E. Dummit’s Math 3543 ~ Dynamics, Chaos, and Fractals, Spring 2025 ~ Homework 7 Solutions

1. For the following dynamical systems (X, f), does f have sensitive dependence on all of X7 If not, does it
have sensitive dependence at any individual points in X7 (Give some justification.)

(a) X =

(b) X =

(c) X =

) X =

[0,1], f(x) = 2°.

, because all points in [0, 1) are attracted to the

attracting fixed point at z = 0.
It
orbit of 1 remains fixed at 1.

R, f(z) = 2z + 3.

, since points with = < 1 will be attracted to 0 but the

This map ’does have sensitive dependence on X ‘: for any points x and y we have |f(z) — f(y)| =

2|z — y|, so the distance between any two points doubles with each application of f.
R, f(z) = cos(x).

This map ’does not have sensitive dependence on X ‘, or at any point of X, because the attracting

basin of the attracting fixed point at & 0.739 is (—o0, 00).
Every orbit will be (very rapidly) attracted to this attracting fixed point, so there is no dependence
at all on the starting value.

Yo, f(dodidadsdads - --) = (dadsdads - - - ).

This map ’ does have sensitive dependence on X ‘: it is the second iterate of the shift map, and essen-
tially the same argument as used for the shift map will demonstrate that it has sensitive dependence
with 8 =1/2.

Explicitly, suppose x = (dodidads - - - ) and € > 0 are given, and choose n such that 272" < e.

Then choose y = (dopd; - - - d2p—1€2,000- - ) where es,, = 1 — da,,. Since z and y agree in the Oth
through (2n — 1)st coordinates, d(z,y) < 272" < ¢.

AISO, fn(l‘) = (dznd2n+1d2n+2 s ) while fn(y) = (egnOO . ) SO d(fn(l‘), fn(y)) Z 1

Thus the orbits of z and y eventually move a distance at least 1 away from each other, so f has
sensitive dependence as claimed.

2. Find exact expressions for the three 4-cycles of q_o(7) = 2% — 2.

e From in class, we know that g_o(2 cos t) = 2 cos 2t, and the points of period dividing n for g_, are the 27!
values z = 2cos =257 for 1 < k < 27— along with the 271 values z = 2 cos fnkfl for0<k<2n1_1,

2741

e So the points of period dividing 2 are 2 cos 5”, 2 cos = 4” , 2cos0, 2cos 2;

e Then the points of perlod dividing 4 are 2cos 2% 16 2005 iE 2cos 5T i 2cos 5 s 2005 15, 2 cos 110§ =
2 cos 2 % 2 cos 1]?; = 2cos 4™ =, 2cos 114;, along with 2cos0, 2 cos 217, 2cos 4 T 2cos 8 T 2cos & %, 2cos 1107”,
2 cos 17“, 2 cos 147“, 2 cos 1167"

e Ascycles these are| 2 cos T —2 cos T —2 cos £ — 2cos 114; .12 cos = =2 cos 7 =2 cos = — 2cos 1167”
and 2005 —>200$12—”—>2005w—“—>20051147“ !




3. Suppose f: R — R is a continuous function. Answer the following;:

(a) If f has a point of exact period 11, does it necessarily have a point of exact period 327 267 177 97 47

By Sarkovskii’s theorem and its converse, we need only determine which of these integers appear
after 11 in the Sarkovskii ordering 3>5> 7> --->2-3>2-5>2-T>--->22.3>22.5> - >
2" 2"l A2 1.

The only integers appearing before 11 are 3, 5, 7, and 9. So it does have points of period| 32, 26, 17, 4

but not necessarily 9.

(b) If f has a point of exact period 22, does it necessarily have a point of exact period 327 267 177 9?7 47

Again by Sarkovskii’s theorem and its converse, we need only determine which of these integers
appear after 26 in the Sarkovskii ordering.

All the odd integers along with 6, 10, 14 appear before 22. So it does have points of period | 32, 26, 4
but not necessarily 9 or 17.

(c¢) If f has a point of exact period 16, does it necessarily have a point of exact period 327 267 177 9?7 47

Again, we need only determine which of these integers appear after 16 in the Sarkovskii ordering.

The only integers after 16 are 8, 4, 2, and 1, so f is only required to have a point of period but
not any of the others.

3 for0<z<1/3

4. Recall the definition of the tripling map T'(z) = ¢ 3z —1 for 1/3 <z < 2/3 on the interval [0,1). Equiva-

3x—2 for2/3<zx<1

lently, T'(z) = 3z modulo 1. The goal of this problem is to prove that T is chaotic.

