
E. Dummit's Math 3543 ∼ Dynamics, Chaos, and Fractals, Spring 2025 ∼ Homework 2 Solutions

1. Each of these functions has a neutral �xed point. Find it (you do not need to show it is unique), and then
determine whether it is weakly attracting or weakly repelling for orbits on each side, making sure to include
brief justi�cation for the behavior:

(a) m(x) = x+ x5.

• Clearly 0 is the only �xed point, and it is neutral since m′(0) = 1. Since m(5)(0) = 120 is
the �rst nonzero higher derivative, we have k = 5, so the neutral �xed point theorem says that

0 is weakly repelling .

(b) a(x) = x− x4 + x7.

• The �xed points are the solutions to x = x − x4 + x7 so that x4(x3 − 1) = 0. So x = 0 and x = 1

are the possibilities, but since a′(0) = 1 and a′(1) = 3 only 0 is neutral .

• Since a′(0) = 1, a′′(0) = a′′′(0) = 0, and a(4)(0) = −24, we have k = 4, so the neutral �xed point

theorem says that 0 is weakly attracting on the right and weakly repelling on the left .

(c) t(x) = sin(x).

• The �xed points are the solutions to x = sin(x). Clearly x = 0 is a solution, and there are no other
solutions because the function x − sin(x) is monotone increasing (its derivative is 1 − cos(x) which

is always nonnegative). And indeed, t′(0) = 1, so 0 is neutral .

• We have t′′(0) = 0 and t′′′(0) = −1, so k = 3 and then the neutral �xed point theorem says that 0

is weakly attracting .

(d) h(x) = ex/e.

• From a plot (or a root�nder, or inspired guessing) we see that x = e is a �xed point of h, and there
are no other �xed points because the function ex/e−x has a global minimum at x = e (its derivative

is e(x/e)−1−1 which is positive for x > e and negative for x < e). Indeed, h′(e) = 1, so e is neutral .

• We have h′′(e) = 1/e so we get k = 2 and then the neutral �xed point theorem says that e is

weakly repelling on the right and weakly attracting on the left .

(e) y(x) = ln(1− x).
• From a plot we see that x = 0 is a �xed point of y, and there are no other solutions because the

function x − ln(1 − x) is monotone increasing (its derivative is 1 +
1

1− x
which is positive on the

whole domain). Then y′(0) = −1 so 0 is neutral .

• Since y′(0) = −1 we need to look at q(x) = y2(x) = ln(1− ln(1− x)). Some calculus gives q′(0) = 1,
q′′(0) = 0, and q′′′(0) = 1, so k = 3 and the neutral �xed point theorem says that 0 is weakly

repelling for q and hence also weakly repelling for y.

2. Let pc(x) = −x + x2 + cx3, where c is a constant, and notice that 0 is a neutral �xed point. Determine (in
terms of c) when 0 is weakly attracting and when it is weakly repelling.

• Since p′c(0) = −1 we need to look at q(x) = p2c(x) = x− (2c+ 2)x3 + (c+ 1)x4 + · · ·+ c4x9.

• If 2c+ 2 > 0 then the coe�cient of x3 is negative and so the neutral �xed point theorem says that 0 is
weakly attracting.

• If 2c + 2 < 0 then the coe�cient of x3 is positive and so the neutral �xed point theorem says that 0 is
weakly repelling.

• If c = −1 then we compute explicitly p2−1(x) = x+4x5− 6x6 +6x7− 3x8 +x9, so the neutral �xed point
theorem says that 0 is weakly repelling.

• Thus, 0 is weakly attracting for c > −1 and 0 is weakly repelling for c ≤ −1 .
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3. Let p(x) = x3 − ax for a parameter a > 1.

(a) Find the three �xed points of p and classify them as attracting, repelling, or neutral (in terms of a).

• The �xed points are x = 0 and x = ±
√
a+ 1. We have p′(0) = −a so since a > 1 this point is

repelling . Also, p′(±
√
a+ 1) = 3 + 2a, so these points are also repelling .

(b) Find a 2-cycle for p of the form {x0,−x0} and classify it as attracting, repelling, or neutral (in terms of
a).

• Solving x3 − ax = −x gives x = 0 and x = ±
√
a− 1, and so

{√
a− 1,−

√
a− 1

}
is a 2-cycle.

• Also, p′(±
√
a− 1) = 2a− 3, so we need to compare

∣∣p′(√a− 1)p′(−
√
a− 1)

∣∣ = (2a− 3)2 to 1. It is
less than 1 when 1 < a < 2, equal to 1 when a = 2, and greater than 1 when a > 2.

