
E. Dummit's Math 3543 ∼ Dynamics, Chaos, and Fractals, Spring 2025 ∼ Homework 5 Solutions

1. If we zoom in on the orbit diagram for qc(x) = x2+c, there appears to be an attracting 3-cycle when c = −1.76.

(a) Using the asymptotic orbit of the critical point x = 0, compute, to 10 decimal places, the apparent points
on this 3-cycle.

• Computing the 400th through 405th terms to 15 decimal places yields 0.023830803629517, −1.759432092798371,
1.335601289168856, 0.023830803629512, −1.759432092798372, 1.335601289168859.

• These are certainly stable to 10 decimal places: we get {0.0238308036, −1.7594320928, 1.3356012892} .

(b) For f(x) = x2 − 1.76, verify that if I1 = (0.0236, 0.0241), I2 = (−1.75945,−1.75941), and I3 =
(1.33552, 1.33567) then f(I1) ⊆ I2, f(I2) ⊆ I3, and f(I3) ⊆ I1.
• There are no critical points of f in any of these intervals, so we need only compute the value of f
on each endpoint, and verify that the endpoints of each interval land inside the next one.

• We have f(0.0236) = −1.75944304 and f(0.0239) = −1.75942879, and these both lie in I2.

• Also, f(−1.75945) = 1.3356643025 and f(−1.75941) = 1.3355235481, and these both lie in I3.

• Finally, f(1.33552) = 0.0236136704 and f(1.33567) = 0.0240143489, and both of these lie in I1.

(c) Show that there is indeed an attracting 3-cycle for qc(x) when c = −1.76.

• The criteria for the theorem on numerical existence of cycles are satis�ed so there is a point of period
3 that lies in I1.

• To show it is attracting we need to compute the maximum of f ′ on each interval. Again, since f ′′

has no critical points, we only need to do these computations for the endpoints.

• We have f ′(0.0236) = 0.0472 and f ′(0.0239) = 0.0482, and the maximum is 0.0482.

• Also, f ′(−1.75945) = −3.5189 and f ′(−1.75941) = −3.51882, and the maximum is −3.5189.

• Finally, f ′(1.33552) = 2.67104 and f ′(1.33567) = 2.67134, and the maximum is 2.67134.

• The product of the maximum values is −0.4530886, which has absolute value less than 1. Thus, the
cycle is necessarily attracting.

2. Consider the quadratic family qc(x) = x2 + c. For each given value of c, (i) plot the orbit diagram near that
value of c, (ii) identify from the picture whether or not there seems to be an attracting cycle, (iii) numerically
compute the 500th through 520th terms in the critical orbit, and (iv) if there appears to be a cycle, identify
the points on it to 5 decimal places and then test whether the cycle is actually attracting.

(a) c = −1.34.

• Based on the orbit diagram it appears that there is an attracting 4-cycle:

• The terms in the critical orbit are -1.3378866, 0.4499405, -1.1375535, -0.045971937, -1.3378866,
0.4499405, -1.1375535, -0.045971937, -1.3378866, 0.4499405, -1.1375535, -0.045971937, -1.3378866,
0.4499405, -1.1375535, -0.045971937, -1.3378866, 0.4499405, -1.1375535, -0.045971937, -1.3378866.

• Based on the orbit it seems that there is a 4-cycle whose points are -1.3378866, 0.4499405, -1.1375535,
-0.045971937.
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• Testing whether this cycle is attracting we compute the product of q′c(x) on the four values, which
evaluates to approximately −0.5037. Since this has absolute value less than 1, the cycle is indeed
attracting.

(b) c = −1.60.

• There does not appear to be an attracting cycle here, or if there is, its period is too large to identify:

• The terms in the critical orbit are -0.49551605, -1.3544638, 0.23457231, -1.5449758, 0.78695032, -
0.98070919, -0.63820949, -1.1926887, -0.17749378, -1.568496, 0.86017957, -0.86009111, -0.86024328, -
0.85998151, -0.86043181, -0.85965711, -0.86098966, -0.85869681, -0.8626398, -0.85585258, -0.86751636.