(a) Suppose a = 0.dydad3dy ... in base 3, where, if a has a terminating expansion, we use that expansion
instead of the non-terminating one. Show that T'(«) = 0.dadsdy . . ..

If « = 0.d1d2d3d4..., then 3a = dl.d2d3d4..., so 3« is congruent to 0.d2d3d4... mod 1, and
0.dadsdy . .. lies in the interval [0, 1].

The only potential ambiguity is if « has two base-3 representations where the digit d; can have two
different possible values.

There are only three such a: a = 0.1 = 0.02, = 0.2 = 0.12, and o = 1.0 = 0.2, and it is
straightforward to check that the statement also holds for these three values. So T'(«) = 0.dadsdy . ..
in all cases.

(b) Show that the periodic points for T in [0,1) are precisely the points with a periodic base-3 decimal
expansion. Conclude that the set of periodic points for T is dense in [0, 1).

Suppose that 7" (a) = «, where o = 0.d1dads . .. is a non-terminating base-3 expansion.

By part (a), we know that T"(a) = 0.dp+1dpt2dn+3 - . ., meaning that d; = d,, 4, for each ¢ > 1.

In other words, the base-3 expansion of « repeats every n digits.

Conversely, it is immediate that if the base-3 expansion of a repeats every n digits, and if o does
not have a terminating base-3 expansion, then 7" (a) = «.

If « € [0,1) does have a terminating base-3 expansion, then it cannot be periodic unless o = 0 (since
the digits in the expansion are eventually all zeroes), and 0 is a fixed point of T'.

For the last statement, observe that if x = 0.z12223%4 .. ., then there is a sequence of periodic points
converging to z, namely: 0.77, 0.7173, 0.717273, 0.71222324, -.--




(¢c) Let y =0. 012 00010210---22--- be the real number obtained by listing all length-1 sequences in
~ —,—,
length 1 length 2
base 3, then all length-2 sequences, then all length-3 sequences, and so forth. Show that the orbit of v
is dense in [0,1), and conclude T is transitive on [0, 1).

e By part (a), T%(y) deletes the first k digits of the base-3 decimal expansion of ~.

e So in particular, for any sequence of digits, there is some k such that the decimal expansion of T*()
that begins with that sequence of digits.

e Thus for any « € [0,1) and any n > 1, there is an element x,, in the orbit of v under T that agrees
with z to n decimal places.

o~ 2
e Then nll)ngoxn =z, since |z, — z| < Z T < 3n.
k=n+1

e Since there is a sequence of points in the orbit of v converging to z for any = € [0,1), this means ~y

has a dense orbit, and therefore in particular T is transitive on [0, 1).

(d) Suppose z and y are in [0,1) with y > =. If both = and y lie in the same interval [0,1/3), [1/3,2/3), or
[2/3,1), show that |T'(y) — T'(z)| = 3|y — z|. If they lie in different intervals, show that at least one of
ly — 2| and |T'(y) — T(x)| must be > 1/4.
e If z and y are both in [0,1/3), [1/3,2/3), or [2/3,1) then T(y) = 3y — a and T(x) = 3z — a for
a€{0,1,2} so |T(y) — T(z)| = 3|y — x| in each case.
e Now suppose y and z lie in different intervals. If y — 2 > 1/4 then we are already done.
e Otherwise, assume y —xz < 1/4. If z € [0,1/3) then y € [1/3,2/3), so T(y) = 3y — 1 and T'(z) = 3z.
Then |T(y) — T(x)] = |1 — 3(y — x)| > 1/4, as required.
o If z € [1/3,2/3) then y € [2/3,1) so T(y) = 3y —2 and T(x) = 3z — 1. then |T(y) — T(x)| =
|1 —3(y — z)| > 1/4 once again.
(e) Suppose z and y are in [0, 1) and that y # 2. Show that there is some k > 0 for which |T*(y) — T*(z)| >
1/4. Conclude that T has sensitive dependence on [0, 1).

e Let n > 1 and consider the iterates T"(x) and T"(y). If they lie in different intervals [0,1/3),
[1/3,2/3), [2/3,1), then by part (d) then it is either true that |T"(z) — T"(y)| > 1/4 or |[T" " (z) — T" " (y)| >
1/4, so we are done.

e We only need to eliminate the possibility that 7" (z) and T™(y) always lie in the same interval.

