Contents

1 Introduction to Real Dynamics

In this chapter, our goal is to provide an introduction to discrete dynamical systems on the real line, which arise by repeatedly iterating a function f defined on a subset of the line. We begin by studying orbits of points under a function and various types of periodic behavior ("cycles") that can arise in orbits. We then classify the behavior of fixed points and cycles in terms of whether they attract or repel nearby points as we iteratively apply f using various tools from calculus, and study the related notion of the attracting basin of an attracting fixed point or cycle. We close with a brief discussion of Newton's method, a procedure often familiar from calculus that provides a way to compute zeroes of differentiable functions numerically, both because it is a computational aid and because it provides another source of interesting dynamical systems.

1.1 Dynamics on the Real Line

- A discrete dynamical system (X, f) consists of a space X and a function $f : X \to X$ from the space to itself.
- Our goal is to describe the behavior of a point P in X in the space as we iterate the function repeatedly on P: in other words, to describe the sequence of iterates $\{P, f(P), f(f(P)), f(f(f(P))), \ldots\}$.
	- \circ Example: The space is R and the transformation is the function $f(x) = \cos(x)$. What happens as we apply f iteratively to a particular value of x (e.g., $x = 2\pi$)?
	- Example: The space is R and the transformation is the function $f(x) = x^2 1$. What happens as we apply f iteratively?
	- Example: The space is $\mathbb C$ and the transformation is the function $f(z) = \frac{z+i}{z-i}$. What happens as we apply f iteratively?
	- \circ Example: The space is \mathbb{R}^3 and the transformation is the map $T(x, y, z) = (x + 2y, \sin(z), \cos(x))$. What happens as we apply T iteratively?

1.1.1 Examples and Motivation for Dynamical Systems

- As it turns out, even simple-seeming dynamical systems can exhibit extremely complicated and unpredictably chaotic behavior. We can illustrate some of these behaviors through the dynamics of a few simple population models:
- Example (Island 1): A population of cats lives on an extremely large desert island with plentiful food. When the population is small, the cats can essentially breed with no restrictions. If the population is currently P , then the population one year later will be $4P$, with one pair of cats producing eight offspring per year on average.
	- In this case, the population at arbitrary number of years later can be found by iterating the function $f(P) = 4P$: $f(f(P)) = 16P$, $f(f(f(P))) = 64P$, and so forth.
	- \circ Thus, if the population at year 0 is 2 cats, then after *n* years, there will be $4^n \cdot 2$ cats: i.e., we observe exponential population growth.
	- If we change the starting population or the growth parameter slightly, the system will still behave very predictably over time: we will always observe exponential growth or decay, depending on the parameters.
- Example (Island 2): On another much smaller desert island there is also a population of cats. Since this island is smaller, when the population grows sufficiently large the cats will begin to compete for resources and breed more slowly, or even decrease in population if there are more cats than the island can sustain. After careful study, it is determined that if the population is currently P , then the population one year later will $\sqrt{2}$ P .

be
$$
3.74P\left(1 - \frac{P}{1000000}\right)
$$

- In this case, the population an arbitrary number of years later can be found by iterating the function $f(P) = 3.74P\left(1 - \frac{P}{1\,000\,000}\right).$
- Here are the results of a computer simulation for an initial population of 2 cats, and of 4 cats:

- After a few generations of nearly-exponential growth, the population for a starting population of 2 cats seems to bounce around randomly for about 70 generations, but then settles into an extremely stable pattern that oscillates between five population values which are (in order of how they appear from year to year) equal to 227476, 657233, 842539, 496175, and 934945.
- For 4 cats, the behavior is very similar (and the cycling population values are the same), but the pattern stabilizes much more quickly, after about 20 generations.
- Example (Island 3): On a very slightly different desert island to the one considered above, the cats breed a very tiny bit more rapidly: if the current population is P, then the next year's population is $3.75P\left(1-\frac{P}{1\,000\,000}\right)$.
	- Here are the results of a computer simulation for an initial population of 2 cats, and of 4 cats:

- Unlike the previous example, the populations both appear to behave in a much less predictable manner. There are some runs where the populations almost cycle between a small number of values (typically 5, like the cats on the second island do), but they are not stable and degenerate into seemingly random behavior quite rapidly.
- Our goal in this chapter is to explain the radically different behaviors of these two seemingly similar models, but just for completeness, the idea is that both models have a periodic cycle of length 5, but the cycle is stable on Island 2 and unstable on Island 3.

1.1.2 Orbits and Fixed Points

- Our primary aim is to study the following question: given a function f defined on a subset of the real line \mathbb{R} , and a point x_0 , describe the behavior of the sequence x_0 , $f(x_0)$, $f(f(x_0))$, $f(f(f(x_0)))$,
- Definition: For a function f, we define the *n*th iterate $f^{n}(x)$ to be the result of iterating f a total of n times on x. Thus, $f^{1}(x) = f(x)$, $f^{2}(x) = f(f(x))$, $f^{3}(x) = f(f(f(x)))$, and in general, $f^{n}(x) = f(f^{n-1}(x))$ for any $n \geq 2$. We also adopt the convention that $f^{0}(x) = x$, the result of applying f "zero times".
	- \circ This conflicts with the convention, often used elsewhere, that the expression $\sin^2(x)$ is to be interpreted as $[\sin(x)]^2$. We will therefore avoid iterated function notation with explicitly-written trigonometric functions, and always write explicitly that a function is being squared when such a thing occurs.
	- Additionally, we emphasize here the dierence between notation for iterated functions and notation for higher-order derivatives: $f^3(x)$ means the triple iterate $f(f(f(x)))$, while $f^{(3)}(x)$ means the third derivative $f'''(x)$.
- Definition: The orbit of x_0 under f is the sequence $x_0, x_1, x_2, x_3, ...$ where $x_n = f^n(x_0)$. The value x_0 is called the seed or initial point of the orbit.
	- \circ For additional emphasis, we will usually stylize orbits using arrows as $x_0 \to x_1 \to x_2 \to x_3 \to \cdots$, with the arrow representing a single application of the function f .
- Example: Describe the orbits of $x_0 = 2, 0, 1$, and $\frac{1}{2}$ under the function $f(x) = x^2$.
	- \circ For $x_0 = 2$, the orbit is $2 \to 4 \to 16 \to 256 \to 65536 \to \cdots$ and so forth. This orbit tends to ∞ .
	- \circ For $x_0 = 0$, the orbit is $0 \to 0 \to 0 \to 0 \to 0 \to 0 \to \cdots$ and so forth. This orbit remains fixed at 0.
	- For $x_0 = 1$, the orbit is $1 \to 1 \to 1 \to 1 \to 1 \to \cdots$ and so forth. This orbit remains fixed at 1.
	- \circ For $x_0 = \frac{1}{2}$ $\frac{1}{2}$, the orbit is $\frac{1}{2} \rightarrow \frac{1}{4}$ $\frac{1}{4} \to \frac{1}{16}$ $\frac{1}{16} \to \frac{1}{25}$ $\frac{1}{256} \to \frac{1}{655}$ $\frac{1}{65536}$ \rightarrow \cdots and so forth. This orbit approaches the limiting value 0.
- Example: Describe the orbits of $x_0 = 0$ and 0.5 under the function $f(x) = \cos x$.
	- \circ For $x_0 = 0$, to four decimal places the first 25 values on the orbit are $0 \to 1 \to 0.5403 \to 0.8576 \to$ $0.6543 \rightarrow 0.7935 \rightarrow 0.7014 \rightarrow 0.7640 \rightarrow 0.7221 \rightarrow 0.7504 \rightarrow 0.7314 \rightarrow 0.7442 \rightarrow 0.7356 \rightarrow 0.7414 \rightarrow 0.7424$ $0.7375 \rightarrow 0.7401 \rightarrow 0.7383 \rightarrow 0.7395 \rightarrow 0.7388 \rightarrow 0.7393 \rightarrow 0.7389 \rightarrow 0.7392 \rightarrow 0.7390 \rightarrow 0.7391 \rightarrow 0.7392 \rightarrow 0.7391 \rightarrow 0.7392 \rightarrow 0.73$ $0.7391 \rightarrow 0.7391 \rightarrow \cdots$
- \circ For $x_0 = 0.5$, to four decimal places the first 25 values on the orbit are $0.5 \rightarrow 0.8776 \rightarrow 0.6390 \rightarrow$ $0.8027 \rightarrow 0.6948 \rightarrow 0.7682 \rightarrow 0.7192 \rightarrow 0.7524 \rightarrow 0.7301 \rightarrow 0.7451 \rightarrow 0.7350 \rightarrow 0.7418 \rightarrow 0.7372 \rightarrow$ $0.7403 \rightarrow 0.7382 \rightarrow 0.7396 \rightarrow 0.7387 \rightarrow 0.7393 \rightarrow 0.7389 \rightarrow 0.7392 \rightarrow 0.7390 \rightarrow 0.7391 \rightarrow 0.7390 \rightarrow$ $0.7391 \rightarrow 0.7391 \rightarrow \cdots$
- We can see in both cases that the orbits appear to be converging to a real number that is approximately equal to 0.7391.
- Some of the orbits in the examples above remained stable and unchanging as we apply the function f . Such points are quite important in understanding the dynamics of f :
- Definition: A fixed point of a function $f(x)$ is a point x_0 such that $f(x_0) = x_0$.
	- \circ Example: The function $f(x) = x^2$ has two fixed points, namely $x = 0$ and $x = 1$, since the solutions to $x^2 = x$ are $x = 0$ and $x = 1$.
	- \circ Example: The function $f(x) = x + 1$ has no fixed points, because there are no values of x satisfying $x+1=x$.
	- \circ Example: The function $f(x) = x \cos(\pi x)$ has infinitely many fixed points, namely $x = 2k$ for any integer k: solving $x \cos(\pi x) = x$ produces $x = 0$ or $\cos(\pi x) = 1$, and the solutions to the latter are $\pi x = 2\pi k$ for an integer k .
- Since finding fixed points is equivalent to solving the equation $f(x) = x$, we can qualitatively search for a function's fixed points by drawing the graphs of $y = f(x)$ and $y = x$ and looking for intersection points.
- For complicated functions, it is often not possible to solve for fixed points or periodic points exactly.
	- \circ For example, a graph will indicate that $f(x) = \cos(x)$ has a fixed point, but it is not possible to solve the equation $x = \cos(x)$ algebraically.
	- \circ To establish rigorously the existence of fixed points that we can identify using graphs, we can use the intermediate value theorem¹ .
	- \circ To show the existence of a fixed point of a continuous function f, we apply the intermediate value theorem to the function $g(x) = f(x) - x$, which is also continuous, to show that g takes the value zero. For this, it is enough to find one place where q is negative and another where q is positive: then q must be zero somewhere in between, and this place is a fixed point of f .
- Example: Show that $f(x) = \cos(x)$ has a fixed point.
	- \circ From a graph, we can see that $y = \cos(x)$ and $y = x$ intersect once, somewhere in the interval [0, 1]:

o If we let $g(x) = f(x) - x$, then $g(0) = 1$ while $g(π/2) = -π/2$. Hence since g is continuous, the intermediate value theorem dictates that g has some zero α in the interval $(0, \pi/2)$. Then $g(\alpha) = 0$ implies $f(\alpha) = \alpha$, meaning that α is a fixed point of f.

¹The intermediate value theorem says that if $f(x)$ is a continuous function on the interval [a, b], then for any value y between $f(a)$ and $f(b)$, there is some value of c in (a, b) such that $f(c) = y$. In other words, somewhere in the interval (a, b) , the function f attains all "intermediate values" between $f(a)$ and $f(b)$.

- \circ By using the graph to get a better guess for the interval where the fixed point lies, or using more intelligent root-finding algorithms such as Newton's method (which we discuss at the end of the chapter), we can rapidly approximate the value of the fixed point. In this case, to six decimal places, the value of the fixed point is 0.739085: notice that this is the value to which the orbits of $cos(x)$ seemed to be converging earlier!
- An application of the intermediate value theorem is to prove that any continuous function that maps an interval into itself must have a fixed point:
- Proposition (Existence of Fixed Points): If $f : [a, b] \to [a, b]$ is a continuous function, then it has a fixed point.
	- \circ Note that the function need not be surjective (i.e., it does not need to have every point of [a, b] in its image); its image just needs to be contained in $[a, b]$.
	- \circ Remark: This is the 1-dimensional case of a much more general theorem known as the Brouwer fixedpoint theorem, one version of which states that any continuous function from a closed, bounded, convex subset of \mathbb{R}^n to itself must have a fixed point.
	- \circ Proof: Let $g(x) = f(x) x$: we have $g(a) = f(a) a \ge 0$ since $f(a) \in [a, b]$, and we also have $g(b) = f(b) - b \le 0$ since $f(b) \in [a, b]$. Applying the Intermediate Value Theorem to $g(x)$ on [a, b] shows that g has a zero in $[a, b]$, which is the desired fixed point of f.

