1. For the following dynamical systems (X, f), does f have sensitive dependence on all of X? If not, does it have sensitive dependence at any individual points in X? (Give some justification.)

(a)
$$X = [0, 1], f(x) = x^3$$
.

- This map does not have sensitive dependence on X, because all points in [0, 1) are attracted to the attracting fixed point at x = 0.
- It does have sensitive dependence at x = 1, since points with x < 1 will be attracted to 0 but the orbit of 1 remains fixed at 1.

(b)
$$X = \mathbb{R}, f(x) = 2x + 3.$$

- This map does have sensitive dependence on X is for any points x and y we have |f(x) f(y)| = 2|x y|, so the distance between any two points doubles with each application of f.
- (c) $X = \mathbb{R}, f(x) = \cos(x).$
 - This map does not have sensitive dependence on X, or at any point of X, because the attracting basin of the attracting fixed point at $x \approx 0.739$ is $(-\infty, \infty)$.
 - Every orbit will be (very rapidly) attracted to this attracting fixed point, so there is no dependence at all on the starting value.
- (d) $X = \Sigma_2, f(d_0 d_1 d_2 d_3 d_4 d_5 \cdots) = (d_2 d_3 d_4 d_5 \cdots).$
 - This map does have sensitive dependence on X: it is the second iterate of the shift map, and essentially the same argument as used for the shift map will demonstrate that it has sensitive dependence with $\beta = 1/2$.
 - Explicitly, suppose $x = (d_0 d_1 d_2 d_3 \cdots)$ and $\epsilon > 0$ are given, and choose n such that $2^{-2n} < \epsilon$.
 - Then choose $y = (d_0 d_1 \cdots d_{2n-1} e_{2n} 000 \cdots)$ where $e_{2n} = 1 d_{2n}$. Since x and y agree in the 0th through (2n-1)st coordinates, $d(x, y) \leq 2^{-2n} < \epsilon$.
 - Also, $f^n(x) = (d_{2n}d_{2n+1}d_{2n+2}\cdots)$ while $f^n(y) = (e_{2n}00\cdots)$ so $d(f^n(x), f^n(y)) \ge 1$.
 - Thus the orbits of x and y eventually move a distance at least 1 away from each other, so f has sensitive dependence as claimed.
- 2. Find exact expressions for the three 4-cycles of $q_{-2}(x) = x^2 2$.
 - From in class, we know that $q_{-2}(2\cos t) = 2\cos 2t$, and the points of period dividing *n* for q_{-2} are the 2^{n-1} values $x = 2\cos\frac{2k\pi}{2^n+1}$ for $1 \le k \le 2^{n-1}$ along with the 2^{n-1} values $x = 2\cos\frac{2k\pi}{2^n-1}$ for $0 \le k \le 2^{n-1} 1$.
 - So the points of period dividing 2 are $2\cos\frac{2\pi}{5}$, $2\cos\frac{4\pi}{5}$, $2\cos 0$, $2\cos\frac{2\pi}{3}$.
 - Then the points of period dividing 4 are $2\cos\frac{2\pi}{15}$, $2\cos\frac{4\pi}{15}$, $2\cos\frac{6\pi}{15} = 2\cos\frac{2\pi}{5}$, $2\cos\frac{8\pi}{15}$, $2\cos\frac{10\pi}{15} = 2\cos\frac{2\pi}{5}$, $2\cos\frac{12\pi}{15}$, $2\cos\frac{12\pi}{15} = 2\cos\frac{4\pi}{5}$, $2\cos\frac{14\pi}{15}$, along with $2\cos 0$, $2\cos\frac{2\pi}{17}$, $2\cos\frac{4\pi}{17}$, $2\cos\frac{6\pi}{17}$, $2\cos\frac{8\pi}{17}$, $2\cos\frac{10\pi}{17}$, $2\cos\frac{12\pi}{17}$, $2\cos\frac{14\pi}{17}$, $2\cos\frac{16\pi}{17}$.
 - As cycles these are $2\cos\frac{2\pi}{15} \rightarrow 2\cos\frac{4\pi}{15} \rightarrow 2\cos\frac{8\pi}{15} \rightarrow 2\cos\frac{14\pi}{15}$, $2\cos\frac{14\pi}{15} \rightarrow 2\cos\frac{14\pi}{17} \rightarrow 2\cos\frac{4\pi}{17} \rightarrow 2\cos\frac{8\pi}{17} \rightarrow 2\cos\frac{16\pi}{17}$ and $2\cos\frac{6\pi}{17} \rightarrow 2\cos\frac{12\pi}{17} \rightarrow 2\cos\frac{10\pi}{17} \rightarrow 2\cos\frac{14\pi}{17}$.