By part (d), if this is true then |T"(z) — T"(y)| = 3" |z — y|. However, because = # y, eventually
3" |z — y| will exceed 1/3: but this is impossible by the assumption that 7" (x) and T™(y) both lie
in an interval of length 1/3.

e Finally, if we take any 8 < 1/4, then our results show that the definition of sensitive dependence is

satisfied for that value of (.

(f) Show that 7' is chaotic on [0, 1).

e By parts (b), (c), and (e), T has a dense set of periodic points, T is transitive, and T has sensitive
dependence. Therefore, by definition, 1" is chaotic.

2_3z+2 for0<z<1
5. Let g : [0,2] — [0,2] be defined via g(x) = * v PU=T=" Show that ¢ has a point of exact
z—1 forl<z<2

period n for each n > 1.

e Since g is continuous (as both component functions are continuous and they are both equal to 0 at x = 1),
by Sarkovskii’s theorem the statement that g has a point of exact period n for each n > 1 is equivalent
to the statement that g has a point of order 3.

e So we look for a 3-cycle. A tiny amount of searching reveals the 3-cycle {0,2,1}, as g(0) = 2, ¢g(2) =1,
and ¢g(1) = 0. Thus by Sarkovskii’s theorem, ¢g has a point of exact period n for each n > 1.




6. Suppose f: I — [ is a continuous function on a closed interval I C R.

(a) Suppose that the set of fixed points of f is dense in I. Prove that f must be the identity function (i.e.,
that f(z) =« for all z € I). [Hint: If lim a, = a is any convergent sequence, then lim f(a,) = f(a).]
n— oo n—0o0

e Let a € I. By the assumption that the set of fixed points is dense, there is some sequence of fixed
points {ay},>1 such that lim a, = a.
- n—oo

e Then since f is continuous and f(a,) = a, for all n, we see that a = lim a, = lim f(a,) = f(a).
n—oo n—oo

e So f(a) = a. This is true for any a € I, so f is the identity function.

(b) Suppose that the set of periodic points of period < n for f is dense in I. Prove that some iterate of f
must be the identity function. [Hint: Consider g = f™]

e Let g(x) = f™(z). Then since k divides n! for each 1 < k < n we see that the set of periodic points
of period < n for f are all fixed points for f™.

e Thus, the set of fixed points of f™ is dense in I, so by part (a) we conclude that ™' is the identity
function, and so every point of I is a periodic point for f.

(c) [Optional] Suppose that some iterate of f is the identity function. Show that f cannot have sensitive
dependence. [Hint: If f™ is the identity, then given x € I, show that there exists a positive constant eg
such that |y — x| < € implies | f*(y) — f*(x)| < B/2. Then let ¢ = min(eg, €1, ..., €n—1).]

e Suppose x € I and that f had sensitive dependence with a given value 5 > 0.
e Then since f (hence f¥) is continuous, we see that lim f*(y) = f*(z).
y—T

e In particular, there is some € such that |y — z| < € implies ’fk (y) — f* (x)| < B/2, by the definition
of the limit.

e Now, if we let e = min(eg,€1,...,€6,—1), then |y — x| < e implies |f¥(y) — f¥(z)| < B/2 for all
0 <k <n—1. But since f™ is the identity, this inequality actually holds for all £ > 0.

e But this contradicts sensitive dependence, because by hypothesis, for the given value of €, there
should exist y and k with |y — z| < e such that | f*(y) — f¥(z)| > B. (But there cannot be such y
and k because |f*(y) — f*(z)| is always less than 3/2.)

(d) Suppose that f is chaotic on I. Show that f must have periodic points of arbitrarily large exact period.

e By hypothesis, f has a dense set of periodic points. If f only had periodic points of period at most
n, then by part (b), some iterate of f would be the identity.

e Then by part (c), f would not have sensitive dependence. But f is chaotic, so it does have sensitive
dependence. This is a contradiction, so f must have periodic points of arbitrarily large exact period.

(e) Suppose that f is chaotic on I. Show that f must have a point of exact order 2¢ for every positive integer
d.

e By part (d), f has points of arbitrarily large exact period. If any of these periods is not a power
of 2, then by Sarkovskii’s theorem we would immediately get the result, since every integer not a
power of 2 precedes every power of 2 in the Sarkovskii ordering.

e If all of these periods are powers of 2, then since they become arbitrarily large, f must have a point
of exact order 2% for some sequence d; — co. But then, again by Sarkovskii’s theorem, f also has
points of order 2% for each integer k < d; and each i, so since the d; — oo we still get the desired
result.