1.1.3 Periodic Points and Cycles

- Some functions have fixed points, but fixed points are not the only kind of stable orbit behavior we can see.
- Example: Describe the orbits of $x_0 = 1, 2, 4, 5,$ and $\frac{1}{2}$ under the function $f(x) = |2x 4| x$.
	- For $x_0 = 1$, we get the orbit $1 \to 1 \to 1 \to \cdots$ and so forth: we can see that 1 is a fixed point of f.
	- \circ For $x_0 = 2$, we get the orbit $2 \to -2 \to 10 \to 6 \to 2 \to 2 \to 10 \to 6 \to 2 \to \cdots$ and so forth: we can see that the values of f will repeat forever in the cycle $2, -2, 10, 6$.
	- \circ For $x_0 = 4$, we get the orbit $4 \to 0 \to 4 \to 0 \to \cdots$ and so forth: we can see that the values of f will alternate forever between 4 and 0.
	- \circ For $x_0 = 5$, we get the orbit $5 \to 1 \to 1 \to 1 \to \cdots$ and so forth: we can see that the orbit eventually settles at the fixed point 1 of f .
	- \circ For $x_0 = \frac{1}{2}$ $\frac{1}{2}$, we get the orbit $\frac{1}{2} \rightarrow \frac{5}{2}$ $\frac{5}{2} \rightarrow -\frac{3}{2}$ $rac{3}{2} \to \frac{17}{2}$ $\frac{17}{2} \rightarrow \frac{9}{2}$ $\frac{9}{2} \rightarrow \frac{1}{2}$ $\frac{1}{2}$ \rightarrow \cdots and so forth: we can see that the values of f will repeat forever in the cycle $\frac{1}{2}$, $\frac{5}{2}$ $\frac{5}{2}, -\frac{3}{2}$ $\frac{3}{2}, \frac{17}{2}$ $\frac{17}{2}, \frac{9}{2}$ $\frac{5}{2}$.
- Example: Describe the orbits of $x_0 = 0$, 1, and $\frac{1}{2}$ under the function $f(x) = x^2 1$.
	- \circ For $x_0 = 0$, we get the orbit $0 \to -1 \to 0 \to -1 \to 0 \to -1 \to \cdots$ and so forth. The values will clearly continue cycling between 0 and -1 as we continue applying f.
	- \circ For $x_0 = 1$, we get the orbit $1 \to 0 \to -1 \to 0 \to -1 \to 0 \to \cdots$ and so forth. These values likewise will continue cycling between 0 and −1.
	- \circ For $x_0 = \frac{1}{2}$ $\frac{1}{2}$, to four decimal places we get the orbit $0.5 \rightarrow -0.75 \rightarrow -0.4375 \rightarrow -0.8086 \rightarrow -0.3462 \rightarrow$ $-0.8802 \rightarrow -0.2253 \rightarrow -0.9492 \rightarrow -0.0990 \rightarrow -0.0195 \rightarrow -0.9996 \rightarrow -0.0008 \rightarrow \cdots$. As we continue applying f, the values are clearly approaching an alternating pattern of -1 and 0, the orbit from the starting point $x_0 = 0$.
- In addition to fixed points, orbits can also fall into repeating cycles.
- Definition: A value x_0 is called a periodic point for f, and its orbit is called a periodic orbit (or an n-cycle), if there is some value of n such that $f^{(n)}(x) = x$. Any such value of n is called a period of x_0 , and the smallest (positive) value of n is called the minimal period (or exact period).
- \circ A periodic orbit of length n will repeat every n steps: it is x_0 , $f(x_0)$, $f^2(x_0)$, ..., $f^{n-1}(x_0)$, x_0 , $f(x_0)$, $f^2(x_0), \ldots$
- \circ Notice by definition that if x_0 is periodic with period n, then so is $f^k(x_0)$ for any k, since their orbits will all cycle through the same n values. Also by definition, x_0 is a periodic point of period n precisely when x_0 is a fixed point of f^n , since both statements say that $f^n(x_0) = x_0$.
- Example: Fixed point are the same as periodic points of exact period 1.
- o Example: The point $x_0 = -1$ is a periodic point of period 2 for the function $f(x) = x^2 1$, since $f(-1) = 0$ and $f^{2}(-1) = -1$. Likewise, 0 is also a periodic point of period 2 for $f(x)$.
- Example: The point $x_0 = 1$ is a periodic point of period 3 for the function $f(x) = 1 \frac{1}{2}$ $rac{1}{2}x - \frac{3}{2}$ $\frac{3}{2}x^2$, since $f(1) = -1$, $f^{2}(1) = 0$, and $f^{3}(1) = 1$.
- Example: The point $x_0 = 1$ is a periodic point of period 4 for the function $f(x) = \sqrt{2} \frac{1}{x}$ $\frac{1}{x}$, since $f(1) = \sqrt{2} - 1$, $f^{2}(1) = -1$, $f^{3}(1) = \sqrt{2} + 1$, and $f^{4}(1) = 1$.
- \circ Note: Some authors use the term "prime period" for the minimal period. This is somewhat misleading, because the length of the minimal period need not be a prime number, as the previous example shows.
- We record here a pair of basic facts about periodic points:
- Proposition (Minimal Periods): If x_0 is a periodic point with minimal period n, then $f^m(x_0) = f^{m+n}(x_0)$ for any m, and $f^k(x_0) = x_0$ holds if and only if n divides k.
	- \circ Proof: For the first statement, simply apply f^m to both sides of the statement $f^n(x_0) = x_0$. For the forward direction of the second statement, setting $m = dn$ for $d = 1, 2, 3$, yields $x_0 = f^n(x_0) = f^{2n}(x_0)$ $f^{3n}(x_0) = \cdots$, so $f^k(x_0) = x_0$ if k is a multiple of n.
	- For the reverse direction, suppose that n is the minimal period of x_0 and that $f^k(x_0) = x_0$ but n does not divide k, so that $k = qn + r$ for some integer q and some integer r with $0 < r < n$. By the definition of the period, we have $f^r(x_0) = f^{n+r}(x_0) = f^{2n+r}(x_0) = \cdots = f^{qn+r}(x_0) = f^k(x_0) = x_0$, but this is a contradiction because then r is a period for x_0 that is smaller than n.
- Finding all the periodic points of order n for f requires solving $f^{(n)}(x) = x$. For most functions this is computationally quite difficult: if f is a polynomial of degree d, then $f^{(n)}(x) - x$ is a polynomial of degree d^n .
	- \circ For polynomials, we only have a hope of doing this (even with a computer) if f is a polynomial of small degree and the order is small.
	- For example, if $f(x) = x^2 1$, then looking for periodic points of period 3 requires solving the degree-8 equation $f(f(f(x))) = x$, which when written out is $x^8 - 4x^6 + 4x^4 - 1 = x$. It turns out that there are no real periodic points of period exactly 3 for this function, but this is not at all easy to see by attempting to solve the equation $x^8 - 4x^6 + 4x^4 - x - 1 = 0$ directly.
	- Just as with establishing the existence of xed points, however, we can establish the existence of periodic points using the intermediate value theorem: to show that f has an n-cycle, we apply the intermediate value theorem to $g(x) = f^{n}(x) - x$ on an appropriate interval where $g(x)$ changes sign.
	- \circ However, to ensure the cycle actually has length n (and not a smaller value) we must also show that $f^k(x) - x$ does not have a zero for any value of k dividing n, since those k are also possible values of the minimal period of the cycle, though as a more practical matter we could just compute the cycle numerically and check that it really has length n .
- Example: Show that $f(x) = x^3 3x$ has a periodic point of order 2 lying in the interval $(1, 1.5)$ and a periodic point of order 3 lying in the interval (0.4, 0.5).
	- \circ The idea for the point of order 2 is to show that $g(x) = f^2(x) x$ has a root in this interval but that $f(x) - x$ does not have a root in this interval: the first statement will imply the existence of a periodic point of order dividing 2, and the second will imply it cannot have order 1.
	- ⊙ Similarly, for the point of order 3, we want to show that $h(x) = f^3(x) x$ has a root in the interval $(0.4, 0.5)$ but that $f(x) - x$ does not.
- ∘ Since $f(x) x = x^3 4x$ has roots $x = 0, \pm 2$, it does not have roots in either interval.
- ∘ Now we compute $g(1) = f^2(1) 1 = -3$ and $g(1.5) = 0.451$, so we conclude that g must be zero in this interval, and thus that f has a periodic point of order 2. (In fact, one can show that this periodic point is $x_0 = \sqrt{2}$.)
- \circ Similarly, $h(0.4) = 1.098$ but $h(0.5) = -1.527$, so h has a zero in this interval and f has a periodic point of order 3.
- \circ Computing the exact value of this periodic point would require factoring the polynomial $h(x)$, which has degree 27 (not so easy to do!). But using a root-finding procedure we can calculate the approximate values on the cycle as {0.445042, −1.246980, 1.801938} to six decimal places.
- In some cases we can save a bit on the computational difficulty for computing *n*-cycles of a polynomial $p(x)$ by observing that if $m|n$, then every point of period m will satisfy $p^m(x) = x$ and hence also $p^n(x) = x$. Thus, we can save a small amount of effort by removing the factors of $p^{n}(x) - x$ that come from terms $p^{m}(x) - x$ where $m|n$.
	- This trick is especially helpful if f is a quadratic polynomial and $n = 2$: then $f^2(x) x$ has degree 4, but it is divisible by the quadratic $f(x) - x$, so we can take the quotient and obtain a quadratic, which is much easier to solve than the original degree-4 polynomial.
- Example: Determine the values of λ , with $0 < \lambda \leq 4$, for which the logistic map $p_{\lambda}(x) = \lambda x(1-x)$ has a real-valued 2-cycle.
	- \circ By the remarks above, $p^2_\lambda(x) x$, whose zeroes are the points of period 1 or 2 for p_λ , is necessarily divisible by $p_{\lambda}(x) - x$, whose zeroes are the points of period 1 (by properties of polynomials).
	- \circ Some algebra shows that $p_\lambda^2(x) x = -\lambda^3 x^4 + 2\lambda^3 x^3 (\lambda^2 + \lambda^3)x^2 + (-1 + \lambda^2)x$, so dividing it by $p_{\lambda}(x) - x = -\lambda x^2 + (-1 + \lambda)x$ yields the quotient $q(x) = \lambda^2 x^2 - (\lambda + \lambda^2)x + (1 + \lambda)$. √
	- \circ We can straightforwardly compute that the roots of q are $r_1, r_2 = \frac{1 + \lambda \pm \lambda \sqrt{\lambda^2 2\lambda 3}}{2\lambda}$ $\frac{2\lambda}{2\lambda}$.
	- If $\lambda^2 2\lambda 3$ is negative (which on the given range occurs whenever $\lambda < 3$), there are no real-valued solutions and hence no real-valued 2-cycle.
	- o If $\lambda = 3$, then the fixed points are $x = 0$ and $x = \frac{2}{3}$ $\frac{2}{3}$, while the double root of the quadratic q is $r = \frac{2}{3}$ $\frac{1}{3}$ So in this case, we do not get a 2-cycle (instead, one of the fixed points shows up repeatedly).
	- If $3 < \lambda \leq 4$, then we get a 2-cycle: the polynomial p_{λ} interchanges the two real roots r_1 and r_2 given above. So, we get a 3-cycle precisely when $3 < \lambda \leq 4$.
- In addition to points whose orbits cycle immediately, we also saw examples of orbits that were not immediately periodic but eventually fell into a repeating cycle.
- Definition: A value x_0 is called a preperiodic point for f (or eventually periodic) if there exist positive integers m and n such that $f^m(x_0) = f^{m+n}(x_0)$. Equivalently, x_0 is preperiodic if there exists some m so that $f^m(x_0)$ is periodic. In the event that $n = 1$, we say x_0 is an eventually fixed point.
	- Example: The point $x_0 = 1$ is a preperiodic point for the function $f(x) = x^2 1$, since the orbit of 1 is $1, 0, -1, 0, -1, 0, -1, \ldots$
	- ∘ Example: The point $x_0 = -1$ is an eventually fixed point for the function $f(x) = x^2$, since the orbit of -1 is -1 , 1, 1, 1, 1, 1,
	- \circ Example: The point $x_0 = \frac{1}{2}$ $\frac{1}{3}$ is a preperiodic point for the function $f(x) = 1 - \frac{1}{2}$ $rac{1}{2}x - \frac{3}{2}$ $\frac{3}{2}x^2$, since the orbit of $\frac{1}{3}$ is $\frac{1}{3}$ $\frac{1}{3}, \frac{2}{3}$ $\frac{2}{3}$, 0, 1, -1, 0,
- A natural question at this point is: what kinds of orders of periodic points can occur for a given function? We will return to this question repeatedly in the future, but we will give a few examples illustrating different kinds of behaviors:
- \circ First, a function $f(x)$ need not have any fixed or periodic points at all: for example, $f(x) = x + 1$ has no fixed points nor any periodic points, since $f^{(n)}(x) = x + n$ is clearly never equal to x for any $n > 0$.
- \circ Also, a function can have infinitely many fixed points: an example is $f(x) = x + \sin(x)$. Its fixed points occur for $x = \pi k$ for integers k.
- Furthermore, a periodic point can have any given order: for example, one may verify that the polynomial $f_n(x) = (x+1) - \frac{n}{(n-2)!}x(x-1)(x-2)\cdots(x-n+2)$ maps 0 to 1, 1 to 2, 2 to 3, ... , n – 2 to n – 1, and $n-1$ to 0. Then the orbit of 0 is $0 \to 1 \to 2 \to \cdots \to n-2 \to n-1 \to 0$, which is a cycle of length \overline{n} .
- In fact, it can even be the case that every point in the domain of a function is a periodic point: an example is $f(x) = a - x$ for any constant a.
- With all of these various examples, it might seem as if there are no restrictions on what kinds of behaviors can occur, but as we will see, there are in fact many different kinds of restrictions. Here is one simple restriction:
- Proposition (Nonexistence of Periodic Points): If $f(x)$ is a continuous real-valued function that has no fixed points, then f has no periodic or preperiodic points at all.
	- \circ Proof: If $f(x) x$ is a continuous real-valued function that is never zero, then it must either be always positive or always negative.
	- Suppose it is always positive: then $f(x) > x$ for all x. But then $f^2(x) > f(x) > x$ for all x, and, iterating, we see that $f^{3}(x) > f^{2}(x) > x$, $f^{4}(x) > f^{3}(x) > x$, and in general, $f^{n}(x) > x$ for any positive *n*. Thus, f cannot have any periodic points, nor any preperiodic points.
	- \circ We get a similar contradiction if $f(x) x$ is always negative, by the same argument with all of the inequalities reversed.

1.1.4 The Doubling Function, the Logistic Maps, and Computational Difficulties

- It is tempting to believe that, although we cannot necessarily solve for fixed points and periodic points algebraically, if we simply use a computer with high enough numerical precision, we will be able to study orbit behaviors with no difficulty. Unfortunately (or fortunately, depending on one's perspective), this also turns out not to be the case, even for some fairly simple functions!
- Definition: The doubling function $D : [0,1) \to [0,1)$ is defined as $D(x) = \begin{cases} 2x & \text{if } 0 \leq x < 1/2 \\ 0 & \text{otherwise} \end{cases}$ $2x-1$ if $1/2 \leq x < 1$. Equivalently, $D(x)$ is the residue of $2x$ modulo 1 (i.e., the result obtained by removing the "integer part" of $2x$).