• Thus, the 2-cycle is attracting when 1 < a < 2 , neutral when a = 2 , and repelling when a > 2 .

(c) For a = 5/2, it turns out that p has two other 2-cycles in addition to the one you found in part (b).
Compute them explicitly, and classify them as attracting, repelling, or neutral.

• At �rst glance, p(p(x))−x is a polynomial of degree 9. However, we know it is divisible by the cubic
p(x) − x, and it is also divisible by the quadratic polynomial arising from the 2-cycle we found in
part (b), namely x2 − (a− 1).

• Thus, the quotient is a polynomial of degree 4. After some algebra (ideally, with a computer), we

obtain
p(p(x))− x

[p(x)− x] · [x2 − (a− 1)]
= x4 − ax2 + 1.

• This quartic polynomial is easy to solve since it is quadratic in x2: the solutions are x = ±
√
a±
√
a2 − 4

2
for the four possible choices of signs. (Note that there will only be real-valued solutions when a ≥ 2.)

• When a = 5/2, we get x = ±
√
2, ±1/

√
2, so the two other 2-cycles are {

√
2,−1/

√
2} and {−

√
2, 1/
√
2} .

• We have p′(±
√
2) =

7

2
and p′(±1/

√
2) = −1 so both 2-cycles are repelling .

4. Suppose {x0, x1, x2} is a neutral 3-cycle for the function f and f ′(xi) = 1 for each i = 0, 1, 2.

(a) If g = f3, show that g′′(x0) = g′′(x1) = g′′(x2) = f ′′(x0) + f ′′(x1) + f ′′(x2). [Hint: Use the product and
chain rules to compute g′′(x), then set x = x0.]

• We compute g′(x) = f ′(f2(x)) · f ′(f(x)) · f ′(x), and then g′′(x) = f ′′(f2(x)) · f ′(f(x))2 · f ′(x)2 +
f ′(f2(x)) · f ′′(f(x)) · f ′(x)2 + f ′(f2(x)) + f ′(f(x)) · f ′(f(x)) · f ′′(x).
• Setting x = x0 produces g′′(x0) = f ′′(x2) + f ′′(x1) + f ′′(x0), since all of the f

′ terms are equal to 1
by hypothesis. Similarly, g′′(x1) and g

′′(x2) are also equal to this quantity, by symmetry.

(b) Let p(x) = 1+ x− 3x2 − 15

4
x3 +

3

2
x4 +

9

4
x5. Show that 0 lies on a neutral 3-cycle for p, and classify the

behavior of p3 near 0 as weakly attracting or repelling on each side of 0. [Hint: Use (a).]

• We have p(0) = 1, p(1) = −1, and p(−1) = 0, so {0, 1,−1} is a 3-cycle. Also, p′(x) = 1 − 6x −
45

4
x2 + 6x3 +

45

4
x4, so p′(0) = 1, p′(1) = 1, and p′(−1) = 1, so the cycle is neutral.

• For the classi�cation, we need to compute the second derivative of g = p3. We can use the result of
part (a) since all the hypotheses hold.

• Since p′′(x) = −6 − 45

2
x + 18x2 + 45x3, we get g′′(0) = p′′(0) + p′′(1) + p′′(−1) = (−6) + (69/2) +

(−21/2) = 18. Since this is positive, by the neutral �xed point theorem we see that the 3-cycle is

weakly attracting on the left of 0 and weakly repelling on the right of 0 .

• It is worth noting that if we had tried to use the neutral point theorem directly, we would have needed
to compute the second derivative of the polynomial p3(x), which has degree 125. (Not pleasant!)
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5. Consider the two functions

s1(x) = −x+ x2 − x3 + 3

2
x4 − 5

2
x5 +

19

8
x6 − 139

80
x8 +

653

1000
x10

s2(x) = −x+ x2 − x3 + 3

2
x4 − 5

2
x5 +

19

8
x6 − 139

80
x8 +

652

1000
x10

and observe that they both have a neutral �xed point at x0 = 0.

(a) Numerically compute the �rst �ve elements in the orbits of 0.1 and 0.01 under both s1 and s2 to at least
30 decimal places.

• Here are the results of the computations taken to 40 decimal places. We have grouped the even and
odd terms together in the orbits to make it easier to compare them.