- 3. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function. Answer the following:
 - (a) If f has a point of exact period 11, does it necessarily have a point of exact period 32? 26? 17? 9? 4?
 - By Sarkovskii's theorem and its converse, we need only determine which of these integers appear after 11 in the Sarkovskii ordering $3 \triangleright 5 \triangleright 7 \triangleright \cdots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright 2 \cdot 7 \triangleright \cdots \triangleright 2^2 \cdot 3 \triangleright 2^2 \cdot 5 \triangleright \cdots \triangleright 2^n \triangleright 2^{n-1} \triangleright \cdots \triangleright 4 \triangleright 2 \triangleright 1$.
 - The only integers appearing before 11 are 3, 5, 7, and 9. So it does have points of period 32, 26, 17, 4 but not necessarily 9.
 - (b) If f has a point of exact period 22, does it necessarily have a point of exact period 32? 26? 17? 9? 4?
 - Again by Sarkovskii's theorem and its converse, we need only determine which of these integers appear after 26 in the Sarkovskii ordering.
 - All the odd integers along with 6, 10, 14 appear before 22. So it does have points of period 32, 26, 4 but not necessarily 9 or 17.
 - (c) If f has a point of exact period 16, does it necessarily have a point of exact period 32? 26? 17? 9? 4?
 - Again, we need only determine which of these integers appear after 16 in the Sarkovskii ordering.
 - The only integers after 16 are 8, 4, 2, and 1, so f is only required to have a point of period 4 but not any of the others.
- 4. Recall the definition of the tripling map $T(x) = \begin{cases} 3x & \text{for } 0 \le x < 1/3 \\ 3x 1 & \text{for } 1/3 \le x < 2/3 \text{ on the interval } [0, 1). \\ 3x 2 & \text{for } 2/3 \le x < 1 \end{cases}$

lently, T(x) = 3x modulo 1. The goal of this problem is to prove that T is chaotic.

- (a) Suppose $\alpha = 0.d_1d_2d_3d_4...$ in base 3, where, if α has a terminating expansion, we use that expansion instead of the non-terminating one. Show that $T(\alpha) = 0.d_2d_3d_4...$
 - If $\alpha = 0.d_1d_2d_3d_4...$, then $3\alpha = d_1.d_2d_3d_4...$, so 3α is congruent to $0.d_2d_3d_4...$ mod 1, and $0.d_2d_3d_4...$ lies in the interval [0, 1].
 - The only potential ambiguity is if α has two base-3 representations where the digit d_1 can have two different possible values.
 - There are only three such α : $\alpha = 0.1 = 0.0\overline{2}$, $\alpha = 0.2 = 0.1\overline{2}$, and $\alpha = 1.0 = 0.\overline{2}$, and it is straightforward to check that the statement also holds for these three values. So $T(\alpha) = 0.d_2d_3d_4...$ in all cases.
- (b) Show that the periodic points for T in [0,1) are precisely the points with a periodic base-3 decimal expansion. Conclude that the set of periodic points for T is dense in [0,1).
 - Suppose that $T^n(\alpha) = \alpha$, where $\alpha = 0.d_1d_2d_3...$ is a non-terminating base-3 expansion.
 - By part (a), we know that $T^n(\alpha) = 0.d_{n+1}d_{n+2}d_{n+3}...$, meaning that $d_i = d_{n+i}$ for each $i \ge 1$.
 - In other words, the base-3 expansion of α repeats every *n* digits.
 - Conversely, it is immediate that if the base-3 expansion of α repeats every *n* digits, and if α does not have a terminating base-3 expansion, then $T^n(\alpha) = \alpha$.
 - If $\alpha \in [0, 1)$ does have a terminating base-3 expansion, then it cannot be periodic unless $\alpha = 0$ (since the digits in the expansion are eventually all zeroes), and 0 is a fixed point of T.
 - For the last statement, observe that if $x = 0.x_1x_2x_3x_4...$, then there is a sequence of periodic points converging to x, namely: $0.\overline{x_1}, 0.\overline{x_1x_2}, 0.\overline{x_1x_2x_3}, 0.\overline{x_1x_2x_3x_4}, ...$

(c) Let $\gamma = 0$. $\underbrace{012}_{\text{length 1}} \underbrace{00010210\cdots 22}_{\text{length 2}} \cdots$ be the real number obtained by listing all length-1 sequences in

base 3, then all length-2 sequences, then all length-3 sequences, and so forth. Show that the orbit of γ is dense in [0, 1), and conclude T is transitive on [0, 1).