- It is simple to analyze orbits of rational numbers under the doubling function using exact arithmetic.
	- \circ Example: The orbit of 0 is 0, 0, 0, 0, ..., which is a fixed point. It is easy to see that 0 is the only fixed point for D.
	- \circ Example: The orbit of $\frac{1}{3}$ is $\frac{1}{3}$ $\frac{1}{3}, \frac{2}{3}$ $\frac{2}{3}, \frac{1}{3}$ $\frac{1}{3}, \frac{2}{3}$ $\frac{2}{3}$, ..., which is a 2-cycle.
	- \circ Example: The orbit of $\frac{3}{7}$ is $\frac{3}{7}$ $\frac{3}{7}, \frac{6}{7}$ $\frac{6}{7}, \frac{5}{7}$ $\frac{5}{7}, \frac{3}{7}$ $\frac{3}{7}, \frac{6}{7}$ $\frac{6}{7}, \frac{5}{7}$ $\frac{3}{7}$, ..., which is a 3-cycle.
	- \circ Example: The orbit of $\frac{1}{8}$ is $\frac{1}{8}$ $\frac{1}{8}, \frac{1}{4}$ $\frac{1}{4}, \frac{1}{2}$ $\frac{1}{2}$, 0, 0, 0, ..., so $\frac{1}{8}$ $\frac{1}{8}$ is an eventually fixed point.
- Here are a few simple observations about the doubling function.
- Proposition (Basic Properties of Doubling Function): Let $D:[0,1)\to[0,1)$ be the doubling function $D(x)$ $2x$ if $0 \le x < 1/2$ $2x - 1$ if $1/2 \le x < 1$.
	- 1. Every rational number is a preperiodic point for D , and conversely all preperiodic points for D are rational numbers.
- \circ Proof: If $\frac{p}{q}$ is rational and in [0, 1), then $D(\frac{p}{q})$ $\frac{p}{q}$) = $\frac{2p}{q}$ or $\frac{2p-q}{q}$ $\frac{q}{q}$ is also a rational number in $[0, 1)$ with the same denominator q. Since there are only q such rational numbers (namely, $\frac{0}{q}$, $\frac{1}{q}$) $\frac{1}{q}, \ldots, \frac{q-1}{q}$ $\frac{1}{q}$ eventually the iterates of D on $\frac{p}{q}$ $\frac{p}{q}$ must repeat some value, meaning that $\frac{p}{q}$ is a preperiodic point. • For the converse, suppose that x is a preperiodic point of D so that $D^{m+n}(x) = D^{m}(x)$. By an easy
- induction, since $D(x) = 2x$ modulo 1, we see $D^{n}(x) = 2^{n}x$ modulo 1. Hence $D^{m+n}(x) = D^{m}(x)$ implies that $2^{m+n}x - 2^mx$ is congruent to 0 modulo 1, meaning that $(2^{m+n} - 2^m)x$ is some integer k. But then $x = \frac{k}{2m+n}$ $\frac{n}{2^{m+n}-2^m}$, so x is rational.
- 2. More specifically, any rational number with odd denominator is a periodic point for D , while any rational number with an even denominator (in lowest terms) is a strictly preperiodic point.
	- \circ Proof: Note that if q is odd and $\frac{p}{q}$ is in lowest terms, then $D(\frac{p}{q})$ $\frac{p}{q}$) actually also has denominator q in lowest terms as well, since $D(a) = D(b)$ can happen only if a and b are equal or differ by $\frac{1}{2}$, and $\frac{1}{2}$ cannot be written as $\frac{p}{q}$ with q odd.
	- $\circ~$ This means the function D is a one-to-one function from the set $\{\frac{0}{2}\}$ $\frac{0}{q}, \frac{1}{q}$ $\frac{1}{q},\frac{2}{q}$ $\frac{2}{q}, \cdots, \frac{q-1}{q}$ $\frac{1}{q}$ to itself when q is odd, hence it is a bijection and thus has an inverse function. Therefore, if $D^{m+n}(\frac{p}{p})$ $\frac{p}{q}$) = $D^m(\frac{p}{q})$ $\frac{p}{q}),$ applying $(D^{-1})^m$ to both sides yields $D^n(\frac{p}{p})$ $\frac{p}{q}$) = $\frac{p}{q}$, meaning that $\frac{p}{q}$ is periodic.
	- \circ On the other hand, if q is even, then $D(\frac{p}{q})$ $\frac{q}{q}$) will have denominator $q/2$ in lowest terms, and all subsequent iterates will have denominator at most $q/2$. Hence $D^n(\frac{p}{q})$ $\frac{p}{q}$) cannot equal $\frac{p}{q}$, so $\frac{p}{q}$ $\frac{r}{q}$ is a strictly preperiodic point.
- 3. If q is odd and p/q has period n under D, then q divides $2ⁿ 1$. In fact, the period is the smallest positive integer *n* such that q divides $2^n - 1$.
	- \circ Proof: Suppose that q is odd and p/q has period n under D. Then by the same calculation as in (1), we see that $(2^n - 1)\frac{p}{q}$ is some integer k: then $\frac{p}{q} = \frac{k}{2^n - 1}$ $\frac{k}{2^n-1}$, but since $\frac{p}{q}$ is in lowest terms, this means q must divide $2^n - 1$.
	- Conversely, suppose that q divides $2^n 1$: then we can write $\frac{p}{q} = \frac{k}{2^{n-1}}$ $\frac{n}{2^n-1}$ for some integer k, which is to say, $2^n \frac{p}{q}$ $\frac{p}{q} = \frac{p}{q}$ $\frac{p}{q}$ modulo 1. But this means $D^n(\frac{p}{q})$ $\frac{p}{q}$) = $\frac{p}{q}$ modulo 1, but since $\frac{p}{q}$ is in [0, 1), it must equal $\frac{p}{q}$: hence $D^n(\frac{p}{q})$ $\frac{p}{q}$) = $\frac{p}{q}$, so the period of $\frac{p}{q}$ is at most n. Thus, if we take the smallest such n, it must equal the exact period of $\frac{p}{q}$.
	- \circ Remark: In number theory, the smallest positive integer n such that q divides $2^n 1$ (equivalently, the smallest n such that $2^n \equiv 1 \pmod{q}$ is called the order of 2 modulo q, and it represents the period of the repeating decimal for p/q when written in base 2.
- Interestingly, if we try to use a decimal approximation to analyze the orbits of D , we will get very erroneous results:
	- \circ Suppose we try to describe the orbit of $\frac{1}{3}$ by using different decimal approximations of $\frac{1}{3}$.

- \circ Notice that the first few elements of each approximate orbit are fairly close to the correct values. But after 10 iterations, the orbits of 0.33 and 0.333 have wandered quite far away from the orbit of 1/3, and from each other.
- \circ Increasing the accuracy of the decimal approximation will not help significantly, either: if ϵ is small and x and $x + \epsilon$ are both either in $(0, 1/2)$ or $(1/2, 1)$, then it is easy to check that $D(x + \epsilon) - D(x) = 2\epsilon$. Thus, each iteration of D will double the approximation error, at least until $D^{n}(x + \epsilon)$ and $D^{n}(x)$ are sufficiently far apart.
- Of course, for rational numbers, it is easy to use exact rational arithmetic, as we did above. But what can be done to study orbits of irrational points under the map D?
	- \circ For example, how would one compute $D^{20}(\sqrt{2})$ $(2-1)$ to three decimal places?
	- We would ultimately need to use a decimal approximation of $\sqrt{2}-1$ at some stage, but we would need to determine the proper number of decimal places to use in our computations, in order to ensure that we do not lose too much accuracy by iterating the map D.
	- Such calculations become increasingly computationally expensive as we travel further out in the orbit, since we will need to keep finding better decimal approximations as we continue.
	- We can see that there is something fundamental about the doubling function that resists numerical computation: precisely, the doubling function is sensitive to initial conditions. We will return in a later chapter to study this property, and other related ones, in much more detail, but for now, the main takeaway is that even this simple function causes great trouble when working with numerical approximations.
- Another class of examples that cause computational problems are the <u>logistic maps</u> $p_\lambda(x) = \lambda x(1-x)$, for a fixed parameter $0 < \lambda \leq 4$. (The bound on λ is so that p_{λ} is a map from $[0,1] \rightarrow [0,1]$.)
	- o Let us attempt to compute the orbit of $\frac{1}{3}$ under the map $p_4(x) = 4x(1-x)$: the first six terms are $\frac{1}{3}$, 8
		- $\frac{8}{9}, \frac{32}{81}$ $\frac{32}{81}, \frac{6272}{6561}$ $\frac{6272}{6561},\frac{7250432}{43056721}$ $\frac{7250432}{43056721}$, and $\frac{1038154236987392}{1853020188851841}$.
	- Clearly, using rational arithmetic is not going to be computationally ecient, because the number of digits in both the numerator and denominator will double at every stage. It is fairly easy to see that the denominator of $f^n(1/3)$ is 3^{2^n} , but there is not a nice formula for the numerators.
	- \circ Here is a table of a computation of the orbit of $\frac{1}{2}$ under this map, where each step's computation was 3 rounded to the stated number of decimal places. (The results are stated to 4 decimal places so as not to make the table too large, but the computations retained the stated amount of data.):

- \circ As should be clear, the first few terms are stable with only a few digits, but the computations diverge from each other quite rapidly after 30 or so iterations of f .
- We can see, then, that it is a nontrivial problem in numerical analysis to determine the needed accuracy to ensure that the orbit calculations are accurate, even for this simple quadratic polynomial. Our goal in the next few chapters is to show that this kind of bad behavior is, in fact, typical of many families of simple functions.

1.2 Qualitative and Quantitative Behavior of Orbits

• We would like to describe orbits in a more precise way than "plug in some values and hope it's possible to guess what happens". There are a number of different approaches, some geometric, some algebraic.

1.2.1 Orbit Analysis Using Graphs

- One graphical tool we can use to analyze orbits is the phase portrait: on a number line, we mark off the points in an orbit, and then draw arrows from one to the next.
	- \circ Example: Here is the phase portrait for the orbit of $x_0 = 0.95$ under $f(x) = x^2$, with the first 6 iterates marked:

○ Example: Here is the phase portrait for the orbit of $x_0 = -0.5$ under $f(x) = x^2 - 1$, with the first 9 iterates marked:

- By combining phase portraits for several orbits, we can see some of the behaviors of the system.
	- ∘ Example: Here is the phase portrait for the orbits of -0.95 and 0.95 under $f(x) = x^3$, with the first 4

- The portrait suggests that the other orbits lying in (−0.95, 0.95) are going to tend toward the xed point $x = 0.$
- Phase diagrams merely display the results of iterating a function repeatedly. But we can also use the graph of a function itself to calculate these iterations geometrically, in the following manner: first, we plot $y = f(x)$ and $y = x$ along with our initial point (x_0, x_0) . Then we alternate the following two steps:
	- 1. Draw a vertical line from the current point to meet the graph of $y = f(x)$.
	- 2. Draw a horizontal line from the current point to meet the graph of $y = x$.

This procedure will construct the sequence of points (x_0, x_0) , $(x_0, f(x_0))$, $(f(x_0), f(x_0))$, $(f(x_0), f^2(x_0))$, $(f^2(x_0), f^2(x_0)), (f^2(x_0), f^3(x_0)), \ldots,$ whose coordinates describe the orbit of x_0 under f. The resulting diagrams are known variously as staircase diagrams or cobweb diagrams.

- Example: Plot the orbit of $x_0 = 1$ for the function $f(x) = x + \sin(x) + 2$.
	- \circ Here are plots of the orbit after 4 and 16 iterations (respectively) of f, along with the graphs of $y = f(x)$ and $y = x$:

- \circ This function was intentionally chosen so that it would always lie above $y = x$ in order to emphasize the "staircase" behavior.
- \circ We can see that the orbit of $x_0 = 1$ will blow up to ∞ , since it will continue moving to the right as we continue iterating.
- Example: Plot the orbits of $x_0 = 0.01$ and $x_0 = 2$ for the function $f(x) = \sqrt{x}$.

- Note that the orbit of 0.01 travels to the right, while the orbit of 2 travels to the left: both are moving toward the fixed point $x_0 = 1$ of f.
- <u>Example</u>: Plot the orbit of $x_0 = \frac{1}{2}$ $\frac{1}{2}$ for the function $f(x) = x^2 - 1$.
	- Here are plots of the orbits after 5 iterations and 10 iterations respectively:

◦ From the picture, we can see that the orbit forms a sort of cobweb that spirals outward and approaches the 2-cycle $0 \to -1 \to 0 \to -1 \to \cdots$ of $f(x)$.

• Example: Plot the orbit of $x_0 = 0.4$ for the function $f(x) = 4x - 4x^2$.

- From the picture, we cannot really get any useful information about the orbit, except for the fact that it seems to meander unpredictably around the interval $[0, 1]$. (It certainly does not appear to be converging to anything obvious!)
- \circ In fact, this is an example of a chaotic orbit, the specifics of which we will analyze in a later chapter.
- Although they can be useful for getting intuition about long-term qualitative behavior of orbits, we cannot really use these pictures to prove very much about the behavior of the function in question. To do that requires some stronger tools.

1.2.2 Attracting and Repelling Fixed Points

- \bullet We will begin by analyzing fixed points. As we have seen in the examples, some systems have orbits which we will begin by analyzing fixed points. As we have seen in the examples, some systems have orbits which
tend closer and closer to a fixed point (such as the fixed point $x = 1$ of the map $f(x) = \sqrt{x}$), while other systems have orbits which move away from certain fixed points (such as the fixed point $x = 1$ of the map $f(x) = x^2$.
	- \circ We would like to explain why some fixed points "attract" nearby orbits while others "repel" them. So suppose x_0 is a fixed point of f, and x is a nearby point.
	- Then $f(x)$ will be closer to x_0 than x is when $|f(x) x_0| < |x x_0|$. Since $x_0 = f(x_0)$ and $x x_0$ is not zero, we can equivalently write this statement as $\Big|$ $f(x) - f(x_0)$ $x - x_0$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ < 1 .
	- As x approaches x_0 , notice that this quantity is the absolute value of the derivative $f'(x_0)$, assuming that f is differentiable. Indeed, by the mean value theorem², if f is continuously differentiable on the interval (x_0, x) , then $\frac{f(x) - f(x_0)}{x - x_0} = f'(c)$ for some c in (x_0, x) .