• These do not appear to have any especially regular pattern, although they seem to have ventured
close to the repelling �xed point x ≈ −0.86015.

(c) c = −1.477.

• Based on the orbit diagram it appears that there is an attracting 6-cycle.

• The terms in the critical orbit are -1.2119721, -0.0081236995, -1.476934, 0.70433406, -0.98091354,
-0.51480863, -1.2119721, -0.0081236995, -1.476934, 0.70433406, -0.98091354, -0.51480863, -1.2119721,
-0.0081236995, -1.476934, 0.70433406, -0.98091354, -0.51480863, -1.2119721, -0.0081236995, -1.476934.

• Based on the orbit it seems that there is a 6-cycle whose points are -1.2119721, -0.0081236995,
-1.476934, 0.70433406, -0.98091354, -0.51480863.

• Testing whether this cycle is attracting, we compute the product of q′c(x) on the four values, which
evaluates to approximately −0.3310. Since this has absolute value less than 1, the cycle is indeed
attracting.

(d) c = −1.626.

• Based on the orbit diagram it appears that there is an attracting 5-cycle:
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• The terms in the critical orbit are -1.2776623, 0.0064210359, -1.6259588, 1.0177419, -0.59020138, -
1.2776623, 0.0064210359, -1.6259588, 1.0177419, -0.59020138, -1.2776623, 0.0064210359, -1.6259588,
1.0177419, -0.59020138, -1.2776623, 0.0064210359, -1.6259588, 1.0177419, -0.59020138, -1.2776623}

• Based on the orbit it seems that there is a 5-cycle whose points are -1.2776623, 0.0064210359,
-1.6259588, 1.0177419, -0.59020138.

• Testing whether this cycle is attracting, we compute the product of q′c(x) on the four values, which
evaluates to approximately −0.2564. Since this has absolute value less than 1, the cycle is indeed
attracting.

Remark: For those values of c where there does appear to be a cycle, we could use a similar method as in
problem 1 to prove the cycle truly exists. (But that is rather tedious and so you are not asked to do it!)

3. Consider the one-parameter family fλ(x) = λ cos(x) for λ > 0.

(a) Explain why there is a unique asymptotic critical orbit, and that all of its points lie in [−λ, λ].

• Since f ′λ(x) = −λ sin(x) , the critical points are x = πk for integers k.

• Notice that fλ(πk) = (−1)kλ and thus f2λ(πk) = λ cos(λ), meaning that each critical orbit yields the
same values after two iterations: in other words, there is a unique asymptotic critical orbit.

• All of the points of the critical orbit clearly lie in [−λ, λ], since this is the range of fλ.

(b) Plot the orbit diagram for 0 ≤ λ ≤ 8.

• Here is the plot:

(c) Describe the change in the orbit structure that occurs for λ ≈ 2.97.

• It appears that, after a chaotic region, an attracting �xed point appears roughly at λ = 2.97.

(d) Describe the change in the orbit structure that occurs forλ ≈ 6.20.

• Like before, it appears that, after a chaotic region, an attracting �xed point arises at the indicated
value of λ.

We now work to explain the behaviors observed in (c) and (d) and calculate more precisely where they occur.

(e) Suppose x is an attracting �xed point of fλ(x). Explain why we must have λ = x/ cos(x) and−1 ≤
x tan(x) ≤ 1.
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• We must have fλ(x) = x and also |f ′λ(x)| ≤ 1. The �rst one yields λ cosx = x so that λ = x/ cos(x),
and then the second one yields |−λ sin(x)| ≤ 1 which after substituting λ = x/ cos(x) yields −1 ≤
x tan(x) ≤ 1, as desired.

(e) Using Newton's method (or another approach) with starting values x = −3 and also x = 6.2, estimate to
4 decimal places the values of x for which we have −1 ≤ x tan(x) ≤ 1. [Hint: Find zeroes of x tan(x) + 1
and also of x tan(x)− 1, then take the interval between them.]

