
E. Dummit's Math 3543 ∼ Dynamics, Chaos, and Fractals, Spring 2025 ∼ Homework 8 Solutions

1. The goal of this problem is to study a �squared� version of the Koch curve fractal, constructed as follows: let
E0 be a line segment of length 1. Then, for each n ≥ 1, de�ne the set En to be the set obtained by removing
the middle �fth of each segment in En−1 and replacing it with the other three sides of the outwards square
sharing those endpoints. The squared Koch curve is the limiting set as n → ∞. The �rst two iterates are
shown below:

(a) Plot the 3rd, 4th, 5th, and 6th iterates of the construction.

• Here are the next four iterates:

(b) Compute the total length of the graph of the nth stage of the construction. What happens as n→∞?

• In each iteration, every segment in the graph of length l is replaced by two segments of length 2l/5
and three segments of length l/5, for a total length of 7l/5. Therefore, the length of the graph is
scaled by 7/5 after each stage.

• Since the construction starts with a segment of length 1, after the nth stage the total length is

(7/5)n , which goes to ∞ as n→∞.

(c) Compute the new area created under/inside the graph of the nth stage of the construction. What
happens to the total area under/inside the graph as n → ∞? [Hint: The new area produced in each
stage is a constant times the area produced in the previous stage.]

• In the �rst stage, the only area is a square of side length 1/5, of area 1/25.

• In each subsequent stage, we can see that each area-producing segment from the previous stage of
length l (namely, a square of side length l, of area l2) will sprout two new squares of side length 2l/5
on the segments adjoining it and three new squares of side length l/5 on the segments making it up,
for a total new area of 2(2l/5)2 + 3(l/5)2 = 11l2/25.

• Thus, the new area produced in this subsequent stage is 11/25 the area from the previous stage, so

at the nth stage, the new area is
1

25
· (11

25
)n .

• Hence the total area as n→∞ is
1

25
+

11

25
· 1
25

+ (
11

25
)2 · 1

25
+ · · · = 1/25

1− 11/25
=

1

14
.

2. The binomial coe�cients
(
n
k

)
=

n!

k!(n− k)!
are often displayed in an array called Pascal's triangle.

(a) Describe the result obtained by (re)drawing the array with a black dot in place of each binomial coe�cient
that is odd, and with a white dot in place of each binomial coe�cient that is even. Can you explain why
it has the shape it does?
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• The result is a right-triangle variant of the Sierpinski triangle:

• There are various ways to prove this. One way to see the Sierpinski triangle in the mod 2 case is to
use the recurrence relation

(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
. Geometrically, to decide whether a pixel in the nth

row of the picture is white or black, we look at the two pixels above: if they are di�erent then the
new pixel is black, and if they are the same then the new pixel is white. In particular the leftmost
and rightmost pixels are always black.

• The reason we see the triangular patterns emerging is that in rows that are a power of 2, all the
pixels are black. (This can be shown by induction.) In the next row, all but the outer pixels will be
white � and in each subsequent row, this interval of all-white pixels will shrink by 1 pixel on the left
edge until it disappears. There will be smaller regions where clusters of 2n consecutive white pixels
appear that have the same kind of shrinking phenomenon: this accounts for the self-similarity.

(b) What happens if instead you plot the points where the binomial coe�cient is congruent to 0 modulo 3?
1 modulo 3? 2 modulo 3? Based on the picture, what is the box-counting dimension of the set where
the binomial coe�cients are 1 or 2 modulo 3? What do you think will happen with other moduli?

• The results are variants on the Sierpinski triangle construction, where we draw n lines parallel to
each side (to divide the triangle into n2 smaller triangles each similar to the original), and then
alternately keep or delete each of the resulting n2 triangles:

3. If you run the command Nest[Subsuperscript[#, #, #] &, x, 6] in Mathematica, a fractal will appear.
Which fractal, and why?

• The output produces a Sierpinski triangle formed using the letter x:

• Each iteration of the function turns its input y into yyy , so the resulting set will consist of three smaller
copies of itself arranged essentially in an equilateral triangle shape. This is precisely the Sierpinski
triangle.
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4. The Vicsek box fractal is constructed as follows: begin with a unit square. Then divide it into nine equal
subsquares, and then remove the four squares that touch a midpoint of one of the sides. Now apply this
procedure to each of the �ve smaller squares, thus creating 25 smaller squares, and continue iterating. The
Vicsek box fractal is the limiting set from this procedure.

(a) Plot the �rst three iterations of the Vicsek box fractal.

• Here are the �rst three iterations:

(b) Find the total area and perimeter of the nth iterate and determine what happens to each as n→∞.

• At each stage, we get �ve new squares each of side length 1/3 the previous square. So the total area
scales by a factor of 5/9 and the total perimeter scales by a factor of 5/3 from each stage to the
next.

• By a trivial induction, the nth-stage area is (5/9)n which clearly goes to zero as n → ∞, and the
nth-stage perimeter is 4(5/3)n which clearly goes to ∞ as n→∞.