²Recall that the mean value theorem states that if f is continuous on the interval [a, b] and differentiable on (a, b) , then there exists a value $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- \circ As x approaches x_0 , this value $f'(c)$ will approach $f'(x_0)$ by the assumption that f' is continuous: thus in particular if $|f'(x_0)| < 1$, then $|f'(c)| < 1$ as well, which translates back to saying that $|f(x) - x_0| <$ $|x - x_0|$. In other words, $f(x)$ will end up closer to x_0 than x is.
- \circ Likewise, if $|f'(x_0)| > 1$, then $|f'(c)| > 1$ as well, and so $|f(x) x_0| > |x x_0|$. In other words, $f(x)$ will end up farther away from x_0 than x is.
- We can see that the value of the derivative $f'(x_0)$ characterizes the behavior of f near a fixed point x_0 , which we make precise as follows.
- Theorem (Local Attracting and Repelling Behavior): Suppose f is a continuously differentiable function on an open interval around a fixed point x_0 .
	- 1. If $|f'(x_0)| < 1$, then there exists an open interval I containing x_0 such that, for any $x \in I$, $f''(x) \in I$ for all $n \geq 1$. Furthermore, for any $x \in I$, it is true that $f^{n}(x) \to x_0$ as $n \to \infty$, and the convergence is exponentially fast. In fact, we can take I to be any interval containing x_0 with the property that there exists a constant $\lambda < 1$ such that $|f'(x)| < \lambda$ for all $x \in I$.
		- \circ Remark: The speed of the convergence will depend on the value of $|f'(x_0)|$. From the argument at the end of the proof below, we see that the smaller this value is, the faster the orbits will converge to x_0 . If $f'(x_0)$ happens to be equal to zero, then the convergence can be faster than exponential.
		- \circ Proof: By hypothesis, $|f'(x)|$ is continuous and $|f'(x_0)| < 1$. Thus, by standard properties of continuous functions³, there exists a constant $\lambda < 1$ and an open interval I centered at x_0 such that $|f'(x)| < \lambda$ for all $x \in I$.
		- \circ Now for any $x \in I$, apply the mean value theorem to f on the interval whose endpoints are x_0 and x: then there exists a value c between x_0 and x for which $\frac{f(x) - f(x_0)}{x - x_0} = f'(c)$.
		- \circ Taking the absolute value gives $\Big|$ $f(x) - x_0$ $x - x_0$ $= |f'(c)| < \lambda$, so that $|f(x) - x_0| < \lambda |x - x_0|$.
		- \circ Since $\lambda < 1$ this implies $f(x) \in I$. Now applying the result for $f(x) \in I$ gives $f^2(x) \in I$, and repeating (by a trivial induction) we see that $f^{n}(x) \in I$ for all $n \geq 1$.
		- ∞ Furthermore, we also have $|f^2(x) x_0| < \lambda |f(x) x_0| < \lambda^2 |x x_0|$, and repeating (by a trivial induction) we see that $|f^n(x) - x_0| < \lambda^n |x - x_0|$ for all $n \ge 1$. Since $\lambda < 1$, as $n \to \infty$ the right-hand term goes to zero, so $f^{(n)}(x) \to x_0$, and the convergence is exponentially fast.
	- 2. If $|f'(x_0)| > 1$, then there exists an open interval I containing x_0 such that, for any $x \in I$ with $x \neq x_0$, there exists a positive integer n such that $f^n(x) \notin I$. In fact, we can take I to be any finite interval such that there exists a constant $\lambda > 1$ with $|f'(x)| > \lambda$ for all $x \in I$.
		- \circ Note that unlike in the case above, we cannot expect to say anything about the limit of $f^{n}(x)$ as $n \to \infty$, because there is nothing to prevent the value of the function from being sent back into the interval I once it escapes.
		- \circ Proof: By the same argument as in (1), there exists a constant $\lambda > 1$ and a finite open interval I centered at x_0 such that $|f'(x)| > \lambda$ for all $x \in I$.
		- o By the mean value theorem, we can again conclude that $|f(x) x_0| > \lambda |x x_0|$, and then by a trivial induction we see that $|f^n(x) - x_0| > \lambda^n |x - x_0|$, assuming that $f^{n-1}(x)$ lies in I.
		- If the orbit of x never left I, then we would have $|f^{n}(x) x_0| > \lambda^{n} |x x_0|$, but since $\lambda > 1$, as $n \to \infty$ the right-hand side tends to infinity. But $f^{n}(x)$ is assumed to lie in I for all n, meaning that I is an infinite interval, which is a contradiction. Therefore, the orbit of x must eventually leave I , as claimed.
- \bullet Per the theorem above, we can label fixed points based on their local behavior:
- Definition: If x_0 is a fixed point of the differentiable function f, we say x_0 is an attracting fixed point if $|f'(x_0)| < 1$, we say x_0 is a <u>repelling fixed point</u> if $|f'(x_0)| > 1$, and we say x_0 is a <u>neutral fixed point</u> if $|f'(x_0)| = 1.$

³Explicitly, let $g(x) = |f'(x)|$ and suppose that $g(x_0) = 1 - \epsilon$ for some $\epsilon > 0$. Since $g(x)$ is continuous at x_0 , there exists some $\delta > 0$ such that $|g(x) - g(x_0)| < \epsilon/2$ for $|x - x_0| < \delta$. Then by the triangle inequality, for $x \in (x_0 - \delta, x_0 + \delta)$ we have $g(x) < g(x_0) + \epsilon/2 < 1 - \epsilon/2$, so we may take $I = (x_0 - \delta, x_0 + \delta)$ and $\lambda = 1 - \epsilon/2$.

- \circ The idea is that an attracting fixed point will attract nearby orbits, and a repelling fixed point will repel nearby orbits. Neutral fixed points can have more subtle behavior, as we will see shortly.
- If a fixed point x_0 has $f'(x_0) = 0$, we sometimes call it a superattracting fixed point, because orbits will approach it more quickly than a mere attracting fixed point.
- Example: Find and classify the fixed points of $f(x) = x^3$ as attracting, repelling, or neutral.
	- It is easy to solve $x^3 = x$ to see that the fixed points are $x = 0, x = 1$, and $x = -1$.
	- \circ Since $f'(x) = 3x^2$, we see that $x = 0$ is attracting and $x = \pm 1$ are repelling.
	- We can see the attracting and repelling nature of the fixed points by computing a few orbits.
	- For example, the orbit of 0.9 is 0.9, 0.729, 0.387, 0.058, 0.0002, ..., while the orbit of 1.1 is 1.1, 1.331, 2.358, 13.110, 2253,
	- Similarly, the orbit of −0.9 is −0.9, −0.729, −0.387, −0.058, ... and the orbit of −1.1 is −1.1, −1.331, $-2.358, -13.110, -2253, \ldots$
- Example: For each positive value of λ , find and classify the fixed points of the logistic map $p_{\lambda}(x) = \lambda x(1-x)$ as attracting, repelling, or neutral.
	- ο Setting $\lambda x(1-x) = x$ and solving yields $x = 0$ and $x = 1 \frac{1}{\lambda}$ $\frac{1}{\lambda}$.
	- \circ We also have $p'_{\lambda}(x) = \lambda 2\lambda x$, so $p'_{\lambda}(0) = \lambda$ and p'_{λ} $\left(1-\frac{1}{2}\right)$ λ $= 2 - \lambda$.
	- \circ So, the point $x = 0$ is attracting for $0 < \lambda < 1$, becomes neutral (and coincides with the other fixed point) for $\lambda = 1$, and is repelling for $\lambda > 1$.
	- Similarly, we see that $x = 1 \frac{1}{x}$ $\frac{1}{\lambda}$ is repelling for $0 < \lambda = 1$, becomes neutral (and coincides with $x = 0$) for $\lambda = 1$, is attracting for $1 < \lambda < 3$, is neutral for $\lambda = 3$, and is repelling for $\lambda > 3$.

1.2.3 Attracting and Repelling Cycles

- Since a periodic point of period n for f is the same as a fixed point of f^n , we can naturally extend our definitions of attracting and repelling behavior to periodic cycles:
- Definition: We say that a periodic point x_0 for f is attracting (respectively, repelling or neutral) if x_0 is an attracting (respectively, repelling or neutral) fixed point for f^n .
	- A natural and immediate question is: can it happen that some points on a cycle are attracting and others are repelling?
	- \circ In fact, this cannot occur for attracting points: if x_0 is an attracting fixed point for f^n , then the sequence $f^{kn}(x_0)$ will have limit x_0 as $k \to \infty$. Since a continuous function has the property that $\lim_{i\to\infty} a_i = L$ implies $\lim_{i\to\infty} f(a_i) = f(L)$, applying this fact to f and the sequence with $a_i = f^{ni}(x_0)$ shows that $f^{kn+1}(x_0)$ will have limit x_1 . Repeating this argument shows that all of the other points in the cycle will attract nearby orbits.
	- However, the above argument cannot be easily adapted for repelling points.
- Using the chain rule, we can easily compute whether a periodic point is attracting, repelling, or neutral:
- Proposition (Attracting and Repelling Cycles): Suppose f is a differentiable function and $x_1 \to x_2 \to \cdots \to$ $x_n \to x_1 \to \cdots$ is a periodic cycle of length n for f. Then $(f^n)'(x_i) = f'(x_n) \cdot f'(x_{n-1}) \cdots f'(x_2) \cdot f'(x_1)$ for each $1 \leq i \leq n$. In other words, the derivative $(f^n)'(x_i)$ is equal to the product of the values of f' at each of the points in the cycle. In particular, the points in the *n*-cycle are either all attracting, all repelling, or all neutral.
	- \circ Proof: Let $g(x) = f^{n}(x)$. By a straightforward chain rule computation, we have $g'(x) = f'(f^{n-1}(x))$. $f'(f^{n-2}(x)) \cdot \cdots \cdot f'(f(x)) \cdot f'(x).$
- o Setting $x = x_1$ and noting that $f^k(x_1) = x_{k+1}$ in the chain rule formula yields $g'(x_0) = f'(x_n)$. $f'(x_{n-1})\cdots f'(x_2) \cdot f'(x_1)$, as claimed.
- Applying this result for each point in the *n*-cycle shows that $g'(x_0) = g'(x_1) = \cdots = g'(x_{n-1})$, so, by our criteria for attracting, repelling, and neutral points, this means all the points on the cycle are either all attracting, all repelling, or all neutral.
- Example: Show that the 2-cycle $0 \to -1 \to 0 \to \cdots$ for the function $f(x) = x^2 1$ is attracting.
	- \circ We have $f'(x) = 2x$, so we need to compute $f'(0)f'(-1) = 0$.
	- \circ This has absolute value less than 1, so the 2-cycle is attracting
- Example: Show that every periodic cycle lying in $(0,1)$ for the doubling function $D(x) = \begin{cases} 2x & \text{if } 0 \leq x < 1/2 \\ 0 & \text{if } 1/2 \leq x \end{cases}$ $2x - 1$ if $1/2 \leq x < 1$

is repelling.

