
E. Dummit's Math 3543 ∼ Dynamics, Chaos, and Fractals, Spring 2025 ∼ Homework 4 Solutions

1. For each function f and �xed point x0,
(i) verify that the given point x0 is a �xed point that is attracting or weakly attracting,
(ii) �nd the immediate attracting basin I of x0 to three decimal places, and then
(iii) plot the sets f−1(I), f−2(I), f−3(I), f−4(I), f−5(I) to give an approximation of the full attracting basin.

(a) f(x) = 0.5x− 2x2 + x3, with �xed point x0 = 0.

i. We see f(0) = 0 so x0 is a �xed point, and f ′(0) = 0.5 so it is attracting.

ii. Note f is de�ned everywhere, and solving f(x) = x yields the two other real �xed points x =
−0.22474 and x = 2.22474. The real preimages of the �rst �xed point (in addition to itself) are
x = 0.62516 and x = 1.59958 while the second �xed point only has itself as a preimage. Finally,
there are no real 2-cycles. Since the nearest points on either side of 0 are −0.22474 and 0.62516, the

immediate basin is (−0.224, 0.625) .
iii. Starting with the approximation I = (−0.224, 0.625), the desired inverse images are as plotted below.

(b) f(x) = 0.5x− 2.5x2 + x3, with �xed point x0 = 0.

i. We see f(0) = 0 so x0 is a �xed point, and f ′(0) = −0.5 so it is attracting.

ii. Note f is de�ned everywhere, and solving f(x) = x yields the two other real �xed points x = −0.1861
and x = 2.6861. The real preimages of the �rst �xed point (in addition to itself) are x = 0.4465
and x = 2.2396 while the second �xed point has no other real preimages. Finally, there are no real
2-cycles. Since the nearest points on either side of 0 are −0.1861 and 0.4465, the immediate basin is

(−0.1861, 0.4465) .
iii. Starting with the approximation I = (−0.186, 0.446), the desired inverse images are as plotted below.

(c) f(x) = −0.5x+ 2.5x2 − x3, with �xed point x0 = 1.5.

i. We see f(1.5) = 1.5 so x0 is a �xed point, and f ′(1.5) = 0.25 so it is attracting.

ii. Note f is de�ned everywhere, and solving f(x) = x yields the two other real �xed points x = 0 and
x = 1. The real preimages of x = 0 in addition to itself are x = 0.21922 and x = 2.28078 while the
real preimages of x = 1 in addition to itself are x = −0.5 and x = 2. Finally, there is a single real
2-cycle {−0.78671, 2.42753}. Since the nearest points on either side of 1.5 are 1 and 2, the immediate

basin is (1, 2) .

iii. Starting with the approximation I = (1, 2), the desired inverse images are as plotted below.
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2. Each of the given one-parameter families fλ(x) has a bifurcation at the given value of λ0. Plot the bifurcation
diagram for the family and use it to identify the type of bifurcation there, and then show algebraically that
the claimed bifurcation does occur (make sure to include all relevant calculations for this veri�cation!):

(a) fλ(x) = λ sin(x), λ0 = −1.
• Here is a plot of the bifurcation diagram:

• In the graph, the �xed-point curve �sprouts� a curve of period-2 points when λ0 = −1 and x0 = 0,
which indicates a period-doubling bifurcation.

• To show it algebraically, we need to check that fλ0(x0) = x0, f
′
λ0
(x0) = −1, and

∂(f2λ)
′

∂λ

∣∣∣∣
λ=λ0

(x0) 6=

0.

• We have f−1(0) = 0, f ′−1(0) = −1, and
∂(f2λ)

′

∂λ
(0) = 2λ which is nonzero at λ0 = −1.

• All of the criteria are satis�ed, so there is a period-doubling bifurcation at λ0 = −1.

(b) fλ(x) = λex − 2, λ0 = e.

• Here is a plot of the bifurcation diagram:

• In the graph, a pair of �xed points seem to show up λ0 = e and x0 = −1, which indicates a
saddle-node bifurcation. (There do not appear to be any period-2 points at all.)

• To show it algebraically, we need to check that fλ0
(x0) = x0, f

′
λ0
(x0) = 1, f ′′λ0

(x0) 6= 0, and

∂fλ
∂λ

∣∣∣∣
λ=λ0

(x0) 6= 0.

• We have fe(−1) = −1, f ′e(−1) = 1, f ′′e (−1) = −1, and
∂fλ
∂λ

= ex which is nonzero everywhere.

• All of the criteria are satis�ed, so there is a saddle-node bifurcation at λ0 = e.

(c) fλ(x) = eλx, λ0 = −e. [Hint: Use the algebraic equations characterizing the bifurcation to �nd its exact
coordinates.]

• Here is a plot of the bifurcation diagram:
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• In the graph, the �xed-point curve �sprouts� a curve of period-2 points when λ0 = −e, which indicates
a period-doubling bifurcation. It is not so easy to see the exact value of x0 from the picture (although
it appears to be approximately 0.38).