(c) Show that the topological dimension of the Vicsek box fractal is 1. [Hint: Show that the box fractal
contains a line, and also that, for any of the individual squares in the nth iterate, there is a circle that
passes through its vertices but no other points in the set.]

• First observe that the topological dimension is not zero. This follows for example by noticing that
it contains the diagonal of the starting square, which is a set of topological dimension 1.

• Now suppose x is a point in the box fractal. We will show that there is an arbitrarily small neigh-
borhood of x whose boundary intersects the box fractal in a �nite set of points.

• Consider the square S containing x in the nth iterate of the construction: we claim that the circle
C passing through the four vertices of this square does not contain any other points from the nth
iterate. This is obvious from a picture, but explicitly: the only points lying inside C are the points
in the square Sn along with some points the four equally-sized squares touching Sn along its edges,
but none of these squares lies in the nth iterate of the construction. The only point lying on C are
therefore the vertices of the square Sn.

• The interior of C is then a neighborhood of x whose boundary intersects the box fractal in a set of
topological dimension zero. Since we can choose this circle to be arbitrarily small (as its radius is√
2/3n), we are done.

5. Let N(x) =
x2 − 1

2x
for x 6= 0. The goal of this problem is to characterize the set of points S where all the

iterates of N are de�ned, and then to prove that N is chaotic on this set.

(a) Show that N(x) is a Newton iterating function for a polynomial p(x) that has no real roots. Conclude
that N has no attracting �xed points.

• Since N(x) = x − x2 + 1

2x
we see that N is the Newton iterating function for p(x) = x2 + 1, which

has no real roots.

• From Newton's �xed point theorem we therefore see that N has no attracting �xed points. (We
would thus expect N to behave in an unpredictable manner.)

(b) Show that h(t) = cot(πt) is a homeomorphism from (0, 1) to R.
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• Clearly h is continuous since it is di�erentiable, it is one-to-one since its derivative is always negative,
and it is surjective since cot(t)→∞ as t→ 0+ and cot(t)→ −∞ as t→ π−.

• Also, h−1(t) =
1

π
cot−1(t) is di�erentiable on R, so it is also continuous.

(c) If D is the doubling map restricted to (0, 1), show that h : (0, 1) → R satis�es the relation h(D(x)) =
N(h(x)) for all x 6= 1/2.

• We have N(h(x)) =
cot2(πx)− 1

2 cot(πx)
= cot(2πx) by the cotangent double-angle formula cot(2t) =

cot2 t− 1

2 cot t
.

• For x ∈ (0, 1/2) we have h(D(x)) = h(2x) = cot(2πx) = N(h(x)) as required.

• Also, for x ∈ (1/2, 1) we have h(D(x)) = h(2x − 1) = cot(2πx − π) = cot(2πx) = N(h(x)) since
cotangent has period π.

(d) Show that if x0 = cot(πr0) then N
n(x0) = cot(2nπr0).

• From the calculations in part (c) we see that if x0 = cot(πr0) then N(x0) = cot(2πr0).

• Iterating this n times yields Nn(x0) = cot(2nπr0).

(e) Show that the set of points S where all iterates of N are de�ned is the set of points not of the form
cot(kπ/2n) for any integers k and n.

• Motivated by part (d), we will show more speci�cally that the set of points Sn where Nn is unde�ned
is the set of points of the form cot(kπ/2n).

• The central observation is that cot(t) is unde�ned precisely when t is an integral multiple of π.

• So now suppose x0 = cot(πr0) and that Nn(x0) is unde�ned.

• By part (d), since Nn(x0) = cot(2nπr0), we see that this expression is unde�ned precisely when
2nπr0 is an integral multiple of π: that is, when 2nπr0 = πk for some integer k: thus, r0 = k/2n,
and so x0 = cot(kπ/2n).

(f) If T is the set of points in (0, 1) not having a terminating base-2 decimal expansion (i.e., not of the form
k/2n for any integers k and n), show that h(t) = cot(πt) yields an equivalence between the dynamical
systems (T,D) and (S,N).

• This essentially follows from what we have already done in parts (b), (c), and (e).

• We do need to verify that h(t) = cot(πt) remains a bijection when we restrict it from (0, 1)→ R to
T → S, since we already know that h and h−1 are continuous from part (b).

• The fact that h is a bijection from T to S follows from part (e): the points in T are the elements in
(0, 1) that are not of the form k/2n for any integers k, n, and the points in S are the elements of R
that are not of the form cot(kπ/2n) for any integers k, n.

• So h : S → T is a homeomorphism. It still obeys the conjugacy relation as we saw in part (c), so it
is a conjugacy between (T,D) and (S,N) as claimed.

(g) Conclude that N is chaotic on S.

• We know that the doubling map is chaotic on [0, 1), so it is also chaotic on any smaller set. If we
restrict D to the set T , then (D,T ) is chaotic, and D is also continuous on T (since we have removed
the discontinuity at x = 1/2, as that point is not in T ).

• Since N is also continuous on S, h : S → T is a continuous surjection, and S is obviously in�nite,
our theorem on conjugacy and chaotic systems implies that (S,N) is chaotic.

