
E. Dummit's Math 3543 ∼ Dynamics, Chaos, and Fractals, Spring 2025 ∼ Homework 3 Solutions

1. For each function, (i) verify that the given point x0 is a �xed point that is attracting or weakly attracting, (ii)
compute exactly or to at least 5 decimal places all of the other real �xed points and points where the function
is unde�ned, the preimages of those other �xed/unde�ned points, and the 2-cycles, (iii) �nd the immediate

attracting basin of x0, and (iv) �nd the largest interval around x0 for which

∣∣∣∣f(x)− x0x− x0

∣∣∣∣ < 1 for all x 6= x0 in

that interval and verify that this interval is contained in the immediate attracting basin.

(a) f(x) =
3

4
x+ x3, with �xed point x0 = 0.

i. We see f(0) = 0 so x0 is a �xed point, and f ′(0) = 3/4 so it is attracting.

ii. Note f is de�ned everywhere, and solving f(x) = x yields the other �xed points x = −1

2
,
1

2
. Each

of these points has only itself as a real preimage (this can be checked numerically, or it follows
because f is strictly increasing, so f(x) = r has only one real solution for any r). Finally, solving
f(f(x)) = x yields only the �xed points so there are no 2-cycles.

iii. By (ii), the list of possible endpoints for the immediate basin is only {−∞,−1/2, 1/2,∞}, so taking

the ones closest to x0 on either side, we see that the immediate basin is (−1/2, 1/2) .

iv. Solving

∣∣∣∣f(x)− 0

x− 0

∣∣∣∣ < 1 yields

∣∣∣∣x2 + 3

4

∣∣∣∣ < 1 so that −1 < x2 +
3

4
< 1 so that x2 <

1

4
yielding

−1

2
< x <

1

2
. This is the interval (−1/2, 1/2) which is in fact the entire immediate attracting

basin!

(b) f(x) = x− x5, with �xed point x0 = 0.

i. We see f(0) = 0 so x0 is a �xed point, and f ′(0) = 1 so it is neutral. Since the �rst nonzero derivative
of f is the 5th derivative and f (5)(0) = −120, this neutral �xed point is weakly attracting on both
sides.

ii. Note f is de�ned everywhere, and solving f(x) = x yields only the given �xed point x = 0. Finally,
solving f(f(x)) = x yields the real �xed point x = 0 along with the 2-cycle {−21/4, 21/4}.

iii. By (i), the list of possible endpoints for the immediate basin is only {−∞,−21/4, 21/4,∞}, so taking

the ones closest to x0 on either side, we see that the immediate basin is (−21/4, 21/4) .

iv. Solving

∣∣∣∣f(x)− 0

x− 0

∣∣∣∣ < 1 yields we get
∣∣1− x4∣∣ < 1 so that 0 ≤ x4 < 2, which is equivalent to

x ∈ (−21/4, 21/4). So the desired interval is (−21/4, 21/4) which is in fact the entire immediate

attracting basin!

(c) f(x) =
2x2

3x− 1
, with �xed point x0 = 0.

i. Note f is unde�ned only at x = 1/3 . Solving f(x) = x yields the other �xed point x = 1 . Then

solving f(x) = 1 yields the preimage points x = 1/2 and x = 1, and solving f(x) = 1/3 yields no

real solutions. Finally, solving f(f(x)) = x yields only the real �xed points x = 0, 1 so there are no
2-cycles.

ii. We see f(0) = 0 so x0 is a �xed point, and f ′(0) = 0 so it is (super)attracting.

iii. By (i), the list of possible endpoints for the immediate basin is only {−∞, 1/3, 1/2, 1,∞}, so taking

the ones closest to x0 on either side, we see that the immediate basin is (−∞, 1/3) .

iv. Solving

∣∣∣∣f(x)− 0

x− 0

∣∣∣∣ < 1 yields

∣∣∣∣ 2x

3x− 1

∣∣∣∣ < 1 so that −1 < 2x

3x− 1
< 1 yielding x <

1

5
or x > 1. So the

desired interval around 0 is (−∞, 1/5) which is contained in the immediate basin, but not actually

equal to it.
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(d) f(x) = cosx, with �xed point x0 ≈ 0.739085 (to six decimal places). [Skip item (iv) for this part.]