• Instead, we solve for it algebraically: we want x0 for which fλ0
(x0) = x0 and f ′λ0

(x0) = −1, or
equivalently, e−ex = x and −e · e−ex = −1.

• Plugging the �rst equation into the second gives −ex = −1 so that x = 1/e, which does indeed work
in both equations. (Since 1/e is about 0.368, it seems right.)

• We can compute
∂(f2λ)

′

∂λ
= λeλe

λx+λx
(
λ2xeλx + λeλx + λx+ 2

)
, so the value at (λ0, x0) simpli�es

to −1/e, which is nonzero.

• All of the criteria are satis�ed, so there is a period-doubling bifurcation at λ0 = −e.

(d) fλ(x) = λx2 − x3, λ0 = 2.

• Here is a plot of the bifurcation diagram:

• In the graph, a pair of �xed points seem to show up at λ0 = 2 and x0 = 1, which indicates a
saddle-node bifurcation.

• To show it algebraically, we need to check that fλ0(x0) = x0, f
′
λ0
(x0) = 1, f ′′λ0

(x0) 6= 0, and

∂fλ
∂λ

∣∣∣∣
λ=λ0

(x0) 6= 0.

• We have f2(1) = 1, f ′2(1) = 1, f ′′2 (1) = −2, and
∂fλ
∂λ

= x2 which is nonzero for x0 = 1.

• All of the criteria are satis�ed, so there is a saddle-node bifurcation at λ0 = 2.

(e) fλ(x) = λx2 − x3, λ0 = 4/
√
3.

• From the diagram in part (d), since 4/
√
3 is approximately 2.31, there appears to be a period-doubling

bifurcation. We cannot see the exact value from the picture, so we will solve for it algebraically.

• We want x0 for which fλ0(x0) = x0 and f
′
λ0
(x0) = −1, or equivalently, 4√

3
x2−x3 = x and 8√

3
x−3x2 =

−1. Solving with a computer shows that the only common root is x =
√
3.

• We can compute
∂(f2λ)

′

∂λ
= 2x3

(
6λ2 − 12x4 + 21λx3 +

(
3− 9λ2

)
x2 − 10λx

)
, and setting x0 =

√
3

and λ0 = 4/
√
3 gives the value as 6

√
3. (This is best done by computer, obviously!)

• All of the criteria are satis�ed, so there is a period-doubling bifurcation at λ0 = 4/
√
3.
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3. Compute the Schwarzian derivative Sf(x) for each function f(x), and decide whether Sf(x) < 0 for all x:

(a) f1(x) =
x

x+ 1
.

• We have f ′(x) = (x + 1)−2, f ′′(x) = −2(x + 1)−3, f ′′′(x) = 6(x + 1)−4 so
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

=

6(x+ 1)−2 − 3

2
· (−2)2(x+ 1)−2 = 0 .

• So it is not true that Sf(x) < 0 for all x. (Or any x for that matter.)

(b) f2(x) = xa for a a constant. (The answer will depend on a.)

• We have f ′ = a xa−1, f ′′ = a(a − 1)xa−2, f ′′′ = a(a − 1)(a − 2)xa−3 so Sf =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

=

(a− 1)(a− 2)x−2 − 3

2
(a− 1)2x−2 =

1− a2

2
x−2 .

• So for |a| > 1 it is true that Sf(x) < 0 for all x, and for |a| ≤ 1 it is not true that Sf(x) < 0 for all
x.

(c) f3(x) = tan(x).

• We have f ′ = sec(x)2, f ′′ = 2 sec(x)2 tan(x), f ′′′ = 2 sec(x)4 + 4 sec(x)2 tan(x)2 so Sf =
f ′′′

f ′
−

3

2

(
f ′′

f ′

)2

= 2 sec(x)2 + 4 tan(x)2 − 3

2
(2 tan(x))2 = 2 sec(x)2 − 2 tan(x)2 = 2 .

• So it is not true that Sf(x) < 0 for all x. (Or any x for that matter.)

(d) f4(x) = x4 − 3x+ π.

• We have f ′ = 4x3 − 3, f ′′ = 12x2, f ′′′ = 24x so Sf =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

=
24x

4x3 − 3
− 3

2
· 144x4

(4x3 − 3)2
=

−24x(3 + 5x3)

(4x3 − 3)2
.

• So it is not true that Sf < 0 for all x, since for instance if x = −0.1 then the value is positive.

4. Let fλ(x) = λx− x3.

(a) Plot the bifurcation diagram for this family. (Include �xed points and 2-cycles.)

• Here is a plot of the bifurcation diagram:
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(b) Identify the three pairs (λ0, x0) where period-doubling bifurcations occur, and then show algebraically
that period-doubling bifurcations do occur there.

• In fact there are three period-doubling bifurcations: one is at (λ0, x0) = (−1, 0) and the other two
are at (λ0, x0) = (2,±1).

• To apply the criterion, we check fλ0
(x0) = x0, that f

′
λ0
(x0) = −1, and that

∂(f2λ)
′

∂λ

∣∣∣∣
λ=λ0

(x0) 6= 0.