Orbits under s1 Even terms (x0, x2, x4) Odd terms (x1, x3, x5)

0.1 0.1000000000000000000000000000000000000000 -0.0908726423098000000000000000000000000000
0.1000000000085596382404114674105599083957 -0.0908726423168626335514823106525346698502
0.1000000000171192764899588293710982820028 -0.0908726423239252671103901149797925650902

0.01 0.0100000000000000000000000000000000000000 -0.0099009852476251737434800000000000000000
0.0100000000000000000000020676287351274485 -0.0099009852476251737434820268842987805353
0.0100000000000000000000041352574702548970 -0.0099009852476251737434840537685975610706

Orbits under s2 Even terms (x0, x2, x4) Odd terms (x1, x3, x5)

0.1 0.1000000000000000000000000000000000000000 -0.0908726423097000000000000000000000000000
0.1000000000084768421444246387415192088427 -0.0908726423166943177570824311499090033597
0.1000000000169536842978217079382026613107 -0.0908726423236886355214576483591304298254

0.01 0.0100000000000000000000000000000000000000 -0.0099009852476251737434700000000000000000
0.0100000000000000000000009194338836903823 -0.0099009852476251737434709013156331975496
0.0100000000000000000000018388677673807646 -0.0099009852476251737434718026312663950992

(b) Based only on the orbits of 0.1 and 0.01, decide whether you think 0 is weakly attracting or weakly
repelling for s1 and s2.

• For s1 and s2, both orbits are moving away from 0, so it appears that 0 weakly repelling for both
functions.

(c) Now compute the �ve elements in the orbit of 0.001 under s1 and s2 to 40 decimal places. Do the results
agree with your guess from part (b)?

• Here are the results of the computations taken to 40 decimal places, grouped the same way as before:

Orbit under s1 Even terms (x0, x2, x4) Odd terms (x1, x3, x5)

0.001 0.0010000000000000000000000000000000000000 -0.0009990009985024976250017374993480000000
0.0010000000000000000000000000000000073619 -0.0009990009985024976250017374993480073471
0.0010000000000000000000000000000000147237 -0.0009990009985024976250017374993480146943

Orbit under s2 Even terms (x0, x2, x4) Odd terms (x1, x3, x5)

0.001 0.0010000000000000000000000000000000000000 -0.0009990009985024976250017374993470000000
0.0009999999999999999999999999999999954156 -0.0009990009985024976250017374993469954248
0.0009999999999999999999999999999999908312 -0.0009990009985024976250017374993469908496

• For s1, the orbits are still moving away from 0, but for s2, the orbits now seem to be moving towards
0, though we need almost all of the 40 digits' worth of accuracy to see that this is happening. It
seems that 0 might actually be weakly attracting for s2 rather than weakly repelling as we previously
thought.

(d) Show that the neutral �xed point is weakly repelling for one of s1, s2 but weakly attracting for the other.

• Using Mathematica to compute the Taylor series for the double iterates to degree 11 shows that

s21(x) = x +
29

4000
x11 + O(x12), while s22(x) = x − 19

4000
x11 + O(x12), where the O(x12) is standard

notation for �terms of degree at least 12 in x�.

• Thus by the neutral �xed point criterion, 0 is weakly repelling for s1 but weakly attracting for s2 .
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• It should be a little bit unsettling that the computations for s2 lie to us unless we take 40 digits'
worth of accuracy! It should also be a bit unsettling that a change of 0.001 in the coe�cient of x10

in the polynomial s1(x) is able to change the behavior from weakly repelling to weakly attracting.

Remark: In fact, it is completely impossible to analyze the behavior of s1 and s2 near 0 using a graph.

• On the interval [−ε, ε] for small ε, the maximum value of the di�erence |s1(s1(x))− x| is roughly on
the order of 11! · ε11 by Taylor's theorem.

• So, for example, if ε = 10−3, the maximum value of the di�erence between s1(s1(x)) and x will be
roughly of size 11! · 10−33 ≈ 10−25.

• Even if the computer draws 105 points in the interval when producing the graph (a typical HD video
has pixel dimensions 1920×1080, about 1/50th as many points), the di�erence between y = s1(s1(x))
and y = x will be about 20 orders of magnitude smaller than the points the computer can draw!
(Even if we throw in an enormous fudge factor of 1010, there is still no way to see the di�erence.)

6. The goal of this problem is to explore a pathological example: a �xed point of a non-di�erentiable function.

Let f(x) =

x+ x sin

(
1

x

)
for x > 0

0 for x = 0
: note that f maps [0,∞)→ [0,∞), and that f is continuous but not

di�erentiable at x = 0.

