rule we see that N ′(x) =
f(x)f ′′(x)

[f ′(x)]
2 whenever f ′(x) 6= 0.

◦ So if f ′(x0) 6= 0, which occurs if x0 has multiplicity 1, we immediately see thatN(x0) = x0 andN
′(x) = 0,

so that x0 is a superattracting �xed point of N .
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◦ If f ′(x0) = 0 and x0 has multiplicity k > 1, then by the proposition above we can write f(x) =
(x−x0)kg(x) for a function g with g(x0) 6= 0. To ease notation, make the change of variables y = x−x0
to move the �xed point to zero: then f(y) = ykg(y) where g(0) 6= 0.

◦ Then f ′(y) = kyk−1g(y) + ykg′(y) and f ′′(y) = k(k− 1)yk−2g(y) + 2kyk−1g′(y) + ykg′′(y), so after some

algebra we see that N(y) = y − y g(y)

k g(y) + g′(y)
, so that N(0) = 0.

◦ Furthermore, N ′(y) =
k(k − 1)g(y)2 + 2kyg′(y)g(y) + y2g′′(y)g(y)

k2g(y)2 + 2kyg(y)g′(y) + y2g′(y)2
, so N ′(0) =

k(k − 1)g(y)2

k2g(y)2
= 1 − 1

k
,

since g(y) 6= 0 by assumption.

◦ Since this quantity has absolute value less than 1 as long as k ≥ 1, we see that y = 0 (i.e., x = x0) is an
attracting �xed point of N as claimed.

• Newton's �xed point theorem guarantees that (as long as f does not have any zeroes of in�nite or unde�ned
multiplicity) each of the zeroes of f will show up as an attracting �xed point of N , and that these are the
only �xed points of N .

◦ A natural question to ask is: what does the attracting basin for each �xed point of N look like?

◦ A fuller discussion of this topic belongs properly to a numerical analysis course, but from our results
about attracting points, we can say a few things.

◦ For example, the immediate basin for each �xed point will contain the interval on which |N ′(x)| =∣∣∣∣f(x)f ′′(x)f ′(x)2

∣∣∣∣ < 1. (Though this function is rather hard to analyze, as we just saw.)

◦ Also, the endpoint of any �xed point's immediate basin cannot be another �xed point, because every
�xed point is attracting. Thus, each �xed point's immediate basin either has endpoints that form a
2-cycle under N , or has endpoints that are ±∞ or points where N is unde�ned (i.e., zeroes of f ′).

◦ We also remark that by the mean value theorem, f ′ will have a zero between any two zeroes of f , N will
always be unde�ned somewhere in the interval between any two attracting �xed points.

◦ In general, the full attracting basin can be quite complicated (as with attracting basins of general
functions).

• If f does not have any roots at all, the Newton iteration function N has no �xed points, but this does not
mean its dynamics are uninteresting.

• Example: Try to �nd a real root of f(x) = x2 + 1 using Newton's method. (Of course, f has no real roots.)

◦ The Newton iteration function is N(x) = x− f(x)

f ′(x)
=
x

2
− 1

2x
.

◦ The orbit of 0.1 under N is 0.1, −4.95, −2.37399, −0.97638, 0.02391, −20.90272, −10.42744, −5.16577,
−2.48609, −1.04193, −0.04198, 12.14959, ....
◦ The orbit of 0.2 under N is 0.2, −2.4, −0.99167, 0.00837, −59.7477, −29.86402, −14.91527, −7.42411,
−3.64471, −1.68517, −0.54588, 0.64302, −0.45608, ....
◦ These orbits, of course, will not approach a �xed point, since N has no �xed points.

◦ It is not hard to show that orbits will behave as follows: orbits far from 0 will approach zero monotonically
until they land in the interval (−1, 1), at which point they will switch sign after each iteration until they
land inside (1 −

√
2,
√
2 − 1), where the next iteration will carry them outside (−1, 1) and the process

will repeat.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2015-2025. You may not reproduce or distribute this
material without my express permission.
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