- Observe that $D'(x) = 2$ for every $x \in (0,1)$ except for $x = 1/2$ (where the derivative is undefined, due to the discontinuity). Notice also that 1/2 does not lie in a periodic cycle, so we can safely ignore it.
- \circ Thus, on any *n*-cycle, the value of the derivative of D^n will be 2^n . Since this has absolute value larger than 1, every *n*-cycle is repelling
- From this calculation we can see another way to understand the unpredictable behavior of the function: every rational number with odd denominator lies on a repelling n-cycle, so as we iterate the function, any two nearby points will be pushed away from one another.
- Example: Classify the periodic cycle containing $-\frac{1}{2}$ $\frac{1}{3}$ for the function $f(x) = x^2 - \frac{7}{9}$ $\frac{1}{9}$ as attracting, repelling, or neutral.
	- ∘ The orbit of $-\frac{1}{2}$ $\frac{1}{3}$ is $-\frac{1}{3}$ $\frac{1}{3} \rightarrow \frac{2}{3}$ $\frac{2}{3} \rightarrow -\frac{1}{3}$ $\frac{1}{3} \rightarrow \cdots$, which is a 2-cycle. \circ We have $f'(x) = 2x$, so $f'(-\frac{1}{2})$ $\frac{1}{3}$) = $-\frac{2}{3}$ $rac{2}{3}$ and $f'(\frac{2}{3})$ $\frac{2}{3}$) = $\frac{4}{3}$. \circ Thus, if $g = f^2$, we have $g' = -\frac{8}{9}$ $\frac{6}{9}$ at both points on the 2-cycle, so the cycle is $\boxed{\text{attracting}}$.
- Example: Classify the periodic cycle containing 0 for the function $f(x) = 1 \frac{x}{2}$ $\frac{x}{3} + 2x^2 - \frac{2x^3}{3}$ $\frac{x}{3}$ as attracting, repelling, or neutral.
	- \circ The orbit of 0 is $0 \to 1 \to 2 \to 3 \to 0 \to \cdots$, so it is a 4-cycle.
	- We have $f'(x) = -\frac{1}{2}$ $\frac{1}{3} + 4x - \frac{4}{3}$ $\frac{4}{3}x^2$, so $f'(0) = -\frac{1}{3}$ $\frac{1}{3}$, $f'(1) = \frac{5}{3}$, $f'(2) = -\frac{1}{3}$ $\frac{1}{3}$, and $f'(3) = -\frac{19}{3}$ $\frac{1}{3}$ \circ Thus, if $g = f^4$, we have $g' = \left(-\frac{1}{2}\right)$ 3 $\frac{5}{5}$ $\left(\frac{5}{3}\right)\left(-\frac{1}{3}\right)$ $\left(\frac{1}{3}\right)\left(-\frac{19}{3}\right)$ 3 $= -\frac{85}{01}$ $\frac{65}{81}$ at each point on the 4-cycle, so the cycle is $[regular]$
- Example: Classify the periodic cycle containing 1 for the function $f(x) = \sqrt{3} \frac{1}{x}$ $\frac{1}{x}$ as attracting, repelling, or neutral.
	- \circ The orbit of 1 is 1 \rightarrow √ $\overline{3} - 1 \rightarrow \frac{1}{\sqrt{2}}$ $\frac{1}{3+1} \rightarrow -1 \rightarrow$ √ $\overline{3} + 1 \rightarrow \frac{1}{\sqrt{2}}$ $\frac{1}{3-1} \rightarrow 1 \rightarrow \cdots$, which is a 6-cycle.
	- We have $f'(x) = \frac{1}{x^2}$, so $f'(\pm 1) = 1$, $f'(x) = 1$ $\sqrt{3} \pm 1$) = $\frac{1}{\sqrt{2}}$ $\frac{1}{(\sqrt{3} \pm 1)^2}$, and $f'(\frac{1}{\sqrt{3}})$ 3 ± 1 $= (\sqrt{3} \pm 1)^2$, where the choices of \pm correspond in each case.
	- \circ Thus, if $g = f^6$, we have $g' = 1$ at each point on the 6-cycle, so the cycle is neutral.
- Example: For $3 < \lambda \leq 4$, determine (in terms of λ) when the 2-cycle of the the logistic map $p_{\lambda}(x) = \lambda x(1-x)$ is attracting, neutral, or repelling.
	- \circ We computed earlier that the points on the 2-cycle are the two roots of the quadratic $q(x) = \lambda^2 x^2 (\lambda +$ $\lambda^2 x + (1 + \lambda)$, which (explicitly) are $r_1, r_2 = \frac{1 + \lambda \pm \lambda}{\lambda}$ $\sqrt{\lambda^2 - 2\lambda - 3}$ $\frac{2\lambda}{2\lambda}$, and that they are real-valued on the given range for λ .
	- \circ To determine the behavior of the 2-cycle, we need to compute $p'_{\lambda}(r_1) \cdot p'_{\lambda}(r_2) = 4\lambda^2(\frac{1}{2})$ $\frac{1}{2} - r_1$ $(\frac{1}{2} - r_2)$.
	- One can compute this by slogging it out, but a slicker way is to observe that $\lambda^2(x r_1)(x r_2) = q(x)$, so, upon setting $x = \frac{1}{2}$ $\frac{1}{2}$, we obtain $\frac{\lambda^2}{4}$ $\frac{\lambda^2}{4} - \frac{1}{2}$ $\frac{1}{2}(\lambda + \lambda^2) + (1 + \lambda) = \lambda^2(\frac{1}{2})$ $\frac{1}{2} - r_1$)($\frac{1}{2} - r_2$). Multiplying through by 4 gives $p'_{\lambda}(r_1) \cdot p'_{\lambda}(r_2) = -\lambda^2 + 2\overline{\lambda} + 4$.
	- o On the interval $(3, 4]$, this quadratic takes values in $(-1, 1)$ for $3 < \lambda < 1 + \sqrt{6}$, is equal to −1 at $1 + \sqrt{6}$, On the interval (3, 4], this quadratic take and is less than -1 for $1 + \sqrt{6} < \lambda \le 4$.
	- \circ Thus, we conclude that the 2-cycle is $\boxed{\text{attracting for } 3 < \lambda < 1 + \sqrt{6}}$, is $\boxed{\text{neutral when } \lambda = 1 + \sqrt{6}}$, and is repelling when $1 + \sqrt{6} < \lambda \le 4$.

1.2.4 Weakly Attracting and Weakly Repelling Points (and Cycles)

- We have determined the behaviors of attracting and repelling points and cycles. Let us now turn our attention to studying orbits near neutral fixed points and cycles, after examining a few examples.
- Example: Examine the orbits near the neutral fixed point $x_0 = 0$ of $f(x) = x + x^2$.
	- \circ To four decimal places, the first ten terms in the orbit of 0.1 are 0.1 \rightarrow 0.11 \rightarrow 0.1221 \rightarrow 0.1370 \rightarrow $0.1558 \rightarrow 0.1800 \rightarrow 0.2125 \rightarrow 0.3240 \rightarrow 0.4289 \rightarrow 0.6129 \rightarrow \cdots$
	- \circ Similarly, the first ten terms in the orbit of -0.1 are $-0.1 \rightarrow -0.09 \rightarrow -0.0819 \rightarrow -0.0750 \rightarrow -0.0700 \rightarrow$ $-0.0605 \rightarrow -0.0569 \rightarrow -0.0536 \rightarrow -0.0507 \rightarrow -0.0482 \rightarrow \cdots$
	- \circ It seems that the orbits with small positive x are repelled (slowly) from 0, while the orbits with small negative x are attracted (slowly) towards 0.
- Example: Examine the orbits near the neutral fixed point $x_0 = 0$ of $g(x) = x + x^3$.
	- \circ To four decimal places, the first ten terms in the orbit of 0.1 are $0.1 \rightarrow 0.101 \rightarrow 0.1020 \rightarrow 0.1031 \rightarrow$ $0.1042 \rightarrow 0.1053 \rightarrow 0.1065 \rightarrow 0.1077 \rightarrow 0.1089 \rightarrow 0.1102 \rightarrow \cdots$
	- \circ Similarly, the first ten terms in the orbit of -0.1 are -0.1 $\to -0.101$ $\to -0.1020$ $\to -0.1031$ $\to -0.1042$ \to $-0.1053 \rightarrow -0.1065 \rightarrow -0.1077 \rightarrow -0.1089 \rightarrow -0.1102 \rightarrow \cdots$
	- It seems that the orbits with near 0 seem to be repelled (quite slowly) from 0.
- Example: Examine the orbits near the neutral fixed point $x_0 = 0$ of $h(x) = x x^3$.
	- \circ To four decimal places, the first ten terms in the orbit of 0.1 are 0.1 \rightarrow 0.099 \rightarrow 0.0980 \rightarrow 0.0971 \rightarrow $0.0962 \rightarrow 0.0953 \rightarrow 0.0944 \rightarrow 0.0936 \rightarrow 0.0928 \rightarrow 0.0920 \rightarrow \cdots$
	- \circ Similarly, the first ten terms in the orbit of -0.1 are $-0.1 \rightarrow -0.099 \rightarrow -0.0980 \rightarrow -0.0971 \rightarrow -0.0962 \rightarrow$ $-0.0953 \rightarrow -0.0944 \rightarrow -0.0936 \rightarrow -0.0928 \rightarrow -0.0920 \rightarrow \cdots$
	- It seems that the orbits with near 0 seem to be attracted (quite slowly) to 0.
- In each case we see that points near a neutral fixed point are either attracted or repelled from the fixed point, although the attracting behavior seems to be slower than the exponential attraction towards attracting points, and the repelling behavior seems to be slower than the exponential repulsion away from repelling points. We can use these notions to define weak notions of attraction and repulsion from neutral fixed points:
- Definition: If x_0 is a neutral fixed point of the differentiable function f, we say x_0 is weakly attracting if there exists an open interval I containing x_0 such that for any $x \in I$, $f^{n}(x) \to x_0$ as $n \to \infty$. We also say a neutral periodic point for f of period n is weakly attracting if it is a weakly attracting fixed point for f^n .
- \circ In other words, a weakly attracting fixed point (or cycle) is one that attracts nearby orbits. All of our results for attracting fixed points (and cycles) that only invoke the "attracting orbit" property will also hold for weakly attracting fixed points (and cycles).
- There is also a one-sided version of weak attraction that can occur when $f'(x_0) = 1$: a fixed point is weakly attracting on the left if there is an $\epsilon > 0$ such that every point $x \in (x_0 - \epsilon, x_0)$ has $f^{(n)}(x) \to x_0$. (In other words, if it attracts orbits on its left.)
- \circ Similarly, we say a point is weakly attracting on the right if there is an $\epsilon > 0$ such that every point $x \in (x_0, x_0 + \epsilon)$ has $f^{(n)}(x) \to x_0$. (In other words, if it attracts orbits on its right.)
- Definition: If x_0 is a neutral fixed point of the differentiable function f, we say x_0 is weakly repelling if there exists an open interval I containing x_0 such that for any $x \in I$ (except $x = x_0$), there exists an n such that $f^{n}(x) \notin I$. We say a neutral periodic point for f of period n is weakly repelling if it is a weakly repelling fixed point for f^n .
	- \circ In other words, a weakly repelling fixed point is one that repels nearby orbits.
	- Like with weakly attracting points, there are also "one-sided" versions of weak repulsion (which, likewise, only occurs when $f'(x_0) = 1$: we say x_0 is <u>weakly repelling on the left</u> if there exists an $\epsilon > 0$ such that for every $x \in (x_0 - \epsilon, x_0)$, there exists an n such that $f^{(n)}(x) \notin (x_0 - \epsilon, x_0]$, and similarly we say x_0 is weakly repelling on the right if there exists an $\epsilon > 0$ such that for every $x \in (x_0, x_0 + \epsilon)$, there exists an *n* such that $f^{n}(x) \notin [x_0, x_0 + \epsilon)$.
- We would like to determine when a neutral fixed point is weakly attracting or repelling on each side. The main idea is that we can use the values of the higher derivatives of the function at the neutral fixed point to classify weak attraction and weak repulsion.
- Theorem (Neutral Points): Suppose x_0 is a neutral fixed point for a function f with $f'(x_0) = 1$. Furthermore, assume that there is an integer $k \geq 2$ such that (i) the $(k + 1)$ st derivative of f is continuous at x_0 , (ii) the value $f^{(k)}(x_0) \neq 0$, and (iii) that $f^{(d)}(x_0) = 0$ for all $1 < d < k$. If k is odd, the point x_0 is weakly attracting if $f^{(k)}(x_0) < 0$ and it is weakly repelling if $f^{(k)}(x_0) > 0$. If k is even, the point x_0 is weakly repelling on the left and weakly attracting on the right if $f^{(k)}(x_0) < 0$, and it is weakly attracting on the left and weakly repelling on the right if $f^{(k)}(x_0) > 0$.
	- The statement requires some unpacking. Ultimately, it says that the behavior of a neutral fixed point is controlled by the order and the sign of the first nonzero derivative of f (beyond f') at that point.
	- \circ The key ingredient in the proof is Taylor's remainder theorem⁴: we will find a polynomial approximation to $f(x)$ that is simple enough (but also accurate enough) for us to characterize the behavior of the orbits near x_0 .
	- \circ Proof: For clarity, make the change of variables $y = x x_0$ and replace f with $f x_0$, so that the fixed point of f is now at $y = 0$. Then by hypothesis, all terms except the 0th, 1st, and kth terms of the degree- k Taylor polynomial are zero, so $T_k(y) = y + \frac{f^{(k)}(0)}{k!}$ $\frac{1}{k!}y^k$.
	- ∞ Now, since $f^{(k+1)}$ is continuous, there is an open interval I around 0 and some M such that $|f^{(k+1)}(y)| \leq$ M for y in I. If we let J be the subinterval of I where $|y| < \frac{k+1}{2M}$ 2M $|f^{(k)}(0)|$, then by Taylor's remainder theorem we have $|f(y) - T_k(y)| \leq M \cdot \frac{|y|^{k+1}}{(k+1)!}$ $\frac{|y|^{k+1}}{(k+1)!} \leq \frac{1}{2}$ 2 $f^{(k)}(0)$ $\frac{k(x)}{k!}y^k\bigg|$.
	- So, for all y in this interval, we can conclude that $f(y)$ always lies between $y + \frac{1}{2}$ $\frac{1}{2} \cdot \frac{f^{(k)}(0)}{k!}$ $\frac{f(0)}{k!}y^k$ and $y+\frac{3}{5}$ $rac{3}{2} \cdot \frac{f^{(k)}(y)}{k!}$ $\frac{(y)}{k!}y^k$.

⁴Taylor's remainder theorem says that if $f(y)$ is a function whose $(k + 1)$ st derivative is continuous, and $T_k(x)$ is the kth Taylor polynomial $T_k(y) = \sum\limits_{k=1}^{k}$ $d=0$ $f^{(d)}(0)$ $\frac{d}{d!} \frac{d!}{d!} y^d$ for $f(y)$ at $y=0,$ then $|f(y)-T_k(y)| \leq M \cdot \frac{|y|^{k+1}}{(k+1)!},$ where M is any constant such that $\left|f^{(k+1)}(t)\right| \leq M$ M for all t in the interval $[-|y|, |y|]$