(a) Find all the �xed points of f , and show that (except for x = 0) they are all repelling.

• Clearly x = 0 is a �xed point. Setting x = x+ x sin

(
1

x

)
with x > 0 gives x sin

(
1

x

)
= 0, which is

true only when sin

(
1

x

)
= 0 � namely, for x =

1

kπ
for k a positive integer .

• We have f ′(x) = 1 + sin

(
1

x

)
− 1

x
cos

(
1

x

)
, so f ′(

1

kπ
) = 1− kπ · (−1)k, which always has absolute

value larger than 1 for each positive integer k: thus, they are all repelling.

(b) Numerically compute the �rst 10 elements in the orbits of each of x0 = 0.1, 0.01, 0.001, 0.0001, and
0.00015494157427205179. Are they being attracted to or repelled from zero in a consistent way?

• Mathematica gives the following results (rounded to six signi�cant digits but with 80-digit internal
precision):

◦ {0.100000, 0.0455979, 0.0483462, 0.0950198, 0.0103655, 0.0185837, 0.0112875, 0.0179274, 0.00547075,
0.00845900, 0.000692953}

◦ {0.0100000, 0.00493634, 0.00986559, 0.0171554, 0.0340603, 0.00393475, 0.00518508, 0.000308758,
0.000370067, 0.000528406, 0.00102881}

◦ {0.00100000, 0.00182688, 0.00306457, 0.00182712, 0.00296465, 0.000250055, 0.000283750, 0.000115410,
0.000145071, 0.000218322, 0.000208997}

◦ {0.000100000, 0.0000694386, 0.0000804566, 0.000144181, 0.0000300359, 0.00000382582, 0.00000729502,
0.00000438300, 0.00000153916, 0.00000205480, 0.00000359648}

◦ {0.000154942, 0.000300146, 0.000599813, 0.00110407, 0.00200729, 0.00395649, 0.00786910, 0.0156436,
0.0295274, 0.0483376, 0.0949565}

• The �rst orbits seem to be approaching 0 (but rather haphazardly), but the last orbit seems to move
away from 0 at every step, roughly doubling each time.

(c) Explain how to use the graphs of y = x, y = f(x), and y = f2(x) below to locate (i) �xed points, (ii)
periodic points of order exactly 2, and (iii) points x0 such that f(x0) is �xed but x0 is not �xed. (Do
not do any computations.)

4



• For (i), the �xed points are the intersections between y = f(x) and y = x, which are the yellow and
green curves shown in the �rst plot.

• For (ii), a point will be periodic of order 2 whenever y = f2(x) intersects y = x but not y = f(x).
On the third plot, these will be the points where the green and blue curves but not the yellow curve
intersect.

• For (iii), the points such that f(x0) is �xed but x0 is not �xed are the points where y = f2(x)
intersects y = f(x) but not y = x will be an eventually �xed point. On the third plot, these will be
the points where the yellow and blue curves but not the green curve intersect.

• The pictures suggest that there are in�nitely many 2-cycles for this function as we approach x = 0,
and also in�nitely many points whose image is a �xed point. (In fact, there seem to be in�nitely
many of the latter near every zero of f .) Using some more careful analysis, one can prove both of
these facts.

(d) Show that, in any open interval (0, ε) for any positive ε, there are in�nitely many points such that f(x) >
x, in�nitely many points such that f(x) = x, and in�nitely many points such that f(x) < x. Explain
why this makes it impossible to characterize the orbit behavior near 0 as �attracting� or �repelling�.

• The point is that f(x) > x, f(x) = x, and f(x) < x will occur, respectively, when sin

(
1

x

)
> 0,

sin

(
1

x

)
= 0, and sin

(
1

x

)
< 0.

• So f(x) > x on the intervals of the form

(
1

π + 2kπ
,

1

2kπ

)
and f(x) < x on the intervals of the form(

1

2π + 2kπ
,

1

π + 2kπ

)
for nonnegative integers k, and there are in�nitely many intervals of each

type in any open interval (0, ε). Likewise, there are in�nitely many �xed points, since those have the

form
1

nπ
.

• For the last piece, the above tells us that in any interval around 0, there will be some points that
f moves closer to 0 and others that f moves farther away. (In fact, it can be proven that there are
always in�nitely many points in any interval around 0 whose orbit will contain a value larger than
0.1, and in�nitely many others whose orbit has limit 0.)
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