- By part (a), $T^k(\gamma)$ deletes the first k digits of the base-3 decimal expansion of γ .
- So in particular, for any sequence of digits, there is some k such that the decimal expansion of $T^k(\gamma)$ that begins with that sequence of digits.
- Thus for any $x \in [0, 1)$ and any $n \ge 1$, there is an element x_n in the orbit of γ under T that agrees with x to n decimal places.

• Then
$$\lim_{n \to \infty} x_n = x$$
, since $|x_n - x| \le \sum_{k=n+1}^{\infty} \frac{2}{3^k} \le 3^{-n}$.

- Since there is a sequence of points in the orbit of γ converging to x for any $x \in [0, 1)$, this means γ has a dense orbit, and therefore in particular T is transitive on [0, 1).
- (d) Suppose x and y are in [0, 1) with y > x. If both x and y lie in the same interval [0, 1/3), [1/3, 2/3), or [2/3, 1), show that |T(y) T(x)| = 3 |y x|. If they lie in different intervals, show that at least one of |y x| and |T(y) T(x)| must be $\ge 1/4$.
 - If x and y are both in [0, 1/3), [1/3, 2/3), or [2/3, 1) then T(y) = 3y a and T(x) = 3x a for $a \in \{0, 1, 2\}$ so |T(y) T(x)| = 3|y x| in each case.
 - Now suppose y and x lie in different intervals. If $y x \ge 1/4$ then we are already done.
 - Otherwise, assume y x < 1/4. If $x \in [0, 1/3)$ then $y \in [1/3, 2/3)$, so T(y) = 3y 1 and T(x) = 3x. Then |T(y) - T(x)| = |1 - 3(y - x)| > 1/4, as required.
 - If $x \in [1/3, 2/3)$ then $y \in [2/3, 1)$ so T(y) = 3y 2 and T(x) = 3x 1. then |T(y) T(x)| = |1 3(y x)| > 1/4 once again.
- (e) Suppose x and y are in [0, 1) and that $y \neq x$. Show that there is some $k \ge 0$ for which $|T^k(y) T^k(x)| \ge 1/4$. Conclude that T has sensitive dependence on [0, 1).
 - Let $n \ge 1$ and consider the iterates $T^n(x)$ and $T^n(y)$. If they lie in different intervals [0, 1/3), [1/3, 2/3), [2/3, 1), then by part (d) then it is either true that $|T^n(x) T^n(y)| \ge 1/4$ or $|T^{n+1}(x) T^{n+1}(y)| \ge 1/4$, so we are done.
 - We only need to eliminate the possibility that $T^n(x)$ and $T^n(y)$ always lie in the same interval. By part (d), if this is true then $|T^n(x) - T^n(y)| = 3^n |x - y|$. However, because $x \neq y$, eventually $3^n |x - y|$ will exceed 1/3: but this is impossible by the assumption that $T^n(x)$ and $T^n(y)$ both lie in an interval of length 1/3.
 - Finally, if we take any $\beta < 1/4$, then our results show that the definition of sensitive dependence is satisfied for that value of β .
- (f) Show that T is chaotic on [0, 1).
 - By parts (b), (c), and (e), T has a dense set of periodic points, T is transitive, and T has sensitive dependence. Therefore, by definition, T is chaotic.

5. Let $g: [0,2] \to [0,2]$ be defined via $g(x) = \begin{cases} x^2 - 3x + 2 & \text{for } 0 \le x \le 1 \\ x - 1 & \text{for } 1 < x \le 2 \end{cases}$. Show that g has a point of exact period n for each $n \ge 1$.