- \circ In particular, for small enough |y|, $f(y)$ lies on the same side of 0 as y does, and $f(y) y$ has the same sign as $f^{(k)}(0) \cdot y^k$. Thus, we just need to determine whether $f(y)$ is closer or farther from 0 than y is, which is to say, whether $f(y) - y$ has the same or opposite sign as y, respectively.
- \circ If k is even, then $f^{(k)}(0)\cdot y^k$ has the same sign as $f^{(k)}(0)$, so 0 is weakly repelling on the left and weakly attracting on the right if $f^{(k)}(0) < 0$, and weakly attracting on the left and weakly repelling on the right if $f^{(k)}(0) > 0$.
- \circ If k is odd and $f^{(k)}(0) > 0$, then $f(y) y$ has the same sign as y so 0 is weakly repelling. If $f^{(k)}(0) < 0$, then $f(y) - y$ has the opposite sign as y, meaning that 0 is weakly attracting.
- These are all the possible cases, so we are done.
- We can use the neutral fixed point theorem to classify the behavior near neutral fixed points of most functions.
- Example: Classify the neutral fixed point $x_0 = 0$ for $a(x) = x + x^2$, $b(x) = x x^2$, $c(x) = x + x^3$, and $d(x) = x - x^3$ as weakly attracting or weakly repelling for orbits on each side.
	- \circ For a, we have $a'(0) = 1$ and $a''(0) = 2$, so $k = 2$ and then x_0 is weakly attracting on the left and weakly repelling on the right \vert
	- \circ For b, we have $b'(0) = 1$ and $b''(0) = -2$, so $k = 2$ and then x_0 is weakly repelling on the left and weakly attracting on the right
	- \circ For c, we have $c'(0) = 1$, $c''(0) = 0$, and $c'''(0) = 6$, so $k = 3$ and then x_0 is weakly repelling on both sides.
	- \circ For d, we have $d'(0) = 1$, $d''(0) = 0$, and $d'''(0) = -6$, so $k = 3$ and then x_0 is weakly attracting on both sides.
- Example: Classify the neutral fixed point of $f(x) = \tan^{-1}(x)$ as weakly attracting or weakly repelling for orbits on each side.
	- \circ Notice that $f(0) = 0$ and $f'(x) = \frac{1}{1+x^2}$, so the only neutral fixed point is $x = 0$. (In fact it is the only fixed point.)
	- Since $f''(0) = 0$ and $f'''(0) = -2$, we see that $k = 3$.
	- \circ By the classification, we see that $\boxed{0}$ is weakly attracting
- Notice that the theorem above does not treat all possible neutral fixed points: we did not treat the case where $f'(x_0) = 1$ but $f^{(k)}(x_0) = 0$ for all $k \geq 2$, nor did we treat the case where x_0 is a neutral fixed point with $f'(x_0) = -1.$
	- \circ If we have a neutral fixed point with $f'(x_0) = 1$ but $f^{(k)}(x_0) = 0$ for all $k \geq 2$, then the Taylor series of f will just be $T(x) = x$, and so it will provide no useful information: some other kind of estimate on the values of f near the fixed point are required to study the behavior of the orbits.
	- \circ Fortunately, aside from $f(x) = x$, whose orbits are obvious, it is rare to encounter such functions.
	- ↑ For completeness, a standard example is $f(x) = \begin{cases} x + e^{-1/x^2} & \text{for } x \neq 0, \\ 0 & \text{otherwise} \end{cases}$ $x + e^{-x}$ for $x = 0$, which has $f(0) = 0$, $f'(0) = 1$, for $x = 0$

and $f^{(n)}(0) = 0$ for all $n \geq 2$. (It is not completely obvious that the higher derivatives of f even exist, but they can be computed using some careful limit computations.)

- If we are given a neutral fixed point with $f'(x_0) = -1$, we can instead apply the theorem to analyze the behavior of x_0 as a fixed point of $g = f^2$, because we have $g'(x_0) = f'(x_0)f'(x_0) = 1$ by the chain rule.
	- \circ Ultimately, these neutral fixed points carry the additional complication that a point on one side of x_0 will flip to the other side after applying f . In some cases it is easy to see that both sides are attracting or repelling, so the "flipping" does not make a difference.
- ⊙ However, it can happen (e.g., with the function $f(x) = -x + x^2$ below) that one side will move points closer to x_0 , and the other side will move points farther away from x_0 . To decide which behavior wins out, it is necessary to study x_0 as a fixed point of f^2 .
- \circ Explicitly: if x_0 is weakly attracting as a fixed point of f^2 then it is weakly attracting as a fixed point of f, and similarly, if x_0 is weakly repelling as a fixed point of f^2 then it is weakly repelling as a fixed point of f .
- Example: Classify the neutral fixed point $x_0 = 0$ of $f(x) = -x + x^2$ as weakly attracting or weakly repelling for orbits on each side.
	- \circ Observe first that that if x is small and positive, then $|f(x)| = x x^2$, so f moves positive points closer to zero. However, if x is small and negative, then $|f(x)| = |x| + x^2$, so f moves negative points farther away from zero. Since f maps small positive numbers to small negative numbers (and vice versa), it is not clear whether the "attracting" behavior or the "repelling" behavior will win the race (so to speak) as we continue iterating f .
	- \circ Notice that $f(0) = 0$ and $f'(0) = -1$, so to classify the orbit behavior we should look at 0 as a fixed point of $g(x) = f^2(x) = x - 2x^3 + x^4$.
	- We have $g(0) = 0$, $g'(0) = 1$, $g''(0) = 0$, and $g'''(0) = -2$, so $k = 3$ and thus 0 is weakly attracting as a fixed point of q .
	- \circ Thus, 0 is weakly attracting for f as well.
- Example: Classify the neutral fixed point $x_0 = 0$ of $f(x) = -x + x^2 x^3$ as weakly attracting or weakly repelling for orbits on each side.
	- \circ Notice that $f(0) = 0$ and $f'(0) = -1$, so to classify the orbit behavior we need to look at 0 as a fixed point of $g(x) = f^2(x) = x + 4x^5 - 6x^6 + 6x^7 - 3x^8 + x^9$.
	- \circ We have $g(0) = 0$, $g'(0) = 1$, $g^{(2)}(0) = g^{(3)}(0) = g^{(4)}(0) = 0$, and $g^{(5)}(0) = 480$, so $k = 5$ and thus 0 is weakly repelling as a fixed point of q .
	- \circ Thus, 0 is weakly repelling for f as well.
	- \circ Notice that this example only differs from the previous one in the degree-3 term of f. In particular, we can see that knowing the first two nonzero terms of the Taylor series for f is not enough to determine the orbit behavior of x_0 as attracting or repelling: later terms can also affect the result.
- We can also use the theorem to classify the behavior of orbits near a neutral periodic point x_0 : we simply analyze the orbit behavior for x_0 as a neutral fixed point of f^n .
	- \circ In the event that x_0 is weakly attracting (or weakly repelling) for f^n , essentially by definition we can conclude that x_0 is a weakly attracting (or weakly repelling) periodic point for f.
	- \circ However, if x_0 is weakly attracting in one direction and weakly repelling in the other direction as a fixed point of f^n , the behavior of the periodic cycle of f containing x_0 is trickier.
	- \circ If the derivative of f^n at x_0 is $+1$, then cycles starting on one side of x_0 will be attracting and cycles on the other side will be repelling.
	- If the derivative of f^n at x_0 is -1, then a point on the "attracting" side of x_0 will flip to the "repelling" side after applying f^n (and vice versa), so to decide which behavior wins out, it is necessary to study x_0 as a fixed point of f^{2n} .
- Example: Show that 0 lies on a neutral 2-cycle for $p(x) = 1 + x 6x^2 + 4x^3$, and classify the behavior near 0 as weakly attracting or repelling on each side.
	- We have $p(0) = 1$, $p(1) = 0$, and also $p'(x) = 1 12x + 12x^2$ so $p'(0) = p'(1) = 1$. Thus, the 2-cycle $\{0,1\}$ is neutral.
	- ∘ We can expand (ideally with a computer) to find $p(p(x)) = x 64x^3 + 192x^4 + 192x^5 1344x^6 + 1920x^7 1152x^8 + 256x^9$.
- \circ Thus, by the neutral point classification (here, $k = 3$, the first derivative is 1, and the third derivative is negative) we see that the cycle is weakly attracting
- Example: Show that $q(x) = x^2 \frac{5}{4}$ $\frac{3}{4}$ has a neutral 2-cycle, and classify the behavior near it as weakly attracting or repelling on each side.
	- ∘ We have $\frac{q(q(x)) x}{q(x) x} = x^2 + x \frac{1}{4}$ $\frac{1}{4}$, whose roots are $r_1, r_2 = \frac{-1 \pm \sqrt{3}}{2}$ √ 2 $\frac{2}{2}$.
	- Note that $q'(x) = 2x$, so $q'(r_1) = -1 + \sqrt{2}$ and $q'(r_2) = -1 \sqrt{2}$, so since $(-1 + \sqrt{2})(-1 -$ √ $(2) = -1,$ the cycle is indeed neutral.
	- To analyze the attracting behavior, we look at the behavior of r_1 as a fixed point of $g(x) = q^2(x) =$ $x^4 - \frac{5}{8}$ $\frac{5}{2}x^2 + \frac{5}{16}$ $\frac{6}{16}$.
	- We have $g(r_1) = r_1$, $g'(r_1) = -1$, and $g''(r_1) = 4-6\sqrt{ }$ 2. Thus, we have $k = 2$, and so the cycle is neither weakly attracting nor weakly repelling: as a fixed point of g, we can check that r_1 weakly attracting on the left and weakly repelling on the right.
	- \circ To study the nearby orbits, we must look at $h(x) = q^4(x)$. Using a computer, we can evaluate $h(r_1) = r_1$, To study the hearby orbits, we must look at $h(x) = h'(r_1) = 1$, $h''(r_1) = 0$, and $h'''(r_1) = 120(\sqrt{2} - 2)$.
	- \circ Thus, by the neutral point classification (here, $k = 3$, the first derivative is 1, and the third derivative is negative), we see that r_1 is a weakly attracting fixed point of q^4 : thus, we conclude that the 2-cycle ${r_1, r_2}$ for f is weakly attracting
	- \circ Using a computer, we can compute that $r_1 = 0.207107$, $r_2 = -1.207107$, and that the orbit of 0.2 (to six decimal places) is 0.2, −1.21, 0.2141, −1.204162, 0.200004, −1.209998, −0.214096, −1.204163, 0.200008,
	- We can see that, after every four repetitions, the orbit inches closer to the 2-cycle (as the above analysis dictates it will) but the convergence is exceedingly slow!
- We showed earlier that attracting fixed points attract nearby orbits exponentially, but per our examples that does not appear to be the case for neutral fixed points. Let us briefly investigate how fast a weakly attracting fixed point actually does attract nearby orbits.
	- \circ For simplicity, let us suppose that $f(x) = x cx^k$ for some positive constant c and some $k \geq 2$, and study the orbits of small positive x .
	- \circ Equivalently, we want to estimate how fast the sequence $x_{n+1} = x_n c x_n^k$ approaches zero, for a given x_0 .
	- \circ If we rewrite the definition as $x_{n+1} x_n = -c x_n^k$, then because the sequence is nearly constant, we can approximate this difference equation with the differential equation $\frac{dx}{dt} = -c x^k$, with initial condition $x = x_0$.
	- o This is a separable equation whose solution has the form $x(t) = (Ct + D)^{-1/(k-1)}$ for constants C and D in terms of x_0 , k, and c. (One can compute the constants, but we are only interested in the rough behavior.)
	- The solution to the difference equation is then approximately $x_n \approx (Cn+D)^{-1/(k-1)}$. As $n \to \infty$, this does tend to zero as we claimed, but it does so rather slowly: for $k=2$, it goes to zero like n^{-1} , and for $k = 3$, it goes to zero like $n^{-1/2}$. This is very slow compared to the exponential convergence λ^{-n} for some $\lambda < 1$ possessed by attracting fixed points.
	- We will remark that a change of variables combined with a Taylor's theorem argument much like the one in the classification proof will allow us to extend this analysis extends to all weakly attracting fixed points. (We will not bother with the details.)

1.2.5 Basins of Attraction

- Our theorems on attracting fixed points and cycles are useful in describing the orbits of points "sufficiently close" to the attracting point or cycle, but they suffer from the limitation that they do not tell us explicitly what orbits will eventually fall towards them.
	- \circ It is possible to get actual numeric bounds out of the proof of the theorem for attracting fixed points, namely: if x_0 is an attracting fixed point, then on the largest interval I containing x_0 with $|f'(x)| < 1$ for all $x \in I$, every orbit will approach x_0 .
	- \circ Example: For the function $f(x) = x^3$, clearly $x_0 = 0$ is an attracting fixed point since $f(0) = f'(0) = 0$. Since $f'(x) = 3x^2$, our result implies that every orbit that starts in the interval $\left(-\frac{1}{\sqrt{2}}\right)$ $\frac{1}{3}, \frac{1}{\sqrt{3}}$ 3 will tend to 0 as we iterate f.
	- But this is not the strongest possible result: in fact, any orbit in the larger interval (−1, 1) will tend to 0, since $f^{n}(x) = x^{3^{n}}$ clearly tends to 0 (quite rapidly!) for any such point.
	- \circ One reason we do not get this larger interval is that, in the proof of the attracting fixed point theorem we gave, we actually wanted to analyze the function $f(x) - x_0$ $x - x_0$, rather than $|f'(x)|$. (For x near x_0 , these two values are close together by the continuity of $f'(x)$, as we already saw.)
- Definition: If x_0 is an attracting (or weakly attracting) fixed point of f, the basin of attraction (or attracting basin) for x_0 is the set of all points x such that $f^n(x) \to x_0$ as $n \to \infty$. (In other words, it is the points whose orbits attract to x_0 .) The <u>immediate basin of attraction</u> for x_0 is the largest interval around x_0 contained in the basin of attraction.
	- \circ In general, the structure of the basin of attraction can be quite complicated: it is frequently an infinite union of disjoint intervals.
	- \circ For example, here are a few plots (on different scales) of the attracting basin for the attracting fixed point $x_0 = 1$ of the funct $2(1-5x+2x^2)$