i. Note f is de�ned everywhere. Solving f(x) = x numerically yields only the �xed point x0 ≈ 0.739085.
Finally, solving f(f(x)) = x numerically yields only the �xed point x0 again, so there are no 2-cycles.

ii. We see f(x0) = x0 so x0 is a �xed point, and f ′(x0) = − sin(x0) ≈ −0.673612 so it is attracting.

iii. By (i), the list of possible endpoints for the immediate basin is only {−∞,∞}, so the immediate

basin is (−∞,∞) .

Remark: In fact the inequality
∣∣∣ f(x)−x0

x−x0

∣∣∣ < 1 is in fact true for every real number x 6= x0 as can be

seen by graphing the function f(x)−x0

x−x0
, or as follows by an application of the mean value theorem:

we have f(x)−x0

x−x0
= f ′(c) for some c between x0 and x, but f ′(c) = − sin c will have absolute value at

most 1 since it is the sine of a real number.

2. For each function f and each initial value x0, apply Newton's method starting at x0 to search for a zero of
the function f , giving the results of the 10th, 100th, and 101st iterations to 5 decimal places. Does it appear
that Newton's method has identi�ed a zero of the function?

(a) f(x) = cosx with x0 = 0.1.

• We have N(x) = x− p(x)
p′(x) = x− cos x

− sin x = x+ cotx.

• Iterating N(x) with starting value x0 = 0.1, we see that to 5 decimal places, the 10th, 100th, and

101st iterations are all 10.99557 . It seems that Newton's method has identi�ed a zero in this case
(in this case, 7π/2).

(b) f(x) = ex − 20.25x with x0 = 0.1.

• We have N(x) = x− p(x)
p′(x) = x− ex−20.25x

ex−20.25 .

• Iterating N(x) with starting value x0 = 0.1, we see that to 5 decimal places, the 10th, 100th, and

101st iterations are all 0.05202 . It seems that Newton's method has identi�ed a zero in this case.

(c) f(x) = ex − 20.25x with x0 = 5.1.

• We have N(x) = x− ex−20.25x
ex−20.25 .

• Iterating N(x) with starting value x0 = 5.1, we see that to 5 decimal places, the 10th, 100th, and

101st iterations are all 4.51572 . It seems that Newton's method has identi�ed a zero in this case.

(d) f(x) = x2 + 1 with x0 = 0.1.

• We have N(x) = x− x2+1
2x .

• Iterating N(x) with starting value x0 = 0.1, we see that to 5 decimal places, the 10th iteration is

−0.04108 , the 100th iteration is 154.83139 , and the 101st iteration is 77.41247 . It seems that

the method has not found a zero in this case. (That should not be surprising, since clearly f has
no real zeroes!)

(e) f(x) = x3 − 3x2 + 3x− 1 with x0 = 0.1.

• We have N(x) = x− x3−3x2+3x−1
3x2−6x+3 .

• Iterating N(x) with starting value x0 = 0.1, we see that to 5 decimal places, the 10th iter-

ation is 0.98439 and the 100th and 101st iterations are 1.00000 . It seems that the method

has found a zero in this case, but it has taken longer than in the previous cases: that is because
f(x) = (x− 1)3, so the actual zero is x = 1 of multiplicity 3.

(f) f(x) = x3 − 2x+ 2 with x0 = 0.1.

• We have N(x) = x− x3−2x+2
3x2−2 .

• Iterating N(x) with starting value x0 = 0.1, we see that to 5 decimal places, the 10th iteration is

0.00020 , the 100th iteration is 0.00000 , and the 101st iteration is 1.00000 . It seems that the

method has not found a zero in this case, but instead gotten caught in a 2-cycle.
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3. Let p(x) = x5(x− 1)2(x− 2).