• Using Newton's method with starting value x = −3 for the two functions x tan(x)+1 and x tan(x)−1,
we see that f ′λ(x) is between −1 and 1 roughly for −3.4256 ≤ x ≤ −2.7984.

• Using Newton's method with starting value x = 6.2 for the two functions x tan(x)+1 and x tan(x)−1,
we see that f ′λ(x) is between −1 and 1 roughly for 6.1213 ≤ x ≤ 6.4373.

(f) Determine to 3 decimal places the range of parameter values λ near λ ≈ 2.97, and also near λ ≈ 6.20,
for which fλ(x) has an attracting �xed point.

• Using the previous two parts we know we want λ = x/ cos(x) where −3.4256 ≤ x ≤ −2.7984. So
plotting this function on the interval we obtain 2.9717 ≤ λ ≤ 3.5686. Thus, on this parameter
interval, fλ has an attracting �xed point.

• Likewise, using instead the range 6.1213 ≤ x ≤ 6.4373, with λ = x/ cos(x) we obtain 2.9717 ≤ λ ≤
3.5686. Thus, on this parameter interval, fλ has an attracting �xed point.

(g) Describe the change in the orbit structure that occurs forλ ≈ 4.19. Can you explain it?

• Here, it appears that the behavior is chaotic, but transitions from having the orbit be restricted to
a small interval to moving through a much larger one.

• This is more di�cult to prove. Ultimately, what happens is that for λ less than the transitional
value, the critical orbit falls into a small interval that is mapped into itself by fλ, whereas for λ
exceeding the transitional value, the interval is no longer mapped inside itself.

4. The goal of this problem is to investigate some properties of the Cantor ternary set Γ =
⋂∞
n=0 Cn, where (recall)

C0 = [0, 1] and Cn+1 is obtained by removing the open middle third of each interval in Cn. Equivalently, Γ
consists of the points in [0, 1] that have a base-3 decimal expansion containing no 1s.

(a) Find the total length of all the intervals in Cn, and show that it goes to zero exponentially fast as n→∞.

• By induction, there are 2n intervals in Cn each of length
1

3n
. So the total length is

(
2

3

)n
, which

goes to zero exponentially fast.

(b) Show that every point in Γ is equal to a limit of a sequence of other points of Γ. [Hint: Use base-3
expansions, but be careful with terminating expansions!]

• Suppose �rst that x ∈ Γ has a non-terminating base-3 decimal expansion 0.d1d2d3d4 . . . where each
di is 0 or 2.

• If we take xi = 0.d1d2 . . . di, then each xi is an element of Γ since all of its digits are 0 or 2, including
the �hidden� zeroes after the terminating digit di.

• Clearly, limi→∞ xi = x by the de�nition of the base-3 decimal expansion, and none of the xi is equal
to x since by assumption x does not have a terminating base-3 expansion. So x is a limit of other
points of Γ in this case.

• Now suppose x has a terminating expansion x = 0.d1d2 · · · dk, and let xi = 0.d1d2 · · · dk 00 · · · 02︸ ︷︷ ︸
i zeroes

.

Then clearly limi→∞ xi = x, and each xi is in Γ and distinct from x, so x is a limit of other points
in Γ in this case as well.

(c) Show that Γ contains no nontrivial intervals (i.e., no intervals containing more than a single point).
Conclude that if x < y are any two points in Γ, then there exists a z with x < z < y such that z is not
in Γ.

• The �rst statement follows from the fact that the intervals at each stage of the construction of Γ
have lengths shrinking to zero. Explicitly: if I is any interval of positive length ε, then it cannot be
a subset of Cn for any n with 3−n < ε, because each of the intervals in Cn has length 3−n.
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• The second statement is simply a reinterpretation of the �rst statement: if x < y then because the
interval [x, y] is not a subset of Γ, there must be some point z ∈ [x, y] that is missing from Γ. Since
x and y are both in Γ, z ∈ (x, y), meaning that x < z < y.