- It is generally much easier to compute the immediate basin of attraction than the full basin (though of course, if f is sufficiently complicated, we can usually only compute an approximation).
- A starting point for computing the immediate basin of attraction is to find the set of points that f moves closer to x_0 :
- Proposition: Suppose that x_0 is a (weakly) attracting fixed point of f and λ be any positive constant less than 1. If S is the set of points x such that $x = x_0$ or $f(x) - x_0$ $x - x_0$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\langle \rangle$, and I is the largest interval of the form $(x_0 - c, x_0 + c)$ lying in S, then I lies in the immediate basin of attraction for x_0 under f.
	- \circ Proof: Let I be the interval defined above. By definition, if $x \in I$, then $|f(x) x_0| < (1 \epsilon) |x x_0|$: thus $f(x)$ is closer to x_0 than x is. Furthermore, because I is symmetric about x_0 , we see that $f(x)$ also lies in I.
	- We can then apply the result repeatedly to see that (by a trivial induction) $|f^n(x) x_0| < \lambda^n |x x_0|$, so $f^{n}(x) \to x_{0}$ as $n \to \infty$, meaning x is in the basin of attraction for x_{0} . Since I is an open interval around x_0 and every point in it lies in the basin of attraction, I lies in the immediate basin.
- Example: Find the immediate basin of attraction for the attracting fixed point $x_0 = 0$ of $f(x) = x^3$.
	- \circ We start by determining when $\Big|$ $f(x) - 0$ $x - 0$ $\left| = |x^2|$ is less than 1. Clearly, this holds for $-1 < x < 1$, so the immediate basin contains the interval $(-1, 1)$.
	- Observe that the basin is bounded by the points $x = -1$ and $x = 1$, which are both fixed points for f, so the immediate basin does not contain them. So, the immediate basin is actually $|(-1, 1)|$.
	- \circ In fact, the interval (−1, 1) is actually the entire basin of attraction for $x_0 = 0$, because any value in $(-\infty, -1)$ will have orbit tending to $-\infty$, and any value in $(1, \infty)$ will have orbit tending to ∞ .
- Example: Find the immediate basin of attraction for the weakly attracting fixed point of $f(x) = x x^3$.
	- The fixed point is $x = 0$, so we start by finding those $x \neq 0$ such that $f(x)$ \boldsymbol{x} < 1: namely, such that $|1-x^2| < 1.$
	- \circ This relation is satisfied whenever $|x|$ < √ 2 (except for $x = 0$, but it is certainly in the immediate basin) so the immediate basin of attraction contains $(-\sqrt{2}, \sqrt{2})$.
	- \circ But now note that $f(x)$ √ $(2) = -$ √ 2 and $f(-)$ $\sqrt{2}$) = $\sqrt{2}$, so since these two points lie on a 2-cycle, neither of them is in the basin of attraction.
	- Thus, we conclude that the immediate basin is (− √ 2, √ $2)$ |
- \bullet In each of the above examples, the endpoints of the immediate basin for the (weakly) attracting fixed point have been fixed points, or points lying in a 2-cycle. This is not a coincidence:
- Theorem (Immediate Attracting Basin): If x_0 is a (weakly) attracting fixed point of the continuous function f with immediate basin of attraction I, then I is an open interval of one of the following types: (i) $(-\infty, \infty)$, (ii) $(-\infty, a)$ or (a, ∞) for a a fixed point, (iii) (a, b) for both a and b fixed points or with one a fixed point and the other a preimage of it, or (iv) (a, b) where $\{a, b\}$ is a 2-cycle.
	- \circ Remark: Recall that we say x is a preimage (or inverse image) of y under the map f if $f(x) = y$.
	- \circ Proof: Note that I is always an interval containing x_0 , and it is also open because if it contained an endpoint, continuity would allow us to extend the interval past the endpoint. Let \overline{I} be the topological closure of I: namely, I along with any finite endpoints, so that (for example) we have $(a, b) = [a, b]$.
	- \circ By continuity, $f(\overline{I})$ is contained in \overline{I} , since $f(I)$ is contained in I by the definition of the immediate basin. If a is a finite endpoint of \overline{I} (assuming it has one), then $f(a)$ cannot be contained in I: otherwise the orbit of a would attract to x_0 , contrary to the assumption that a is not in the attracting basin. Thus, $f(a)$ must also be a finite endpoint of \overline{I} .
	- \circ If $I = (-\infty, \infty)$ we are done. If $I = (a, \infty)$ or $(-\infty, a)$, then we must have $f(a) = a$ since a is the only finite endpoint of I .
	- \circ Now suppose $I = (a, b)$. Then $f(a)$ and $f(b)$ are each either a or b. If $f(a) = a$ and $f(b) = b$ they are both fixed points of f .
	- If $f(a) = f(b) = a$ or $f(a) = f(b) = b$ one is a fixed point and the other is a preimage of it.
	- \circ Finally, if $f(a) = b$ and $f(b) = a$, then $\{a, b\}$ forms a 2-cycle. This exhausts all the possibilities, so we are done.
- Using the theorem, we can compute the immediate basin of attraction of any (weakly) attracting point x_0 : we need only compute all the fixed points of f , their preimages, and the 2-cycles of f . Then the closest such points on each side of x_0 will be the endpoints of the immediate basin. (Or $-\infty$ or ∞ , if there are no such points.)
- Example: For $1 < \lambda < 3$, find the immediate basin of attraction inside [0,1] for the attracting fixed point of the logistic map $p_{\lambda}(x) = \lambda x(1-x)$.
- We computed earlier that the fixed point $x_0 = 1 \frac{1}{\lambda}$ $\frac{1}{\lambda}$ is attracting when $1 < \lambda < 3$, and we also showed that there is no real-valued 2-cycle for these values of λ .
- We can also easily compute that the preimages of 0 are 0 and 1.
- ∘ Thus, the possible endpoints of the immediate basin are $-\infty$, 0, 1, ∞ . Since $x_0 = 1 \frac{1}{\lambda}$ $\frac{1}{\lambda}$ is between 0 and 1, the attracting basin must be $|(0,1)|$, independent of λ .
- Note that this proof is essentially nonconstructive: we do not know anything about how long it will take the orbit of any particular point in $(0, 1)$ to move close enough that it will be exponentially attracted to the fixed point; all we know is that it will eventually happen.
- Example: Find the immediate basin of attraction for each attracting fixed point of $f(x) = -\frac{1}{2}$ $\frac{1}{2}x - \frac{5}{2}$ $\frac{3}{2}x^2 - x^3$.
	- Solving $f(x) = x$ produces $x = 0, -1, -\frac{3}{8}$ $\frac{3}{2}$. Since $f'(-1) = \frac{3}{2}$ it is repelling, but $f'(0) = -\frac{1}{2}$ $\frac{1}{2}$ and $f'(-\frac{3}{2})$ $(\frac{3}{2}) = \frac{1}{4}$, so both 0 and $-\frac{3}{2}$ $\frac{3}{2}$ are attracting.
	- To compute the immediate basins, we will look for possible endpoints. Numerically solving the degree-6 polynomial $\frac{f(f(x)) - x}{f(x) - x} = 0$ yields one real-valued 2-cycle: {−2.4275, 0.7867}. We can also easily compute that the preimages of -1 are -1 , $\frac{1}{2}$ $\frac{1}{2}$, and -2 .
	- \circ Thus, the possible endpoints for the immediate basins are $-\infty$, -2.4275 , -2 , -1 , 0.5, 0.7867, ∞ .
	- ∘ Since 0 lies in $(-1, \frac{1}{2})$ $(\frac{1}{2})$, the immediate basin of 0 must be $\Big|(-1, \frac{1}{2})\Big|$ $\frac{1}{2}$) Similarly, since $-\frac{3}{2}$ $\frac{3}{2}$ lies in $(-2, -1)$, the immediate basin of $-\frac{3}{2}$ $\frac{1}{2}$ is $\boxed{(-2,-1)}$.
- Assuming we can compute an open interval lying in the immediate basin of attraction for a fixed point, we can give a description of the entire basin of attraction:
- Proposition (Full Attracting Basin): If x_0 is a (weakly) attracting fixed point of the continuous function f and I is any open interval containing x_0 that lies in the immediate basin of attraction, then the full basin of attraction B_{x_0} is given by $B_{x_0} = \bigcup_{k=0}^{\infty}$ $n=0$ $f^{-n}(I) = I \cup f^{-1}(I) \cup f^{-2}(I) \cup \cdots$
	- \circ Recall that if S is a set, then $f^{-1}(S) = \{x : f(x) \in S\}$ is the <u>inverse image</u> (or preimage) of S under f, the set of all points which f maps into S. We then take $f^{-n}(S)$ to be the nth iterate of the preimage operation, or, equivalently, $f^{-n}(S) = \{x : f^{n}(x) \in S\}.$
	- \circ Proof: Suppose x is in the basin of attraction of x_0 . Then $f^n(x) \to x_0$ so by definition, for sufficiently large *n* we must have $f^{n}(x) \in I$: but this is immediately equivalent to $x \in f^{-n}(I)$. Conversely, if $f^{n}(x) \in I$, then since I is in the immediate basin of attraction we see that $f^{k}(f^{n}(x)) \to x_{0}$ as $k \to \infty$, and this is equivalent to saying that $f^k(x) \to x_0$ as $k \to \infty$.
- What the previous proposition says is: we can compute the full basin of attraction simply by finding an interval I that lies in the immediate basin, computing the sequence of preimages $f^{-n}(I)$ as $n \to \infty$, and taking the union.
	- \circ In fact, each preimage will contain the previous one because $f(I) \subseteq I$, so taking the union is (vaguely) superfluous.
	- Computing preimages rapidly becomes intractable to do exactly (even for polynomials of small degree), and the iterated inverse image can become very complicated. As a theoretical tool, the proposition is therefore somewhat limited.
	- Computationally, however, the proposition is quite useful: if f is continuous on I, then $f^{-1}([a, b])$ is a union of intervals whose endpoints lie in the sets $f^{-1}(a)$ and $f^{-1}(b)$: thus, computing the inverse image reduces to solving the equations $f(y) = a$ and $f(y) = b$, arranging the solutions in increasing order, and then determining which of the resulting intervals are mapped into [a, b] by f.

◦ Here is a geometric picture of this procedure for computing the inverse image of [1, 2] under the function $f(x) = x^3 - 3x + 1$:

- Example: Find three intervals lying in the attracting basin of the attracting fixed point $x_0 = 0$ for the function $p(x) = \frac{1}{2}x + 3x^2 - 4x^3 + x^4.$
	- \circ Clearly 0 is an attracting fixed point. As our starting point, we look for values of x for which $p(x)-0$ \boldsymbol{x} $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ \lt 1

1: namely, with $\Big|$ $\frac{1}{2} + 3x - 4x^2 + x^3$ < 1 .

- Solving this inequality numerically gives three intervals, which are (−0.336, 0.237), (0.684, 1.675), and $(2.661, 3.078)$. We want the largest interval containing $x_0 = 0$ that is symmetric about 0 contained in one of those intervals, so we take $I = (-0.237, 0.237)$, rounded to three decimal places.
- \circ Now we numerically compute $p^{-1}(I)$, which is a union of three intervals, which we have rounded inward to three decimal places: (−0.300, 0.237), (1.138, 1.307), and (2.894, 2.925). These three intervals all lie in the attracting basin.
- \circ We could continue this process and compute p^{-1} of each of these intervals: we end up with seven intervals (−0.717, −0.715), (−0.538, −0.513), (−0.300, 0.237), (1.138, 1.327), (2.890, 2.925), (2.980, 2.989), $(3.070, 3.071).$
- If we continue computing the inverse images, the union of the resulting innite number of intervals will be the full basin of attraction. Here is a plot of the results of five iterations of the inverse image map, starting with the initial interval *I*:
Attracting Basin Intervals for $p(x)=0.5x+3x^2-4x^3+x^4$

◦ Notice that the immediate basin appears to have endpoints roughly given by −0.300 and 0.237. Indeed, $p(-0.300) = 0.237$ and $p(0.237) = 0.237$, so one endpoint of the immediate basin is a fixed point and the other is one of its preimages (which is indeed one of the possibilities given by our theorem about the immediate basin).

1.3 Newton's Method

- Newton's method is an algorithm for finding a numerical approximation to a zero of a differentiable function f.
	- \circ In particular, Newton's method provides us with a way to compute the locations of fixed points and (pre)periodic points of functions numerically.
	- As we will see, it also provides us with another collection of dynamical systems to study, and we can apply some of our techniques to analyze how and why Newton's method works.
- The method is as follows: we begin at some starting point x_0 . Then we draw the tangent line at x_0 to $y = f(x)$ and set x_1 to be the x-intercept of the tangent line. Now we iterate the process, by setting x_n to be the x-intercept of the tangent line at $x = x_{n-1}$ to $y = f(x)$, for each $n \ge 2$.
	- \circ The idea is that, if x_0 is close to the root r, then the tangent line is a good approximation to the function $y = f(x)$, so the x-intercept of the tangent line (which is easy to compute) will, hopefully, be closer to the root r than x_0 is, as a typical picture suggests will be the case:

- By iterating this procedure, we obtain a sequence of values that (ideally) yield better and better approximations of the root r.
- Since the tangent line to $y = f(x)$ at $x = x_0$ has equation $y f(x_0) = f'(x_0) \cdot (x x_0)$, the x-intercept is $x_1 = x_0 - \frac{f(x_0)}{f(x_0)}$ $\frac{f''(x_0)}{f'(x_0)}$
- Thus, the points given by Newton's method the points in the orbit of x_0 under the map $N(x) = x \frac{f(x)}{f(x_0)}$ $\frac{f(x)}{f'(x)}$
- Definition: If $f(x)$ is a differentiable function, the Newton iteration function $N(x)$ is defined as $N(x)$ = $x-\frac{f(x)}{f(x)}$ $\frac{f(x)}{f'(x)}$, and Newton's method is the result of computing the orbit of a point x_0 under $N(x)$.
	- o Observe that, as long as f is always defined and $f'(x) \neq 0$, ∞ , the fixed points of the Newton iteration function are the same as the zeroes of f .
- Example: Use Newton's method to approximate the root of $f(x) = x^2 0.2$ illustrated in the diagrams above, with starting value $x_0 = 1$.
	- Here, the Newton iteration function is $N(x) = x \frac{f(x)}{f(x)}$ $\frac{f(x)}{f'(x)} = x - \frac{x^2 - 0.2}{2x}$ $\frac{-0.2}{2x} = \frac{x}{2}$ $\frac{x}{2} + \frac{0.1}{x}$ $\frac{1}{x}$.
	- \circ To four decimal places, the orbit of 1 under N is $1 \rightarrow 0.6 \rightarrow 0.4667 \rightarrow 0.4476 \rightarrow 0.4472 \rightarrow 0.4472 \rightarrow \cdots$
	- We can see that the algorithm converges quite rapidly to the value 0.4472, which is indeed the positive we can see that the algorithm
root $\sqrt{0.2} \approx 0.4472136$ of $f(x)$.
- <u>Example</u>: Use Newton's method to approximate the value of $\sqrt{2}$.
	- By definition, $\sqrt{2}$ is the positive root of $f(x) = x^2 2$.
- For this f, the Newton iteration function is $N(x) = x \frac{f(x)}{f(x)}$ $\frac{f(x)}{f'(x)} = \frac{x}{2}$ $\frac{x}{2} + \frac{1}{x}$ $\frac{1}{x}$.
- \circ To six decimal places, the orbit of 1 under N is $1 \rightarrow 1.5 \rightarrow 1.416667 \rightarrow 1.414216 \rightarrow 1.414214 \rightarrow$ $1.414214 \rightarrow \cdots$
- \circ To six decimal places, the orbit of 3 under N is $3 \rightarrow 1.833333 \rightarrow 1.462121 \rightarrow 1.414998 \rightarrow 1.414214 \rightarrow$ $1.414214 \rightarrow \cdots$
- To six decimal places, the orbit of 10 under N is $10 \rightarrow 5.1 \rightarrow 2.746078 \rightarrow 1.737195 \rightarrow 1.444238 \rightarrow$ $1.414526 \rightarrow 1.414214 \rightarrow \cdots$
- We can see that the algorithm converges quite rapidly to $\sqrt{2}$, even when the starting point is rather far away.
- Example: Use Newton's method to approximate the fixed point of $cos(x)$.
	- \circ We want to find a zero of the function $f(x) = \cos(x) x$.
	- Here, the Newton iteration function is $N(x) = x + \frac{\cos(x) x}{\sin(x) + 1}$.
	- \circ The orbit of 0 under N is $0 \to 1 \to 0.750364 \to 0.739113 \to 0.739085 \to 0.739085 \to \cdots$.
	- \circ So we see the fixed point is approximately (0.739085)
- Example: Use Newton's method to approximate the real root of $f(x) = x^3 2x 5$.
	- Notice that $f(2) = -1$ and $f(3) = 16$, so f has a root in $(2, 3)$ by the intermediate value theorem. (In fact, since $f'(x) = 3x^2 - 2$ is only zero at $x = \pm \sqrt{2/3}$, and f is negative at both values, f actually has only one real root.)
	- Here, the Newton iteration function is $N(x) = x \frac{f(x)}{f(x)}$ $\frac{f(x)}{f'(x)} = x - \frac{x^3 - 2x - 5}{3x^2 - 2}$ $\frac{3x^2-2}{3x^2-2} = \frac{2x^3+5}{3x^2-2}$ $\frac{2x+6}{3x^2-2}$.
	- \circ The orbit of 2 under N is $2 \to 2.1 \to 2.094568 \to 2.094552 \to 2.094552 \to \cdots$. So the root appears to have numerical value 2.094552.
	- \circ The orbit of 3 under N is $3 \to 2.36 \to 2.127197 \to 2.095136 \to 2.094552 \to 2.094552 \to \cdots$. This orbit also approaches the root.
	- However, not all orbits will approach the root quickly (or even at all). For example, the orbit of 0 under N is $0 \to -2.5 \to -1.5672 \to -0.5026 \to -3.8207 \to -2.5494 \to -1.6081 \to -0.5761 \to -4.5977 \to$ $-3.0835 \rightarrow -2.0222 \rightarrow \cdots$: it does not seem to be approaching the root 2.094552.
- Example: Use Newton's method to approximate the real root of $f(x) = x^3 4x + 2$ lying in (1, 2).
	- Notice that $f(1) = -1$ and $f(2) = 2$, so f does have a root in $(1, 2)$ by the Intermediate Value Theorem. In fact f has three real roots: one in $(-3, -2)$, one in $(0, 1)$, and one in $(1, 2)$.
	- The Newton iteration function is $N(x) = x \frac{f(x)}{f(x)}$ $\frac{f(x)}{f'(x)} = x - \frac{x^3 - 4x + 2}{3x^2 - 4}$ $\frac{1}{3x^2-4}$.
	- \circ The orbit of 1 under N is $1 \to 0 \to 0.5 \to 0.538462 \to 0.539189 \to 0.539189 \to \cdots$. This does converge to a root of f , but not the one we were looking for!
	- \circ The orbit of 2 under N is $2 \rightarrow 1.75 \rightarrow 1.680723 \rightarrow 1.675166 \rightarrow 1.675131 \rightarrow 1.675131 \rightarrow \cdots$. This does converge to the root we were looking for.
	- For completeness, of course, we could also use Newton's method to nd the last root using a nearby orbit. For example, the orbit of -2 is $-2 \rightarrow -2.25 \rightarrow -2.215084 \rightarrow -2.214320 \rightarrow -2.214320 \rightarrow \cdots$.
- Example: Try to find the real root of $f(x) = x^{1/3}$ using Newton's method. (Of course, the root is clearly $x=0.$
	- The Newton iteration function is $N(x) = x \frac{f(x)}{f(x)}$ $\frac{f(x)}{f'(x)} = -2x.$
	- The orbit of 0.1 under N is 0.1 → −0.2 → 0.4 → −0.8 → 1.6 → −3.2 → 6.4 → · · · : notice that this orbit does not converge to 0!
- \circ We can see rather easily from $N(x)$ that 0 is a repelling fixed point for N, so indeed no nearby orbit will converge to the real root of f. Ultimately, the issue here is that $f'(0)$ is infinite.
- We would naturally like to know under what conditions a given fixed point of the Newton iteration function will be attracting.
	- From our previous results, if the fixed point is attracting, then the convergence of nearby orbits will be (at least) exponentially fast, with rate dictated by the value of N' at the fixed point.
	- \circ If the value x_0 is a multiple root of f, then the analysis can be a bit trickier.
- Definition: If x_0 is a root of the continuous function f, the multiplicity of x_0 (as a root of f) is the smallest positive k such that there exists a continuous function $g(x)$ such that $f(x) = (x - x_0)^k \cdot g(x)$ and $g(x_0) \neq 0$, if such a k exists. (If there is no largest k such that $f(x) = (x - x_0)^k \cdot g(x)$ for a continuous function g, we say the multiplicity is infinite.)
	- The multiplicity of a root of a general function agrees with the usual sense of "multiple root" when referring to polynomials: for example, 1 is a root of multiplicity 2 for the function $(x^2+1)(x-1)^2$ and of multiplicity 3 for the function $x(x-1)^3$.
	- \circ Example: If $f(x) = x^{4/3}$, then $x_0 = 0$ is a root of multiplicity 4/3.
	- \circ Example: If $f(x) = 0$ is the identically zero function, then $x_0 = 0$ is a root of infinite multiplicity.
	- \circ Most reasonable functions will only have roots of finite multiplicity. A nontrivial function having a root of infinite multiplicity is $f(x) = \begin{cases} e^{-1/x^2} & \text{for } x \neq 0 \\ 0 & \text{otherwise} \end{cases}$ e^{-1/x^2} for $x \neq 0$

	o for $x = 0$ for $g_k(x) = \begin{cases} e^{-1/x^2} x^{-k} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$ $0 \qquad \text{for } x = 0$, one may check that g_k is continuous and that $f(x) = x^k$ $g_k(x)$ for all x.
- Proposition (Multiplicity and Derivatives): If x_0 is a root of f of multiplicity k, then $f^{(d)}(x_0) = 0$ for all $d < k$. Furthermore, if $k \ge 1$ is an integer, then x_0 is a root of f of multiplicity k if and only if $f^{(d)}(x_0) = 0$ for all $d < k$ and $f^{(k)}(x_0)$ is nonzero and finite.
	- \circ This proposition provides an easy way to compute the multiplicity of a root for a differentiable function: for example, if $f(x) = \sin(x)$, then $x_0 = k\pi$ is a root of multiplicity 1 for each integer k, since the derivative $f'(x_0)$ is nonzero at each such point.
	- \circ Remark: Note the similarity to the statement of the classification of neutral fixed points. (Indeed, the k from that theorem is the multiplicity of the value x_0 as a root of the function $f(x) - x$.)
	- \circ Proof: If $f(x) = (x-x_0)^k g(x)$, then applying the product rule shows that $f^{(d)}$ is a sum of terms involving the first d derivatives of $(x-x_0)^k$ and $g(x)$. For $d < k$ all of the derivatives of $(x-x_0)^k$ are zero, so we see $f^{(d)}(x_0)$ for $d < k,$ giving the first statement. Also, if $d = k$ then we will get a single term $k! \cdot g(x_0),$ so $f^{(k)}(x_0) = k! \cdot g(x_0)$ is nonzero since $g(x_0) \neq 0$.
	- \circ Conversely, if x_0 is a root of f of integral multiplicity k, then by k applications of L'Hôpital's rule we see that $\lim_{x \to x_0} \frac{f(x)}{(x - x_0)}$ $\frac{f(x)}{(x-x_0)^k} = f^{(k)}(x_0)$, so the function $\frac{f(x)}{(x-x_0)^k}$ (defined for $x \neq x_0$) can be extended to be continuous and nonzero at $x = x_0$. We can then simply take $g(x)$ to be the resulting continuous function.
- The multiplicity of a root will control how fast Newton's method will converge near that root:
- Theorem (Newton's Fixed Point Theorem): Suppose f is continuously differentiable and N is its Newton iteration function. If x_0 is a root of f of finite multiplicity $k \geq 1$, then x_0 is an attracting fixed point of N, and if x_0 is a root of multiplicity $k = 1$, then x_0 is a superattracting fixed point of N.
	- \circ Proof: By definition, x_0 will be an attracting fixed point of N if $|N'(x_0)| < 1$, and it will be superattracting if $N'(x_0) = 0$. We also note that because f' is continuous, there are no points where f' is ∞ , so the only fixed points of N are the zeroes of f .
	- **•** By the quotient rule we see that $N'(x) = \frac{f(x)f''(x)}{f(x)}$ $\frac{(x)}{[f'(x)]^2}$ whenever $f'(x) \neq 0$.
	- So if $f'(x_0) \neq 0$, which occurs if x_0 has multiplicity 1, we immediately see that $N(x_0) = x_0$ and $N'(x) = 0$, so that x_0 is a superattracting fixed point of N.
- If $f'(x_0) = 0$ and x_0 has multiplicity $k > 1$, then by the proposition above we can write $f(x) =$ $(x-x_0)^k g(x)$ for a function g with $g(x_0) \neq 0$. To ease notation, make the change of variables $y = x - x_0$ to move the fixed point to zero: then $f(y) = y^k g(y)$ where $g(0) \neq 0$.
- Then $f'(y) = ky^{k-1}g(y) + y^k g'(y)$ and $f''(y) = k(k-1)y^{k-2}g(y) + 2ky^{k-1}g'(y) + y^k g''(y)$, so after some algebra we see that $N(y) = y - \frac{y g(y)}{1 + (y - y)^2}$ $\frac{g g(y)}{k g(y) + g'(y)}$, so that $N(0) = 0$.
- Furthermore, $N'(y) = \frac{k(k-1)g(y)^2 + 2kyg'(y)g(y) + y^2g''(y)g(y)}{k^2 + 2kyg'(y)g'(y) + y^2g''(y)g(y)}$ $\frac{k^2g(y)^2 + 2kyg'(y)g(y) + y^2g''(y)g(y)}{k^2g(y)^2 + 2kyg(y)g'(y) + y^2g'(y)^2}$, so $N'(0) = \frac{k(k-1)g(y)^2}{k^2g(y)^2}$ $\frac{(x-1)g(y)^2}{k^2g(y)^2} = 1 - \frac{1}{k}$ $\frac{1}{k}$, since $g(y) \neq 0$ by assumption.
- \circ Since this quantity has absolute value less than 1 as long as $k \ge 1$, we see that $y = 0$ (i.e., $x = x_0$) is an attracting fixed point of N as claimed.
- Newton's fixed point theorem guarantees that (as long as f does not have any zeroes of infinite or undefined multiplicity) each of the zeroes of f will show up as an attracting fixed point of N , and that these are the only fixed points of N .
	- \circ A natural question to ask is: what does the attracting basin for each fixed point of N look like?
	- A fuller discussion of this topic belongs properly to a numerical analysis course, but from our results about attracting points, we can say a few things.
	- For example, the immediate basin for each fixed point will contain the interval on which $|N'(x)| =$ $\begin{array}{c} \hline \rule{0pt}{2.5ex} \\ \rule{0pt}{2.5ex} \end{array}$ $f(x)f''(x)$ $f'(x)^2$ $<$ 1. (Though this function is rather hard to analyze, as we just saw.)
	- o Also, the endpoint of any fixed point's immediate basin cannot be another fixed point, because every fixed point is attracting. Thus, each fixed point's immediate basin either has endpoints that form a 2-cycle under N, or has endpoints that are $\pm \infty$ or points where N is undefined (i.e., zeroes of f').
	- \circ We also remark that by the mean value theorem, f' will have a zero between any two zeroes of f, N will always be undefined somewhere in the interval between any two attracting fixed points.
	- In general, the full attracting basin can be quite complicated (as with attracting basins of general functions).
- If f does not have any roots at all, the Newton iteration function N has no fixed points, but this does not mean its dynamics are uninteresting.
- Example: Try to find a real root of $f(x) = x^2 + 1$ using Newton's method. (Of course, f has no real roots.)
	- The Newton iteration function is $N(x) = x \frac{f(x)}{f(x)}$ $\frac{f(x)}{f'(x)} = \frac{x}{2}$ $rac{x}{2} - \frac{1}{2x}$ $\frac{1}{2x}$
	- The orbit of 0.1 under N is 0.1, −4.95, −2.37399, −0.97638, 0.02391, −20.90272, −10.42744, −5.16577, $-2.48609, -1.04193, -0.04198, 12.14959, \ldots$
	- The orbit of 0.2 under N is 0.2, −2.4, −0.99167, 0.00837, −59.7477, −29.86402, −14.91527, −7.42411, $-3.64471, -1.68517, -0.54588, 0.64302, -0.45608, \ldots$
	- \circ These orbits, of course, will not approach a fixed point, since N has no fixed points.
	- It is not hard to show that orbits will behave as follows: orbits far from 0 will approach zero monotonically until they land in the interval $(-1, 1)$, at which point they will switch sign after each iteration until they land inside $(1 - \sqrt{2}, \sqrt{2} - 1)$, where the next iteration will carry them outside $(-1, 1)$ and the process will repeat.

Well, you're at the end of my handout. Hope it was helpful.

Copyright notice: This material is copyright Evan Dummit, 2015-2025. You may not reproduce or distribute this material without my express permission.