• We have f−1(0) = 0 and f ′−1(0) = −1, so these clearly hold. Furthermore, it is straightforward to

compute that (f2λ)
′(0) = λ2, so the desired derivative is

∂(f2λ)
′

∂λ
(0) = 2λ, which is indeed nonzero at

λ0 = −1.
• Similarly, f2(±1) = ±1 and f ′2(±1) = −1, so since (f2λ)

′(0) = λ2 the criteria also hold at the other
two points.

(c) There is another bifurcation at λ0 = 1 that is called a �pitchfork� bifurcation. Explain why it is not a
saddle-node bifurcation, according to our de�nition.

• The problem is that, in addition to the two �xed points that are created, there is also the constant-
valued �xed point at x = 0.

• Our de�nition of a saddle-node bifurcation requires that there be no �xed points on one side of the
bifurcation, one point at the bifurcation, and two points on the other side. Instead, we have one
�xed point on the left and three on the right.

• Note that the saddle-node criterion is not an if-and-only-if statement: saddle-node bifurcations can
still occur even when the criterion fails (which it does in this case: we have fλ(x) = x and f ′λ(x) = 1
but f ′′λ (x) = 0).

5. The goal of this problem is to illustrate how the Schwarzian derivative was originally used in complex analysis

to characterize the fractional linear transformations f(x) =
ax+ b

cx+ d
, where a, b, c, d are constants.

(a) Show that S(1/x) = 0 and S(cx+ d) = 0 for any c, d.

• For f =
1

x
we have f ′ = − 1

x2
, f ′′ =

2

x3
, f ′′′ = − 6

x4
so Sf =

f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

=
6

x2
− 3

2
(
2

x
)2 = 0.

• Likewise, for f = cx+ d we have f ′ = c and f ′′ = f ′′′ = 0 so Sf =
0

c
− 3

2
(
0

c
)2 = 0.

(b) Suppose that Sf = 0 and Sg = 0. Show that S(f ◦ g) = 0 also. [Hint: Schwarzian chain rule.]

• By the Schwarzian chain rule we know if h = f ◦ g, then Sh(x) = Sf(g(x)) · g′(x)2 + Sg(x).

• Thus, if Sf = 0 and Sg = 0, then S(f ◦ g) = Sf(g(x)) · g′(x)2 + Sg(x) = 0 · g′(x)2 + 0 = 0 as well.

(c) Show that S(
1

cx+ d
) = 0 and then that S(

ax+ b

cx+ d
) = S(

(bc− ad)/c
cx+ d

+
a

c
) = 0 for any a, b, c, d. [Hint:

Use (a) and (b).]

• Applying (b) with f = 1/x and g = cx+ d yields S(
1

cx+ d
) = 0 by (a).

• Then applying (b) with f =
1

cx+ d
and g =

bc− ad
c

x+
a

c
yields S(

ax+ b

cx+ d
) = S(

(bc− ad)/c
cx+ d

+
a

c
) = 0,

as desired.

• Of course, we could just have done the algebra directly: the purpose was to see how the Schwarzian
chain rule can save on e�ort.

5



Part (c) shows that the Schwarzian derivative of any fractional linear transformation is zero. Our goal now is to
show the converse: that a function with Schwarzian derivative zero must be a fractional linear transformation.

(d) [Optional] Suppose f is such that Sf(x) = 0 for all x. Show that ln(f ′′) =
3

2
ln(f ′)+C for some constant

C. [Hint: Integrate
f ′′′

f ′′
=

3

2

f ′′

f ′
.]

• If Sf = 0 then from the de�nition we see
f ′′′

f ′
=

3

2

(
f ′′

f ′

)2

, which is equivalent to
f ′′′

f ′′
=

3

2

f ′′

f ′
.

• Integrating both sides yields ln(f ′′) =
3

2
ln(f ′) + C for some constant of integration C.

(e) [Optional] Suppose g is such that ln(g′) =
3

2
ln(g)+C for some constant C. Show that g(x) = (cx+d)−2

for some c and d. [Hint: Integrate g−3/2g′ = eC .]

• The given equation is equivalent to ln(g′) = ln(g3/2 · eC), which upon exponentiation yields g′ =
g3/2 · eC .

• If we rewrite this expression as g−3/2g′ = eC and integrate both sides, we obtain −1

2
g−1/2 = eCx+D

for some constants C and D.

• Setting c = −2eC and d = −2D then produces g−1/2 = cx+ d, so that g(x) = (cx+ d)−2.

(f) [Optional] Suppose Sf(x) = 0 for all x. Show that f(x) =
ax+ b

cx+ d
for some a, b, c, d.

• By part (a) we see that ln(f ′′) =
3

2
ln(f ′)+C. By part (b) with g = f ′, we see that f ′(x) = (cx+d)−2

for some c and d.

• Integrating (yet again) gives f(x) =
−1/c
cx+ d

+A for some constant A. This is of the form
ax+ b

cx+ d
, as

required.
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