(d) Show that Γ+Γ = [0, 2]: in other words, show that every real number in the interval [0, 2] can be written
as the sum of two (not necessarily di�erent) elements of Γ. [Hint: Consider the base-3 decimal expansions

of elements in the set
1

2
Γ = {1

2
x : x ∈ Γ}.]

• Following the hint, we notice that the elements in the set 1
2Γ are those real numbers that have a

base-3 decimal expansion containing only 0s and 1s.

• So suppose β ∈ [0, 2]. Then α = β/2 is in [0, 1], and so has a base-3 decimal expansion of the form
0.α1α2α3 . . . .

• Then we de�ne x and y in 1
2Γ as follows: if αi = 0 then xi = yi = 0, if αi = 1 then xi = 1 and

yi = 0, and if αi = 2 then xi = yi = 1.

• So, for example, if 1
2α = 0.201202 . . . , we would take x = 0.101101 . . . and y = 0.100101 . . . .

• From the digit expansions we see that α = x + y, since there are no carries and the digits all sum
correctly. Then β = 2x+ 2y, and clearly 2x and 2y are both elements of the Cantor ternary set Γ.

5. Consider the �tent map� T (x) =

{
3x if x ≤ 1/2

3− 3x if 1/2 < x
. (Its name comes from the shape of its graph.)

(a) Show that if x is outside [0, 1] then Tn(x)→ −∞ as n→∞.

• If x < 0 then T (x) = 3x, so then by iterating we see Tn(x) = 3nx→ −∞.

• If x > 1 then T (x) = 3− 3x < 0 and now we are back into the case above, so Tn(x)→ −∞ also.

(b) Show that the set of points x such that T (x) ∈ [0, 1] is the union of two closed intervals, and identify
these intervals.

• Notice that T is one-to-one on [0, 1/2] and [1/2, 1], and T maps each of these intervals (bijectively)
onto the interval [0, 3/2].

• Thus, the set of points with T (x) ∈ [0, 1] is a union of two closed intervals, one in [0, 1/2] and the
other in [1/2, 1]. Since T (1/3) = T (2/3) = 1 we see the intervals are [0, 1/3] and [2/3, 1].

(c) Show that the set of points x such that T 2(x) ∈ [0, 1] is the union of four closed intervals, and identify
these intervals.

• Since T maps each of [0, 1/3] and [2/3, 1] linearly onto the interval [0, 1], by repeating the argument
from (b) we see T 2 maps each of [0, 1/6], [1/6, 1/3], [2/3, 5/6], and [5/6, 1] linearly onto [0, 3/2].

• By linearity, we see that the set of points with T 2(x) is a union of the four closed intervals [0, 1/9],
[2/9, 3/9], [6/9, 7/9], and [8/9, 1].

(d) Identify the set of points x such that Tn(x) ∈ [0, 1] for every n ≥ 1. [Optional: Prove it.]

• Based on the pattern from parts (b) and (c) we guess that the desired set of points is the Cantor
ternary set Γ.

• To show this, we will prove by induction on n that the set of points such that Tn(x) ∈ [0, 1] is the
set Cn from the construction of the Cantor set. We also include as part of our induction hypothesis
the statement that Tn maps each of the 2n intervals in Cn bijectively onto the interval [0, 1].

• We already did the base case n = 1 in part (b). For the inductive step, suppose that Cn is the set
of points such that Tn(x) ∈ [0, 1] and that Tn maps each of the 2n intervals in Cn bijectively onto
the interval [0, 1].

• Then the set of points mapped into [0, 1] by Tn+1 consists of the points in Cn, but without the points
x such that Tn(x) ∈ (1/3, 2/3). By linearity and the induction hypothesis, this latter set consists of
the set obtained by removing the open middle third of each of the intervals in Cn: in other words,
the set Cn+1. Also, by linearity, each of the resulting 2n+1 intervals is mapped bijectively onto [0, 1]
by Tn+1. This is what was we needed to show for the induction, so we are done.
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