6. Let the tent map be T (x) =

{
2x for 0 ≤ x < 1/2

2− 2x for 1/2 ≤ x ≤ 1
, and then, for 0 ≤ h ≤ 1, de�ne the truncated tent

map to be Th(x) = min(h, T (x)). The goal of this problem is to explore how these maps can be used to prove
the converse of Sarkovskii's theorem.

(a) Find the 2-cycles, 3-cycles, 4-cycles, and 5-cycles for the map T . (There are 1, 2, 3, and 6 respectively.)

• We can rapidly compute these using Mathematica's Reduce command.
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• The 2-cycle is {2
5
,
4

5
} and the 3-cycles are {2

9
,
4

9
,
8

9
} and {2

7
,
4

7
,
6

7
}.

• The 4-cycles are { 2
17
,
4

17
,
8

17
,
16

17
}, { 2

15
,
4

15
,
8

15
,
14

15
}, { 6

17
,
12

17
,
10

17
,
14

17
}.

• The 5-cycles are
{

2
33 ,

4
33 ,

8
33 ,

16
33 ,

32
33

}
,
{

2
31 ,

4
31 ,

8
31 ,

16
31 ,

30
31

}
,
{

2
11 ,

4
11 ,

8
11 ,

6
11 ,

10
11

}
,
{

6
31 ,

12
31 ,

24
31 ,

14
31 ,

28
31

}
,{

10
33 ,

20
33 ,

26
33 ,

14
33 ,

28
33

}
, and

{
10
31 ,

20
31 ,

22
31 ,

18
31 ,

26
31

}
.

(b) Suppose 0 < h ≤ 1 and m ≥ 1. Show that any m-cycle {x1, x2, · · · , xm} for Th is also an m-cycle for T ,
except possibly if some xi = h. [Hint: T (x) = Th(x) whenever T (x) ≤ h.]
• The point is that T and Th agree everywhere except for the points where T (x) > h. If T (xi) ≤ h for
all xi then T (xi) = Th(xi) so {x1, x2, · · · , xm} is an m-cycle for T .

• If T (xi) > h for some xi, then Th(xi) = h, but this would mean xi+1 = h and thus that h is contained
in the m-cycle.

(c) Suppose that {x1, x2, · · · , xm} is anm-cycle for T , and α = max(x1, x2, . . . , xm). Show that {x1, x2, · · · , xm}
is an m-cycle for Th for all α ≤ h ≤ 1, but is not an m-cycle for Th when h < α. [Hint: Th(x) = Tα(x)
whenever x ≤ α; for the second part, consider the range of Th.]

• Because Th(x) = T (x) whenever T (x) ≤ h, we see that Tα(xi) = T (xi) = Th(xi) for each i since
Tα(xi) ≤ α ≤ h by de�nition of α and h.

• So {x1, . . . , xm} is an m-cycle for Tα.

• For the last part, the range of Th is [0, h], so if xi > h then xi cannot be in the range of Th, making
it impossible for {x1, x2, · · · , xm} to be an m-cycle for Th.

(d) Show that the map T4/5 has cycles of lengths 2 and 1 but no others.

• By part (c), it has a 2-cycle since {2
5
,
4

5
} is a 2-cycle for T as we saw in part (a). It also has a �xed

point x = 0.

• Furthermore, also by part (c), since
4

5
is less than

16

17
,
14

15
, and

14

17
, none of the 4-cycles for T is a

4-cycle for T4/5.

• By part (b), or part (c), we therefore see that T4/5 has no 4-cycles. Then by the forward direction of
Sarkovskii's theorem, T4/5 cannot have an m-cycle for any m that appears before 4 in the Sarkovskii
ordering: thus, it can only have cycles of length 2 and 1.

(e) Show that the map T28/33 has cycles of every length except 3.

• By part (c), it has a 5-cycle since
{

10
33 ,

20
33 ,

26
33 ,

14
33 ,

28
33

}
is a 5-cycle for T as we saw in part (a).

• Furthermore, also by part (c), since
28

33
is less than

8

9
and

6

7
, neither of the 3-cycles for T is a 3-cycle

for T28/33.

• By part (b) we therefore see that T28/33 has no 3-cycles. Then by the forward direction of Sarkovskii's
theorem, T28/33 has cycles of every length except 3.

(f) Show that the map T106/127 has cycles of every length except 3 and 5.

• By part (c), it has a 7-cycle, since some short calculation shows that { 106127 ,
42
127 ,

84
127 ,

86
127 ,

82
127 ,

90
127 ,

74
127}

is a 7-cycle for T .

• Furthermore, also by part (c), since
106

127
is less than each of

32

33
,
30

31
,
10

11
,
28

31
,
28

33
,
26

31
, none of the

5-cycles for T is a 5-cycle for T28/33.

• By part (b) we therefore see that T28/33 has no 5-cycles. Then by the forward direction of Sarkovskii's
theorem, T28/33 has cycles of every length except 3 and 5. (It cannot have any 3-cycles since having
one would force a 5-cycle.)
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