(a) Find the Newton iterating function N(x) for p, along with the �xed points of N .

• We have N(x) = x − p(x)

p′(x)
= x − x(x− 1)(x− 2)

5(x− 1)(x− 2) + 2x(x− 2) + x(x− 1)
= x− x(x− 1)(x− 2)

8x2 − 20x+ 10
after some cancellation.

• From the expression (or the arguments we gave about multiplicities of roots in Newton's �xed point

theorem) the �xed points of N are simply the roots x = 0, 1, 2 of f .

(b) Give a table of the �rst 10 iterates of the Newton iterating function applied to the starting values 0.1,
1.1, and 2.1. Which root has the fastest convergence? Which root has the slowest convergence? What
does Newton's �xed point theorem predict?

• Here is such a table:

0.1000000000 1.1000000000 2.1000000000

0.0788366337 1.0573275862 2.0295731707
0.0623704717 1.0313908199 2.0034092406
0.0494700769 1.0165822158 2.0000513882
0.0393130935 1.0085509080 2.0000000118
0.0312869102 1.0043464409 2.0000000000
0.0249271528 1.0021918285 2.0000000000
0.0198773374 1.0011006818 2.0000000000
0.0158612274 1.0005515477 2.0000000000
0.0126632525 1.0002760775 2.0000000000
0.0101142766 1.0001381149 2.0000000000

• Clearly, 0 is the slowest, 1 is in the middle, and 2 is the fastest. Newton's �xed point theorem says

that roots with higher multiplicity will have slower convergence (since N ′(r) = 1− 1

k
where k is the

multiplicity of the root), and that is what we see.

4. Suppose that f : R→ R is everywhere di�erentiable and that x is a (weakly) attracting �xed point of f .

(a) Show that the immediate attracting basin of x cannot have another attracting �xed point y as one of its
endpoints. [Hint: Consider what the immediate attracting basin of y would be.]

• Suppose otherwise, so that the immediate attracting basin of x has one of its endpoints at an
attracting �xed point y. But then the immediate attracting basin of y is an open interval containing
y, so it would intersect with the attracting basin of x: but then orbits starting in that overlap would
have to attract to both x and y, impossible.

(b) Show that the immediate attracting basin of x has one of the following forms: (i) (−∞,∞), (ii) (−∞, a)
or (a,∞) where a is a repelling or neutral �xed point of f , (iii) (a, b) where a and b are repelling or
neutral �xed points of f , (iv) (a, b) where one of a, b is a repelling or neutral �xed point of f and f maps
the other to it, or (v) (a, b) where {a, b} is a 2-cycle of f .

• As noted in (a), the �nite endpoints of the immediate attracting basin cannot be another attracting
�xed point. So the possibilities are (i) the interval is unbounded on both ends hence is (−∞,∞), (ii)
it is bounded at one end (where that endpoint must be a �xed point that is not attracting) hence is
of the form (−∞, a) or (a,∞) where a is a repelling or neutral �xed point of f , or both endpoints
are �nite.

• If both endpoints are �nite, either (iii) they are both non-attracting �xed points, or (iv) one is a
non-attracting �xed point and the other is a preimage of it, or (v) they form a 2-cycle. These are
all of the possibilities, so we are done.

Remark: The result of (b) shortens the list of possibilities that need to be considered when computing
immediate basins using the methods that we discussed in class.
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5. Let f(x) = x3 − 2x− 2.

(a) Show that this polynomial has exactly one real root r and that it lies in the interval (1, 2).

• Since f(1) = −3 and f(2) = 2 the intermediate value theorem says r has a root in (1, 2).

• Since f ′(x) = 3x2 − 2, f has a local maximum at −
√
2/3 and a local minimum at

√
2/3. Since

f(−
√
2/3) =

√
32

27
−2 is negative, f has no real root on (−∞,

√
2/3). Since it is monotone increasing

on (
√

2/3,∞), it has exactly one root.

(b) Find the Newton iterating function for f and then use Newton's method to calculate the root r, accurate
to 10 decimal places.