- Since g is continuous (as both component functions are continuous and they are both equal to 0 at x = 1), by Sarkovskii's theorem the statement that g has a point of exact period n for each $n \ge 1$ is equivalent to the statement that g has a point of order 3.
- So we look for a 3-cycle. A tiny amount of searching reveals the 3-cycle $\{0, 2, 1\}$, as g(0) = 2, g(2) = 1, and g(1) = 0. Thus by Sarkovskii's theorem, g has a point of exact period n for each $n \ge 1$.

- 6. Suppose $f: I \to I$ is a continuous function on a closed interval $I \subseteq \mathbb{R}$.
 - (a) Suppose that the set of fixed points of f is dense in I. Prove that f must be the identity function (i.e., that f(x) = x for all $x \in I$). [Hint: If $\lim_{n \to \infty} a_n = a$ is any convergent sequence, then $\lim_{n \to \infty} f(a_n) = f(a)$.]
 - Let $a \in I$. By the assumption that the set of fixed points is dense, there is some sequence of fixed points $\{a_n\}_{n\geq 1}$ such that $\lim_{n\to\infty} a_n = a$.
 - Then since f is continuous and $f(a_n) = a_n$ for all n, we see that $a = \lim_{n \to \infty} a_n = \lim_{n \to \infty} f(a_n) = f(a)$.
 - So f(a) = a. This is true for any $a \in I$, so f is the identity function.
 - (b) Suppose that the set of periodic points of period $\leq n$ for f is dense in I. Prove that some iterate of f must be the identity function. [Hint: Consider $g = f^{n!}$.]
 - Let $g(x) = f^{n!}(x)$. Then since k divides n! for each $1 \le k \le n$ we see that the set of periodic points of period $\le n$ for f are all fixed points for $f^{n!}$.
 - Thus, the set of fixed points of $f^{n!}$ is dense in I, so by part (a) we conclude that $f^{n!}$ is the identity function, and so every point of I is a periodic point for f.
 - (c) [Optional] Suppose that some iterate of f is the identity function. Show that f cannot have sensitive dependence. [Hint: If f^n is the identity, then given $x \in I$, show that there exists a positive constant ϵ_k such that $|y x| < \epsilon_k$ implies $|f^k(y) f^k(x)| < \beta/2$. Then let $\epsilon = \min(\epsilon_0, \epsilon_1, \ldots, \epsilon_{n-1})$.]
 - Suppose $x \in I$ and that f had sensitive dependence with a given value $\beta > 0$.
 - Then since f (hence f^k) is continuous, we see that $\lim_{x \to \infty} f^k(y) = f^k(x)$.
 - In particular, there is some ϵ_k such that $|y x| < \epsilon_k$ implies $|f^k(y) f^k(x)| < \beta/2$, by the definition of the limit.
 - Now, if we let $\epsilon = \min(\epsilon_0, \epsilon_1, \dots, \epsilon_{n-1})$, then $|y x| < \epsilon$ implies $|f^k(y) f^k(x)| < \beta/2$ for all $0 \le k \le n-1$. But since f^n is the identity, this inequality actually holds for all $k \ge 0$.
 - But this contradicts sensitive dependence, because by hypothesis, for the given value of ϵ , there should exist y and k with $|y x| < \epsilon$ such that $|f^k(y) f^k(x)| > \beta$. (But there cannot be such y and k because $|f^k(y) f^k(x)|$ is always less than $\beta/2$.)
 - (d) Suppose that f is chaotic on I. Show that f must have periodic points of arbitrarily large exact period.
 - By hypothesis, f has a dense set of periodic points. If f only had periodic points of period at most n, then by part (b), some iterate of f would be the identity.
 - Then by part (c), f would not have sensitive dependence. But f is chaotic, so it does have sensitive dependence. This is a contradiction, so f must have periodic points of arbitrarily large exact period.
 - (e) Suppose that f is chaotic on I. Show that f must have a point of exact order 2^d for every positive integer d.
 - By part (d), f has points of arbitrarily large exact period. If any of these periods is not a power of 2, then by Sarkovskii's theorem we would immediately get the result, since every integer not a power of 2 precedes every power of 2 in the Sarkovskii ordering.
 - If all of these periods are powers of 2, then since they become arbitrarily large, f must have a point of exact order 2^{d_i} for some sequence $d_i \to \infty$. But then, again by Sarkovskii's theorem, f also has points of order 2^k for each integer $k \leq d_i$ and each i, so since the $d_i \to \infty$ we still get the desired result.