• We have N(x) = x− f(x)

f ′(x)
= x− x3 − 2x− 2

3x2 − 2
=

2(x3 + 1)

3x2 − 2
.

• The orbit of 1 is 1, 4, 2.826086956521739, 2.146719013739235, 1.842326277140092, 1.772847636439237,
1.769301397436449, 1.769292354297359, 1.769292354238631, 1.769292354238631, ....

• So to 10 decimal places the value is 1.7692923542 .

(c) Compare your result in part (b) to the numerical value of
1

3

[
3
√
27 + 3

√
57 +

3
√
27− 3

√
57
]
.

• To 10 decimal places, the quantity is 1.7692923542. (This seems vaguely familiar....)

Remark: In fact we can show that this value is actually a root of f : write a =
3
√

27 + 3
√
57 and b =

3
√
27− 3

√
57. Then ab = 3

√
272 − 32 · 57 = 3

√
216 = 6 and a3+ b3 = (27+3

√
57)+(27−3

√
57) = 54.

Expanding the cube gives (a+ b)3 = a3 + b3 + 3ab(a+ b) = 54 + 18(a+ b). So if 3y = (a+ b), then

(3y)3 = 54 + 18(3y), or 27y3 = 54 + 54y, or y3 − 2y − 2 = 0. In other words: y =
1

3
(a+ b) is a root

of the cubic.

6. Suppose f is continuously di�erentiable and has �nitely many zeroes r1 < r2 < · · · < rn each having �nite
multiplicity ≥ 1.

(a) Show that the Newton iterating function N(x) is unde�ned somewhere in the interval (ri, ri+1) for each
i with 1 ≤ i ≤ n− 1. [Hint: Use the mean value theorem.]

• By the mean value theorem, since f(ri) = 0 = f(ri+1), there is a c ∈ (ri, ri+1) for which f
′(c) = 0.

• Furthermore, c cannot be a zero of f since it is not one of the ri. Then N(c) = c− f(c)

f ′(c)
, and this

quantity is unde�ned because f(c) 6= 0 but f ′(c) = 0.

(b) If i 6= 1, n, show that the immediate attracting basin for ri as a �xed point of N must have the form
(a, b) where {a, b} is a 2-cycle for N . [Hint: Explain why the immediate basin does not extend to ±∞,
and then use this to show that N cannot be unde�ned at either endpoint of the basin.]

• By assumption, all of the zeroes of f have �nite multiplicity ≥ 1, so by Newton's �xed point theorem
they are all attracting. Thus, none of them can be the endpoint of any immediate basin, since
otherwise we would have an overlap between those immediate basins.

• Since i 6= 1, the immediate basin of ri cannot extend to −∞ (otherwise it would include r1, which
is nonsense) and similarly since i 6= n, the immediate basin of ri cannot extend to −∞ (otherwise it
would include rn). So it is an interval (a, b).

• If N were unde�ned at a, then we would necessarily have f ′(a) = 0. Since f(a) 6= 0 because a
is not a �xed point of N (i.e., a zero of f), we see that lim

x→a+
N(x) is either ∞ or −∞. But now

since (a, ri) is part of the immediate basin, every point in f((a, ri)) has orbit attracted to ri, so the
immediate basin of ri would be in�nite. Since we know this is not the case, N must be de�ned at a,
and similarly N must also be de�ned at b.

• So the only possibility for (a, b) is to have {a, b} form a 2-cycle, as claimed.
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(c) For f(x) = x(x− 1)(x− 4), �nd the immediate attracting basin for the �xed point r2 = 1 of the Newton
iterating function for f . (Give your answer to �ve decimal places.)

• The function satis�es the hypotheses of part (b) so all we need to do is compute the 2-cycles of

N(x) =
2x3 − 5x2

3x2 − 10x+ 4
.

• We can do this numerically (using Newton's method, even, in an amusing meta-application of the
procedure) to see that there is a single real-valued 2-cycle {0.532104, 2.362762}.
• Thus, the immediate basin is (0.53211, 2.36276) , where we rounded �inwards�.
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