
E. Dummit's Math 3543 ∼ Dynamics, Chaos, and Fractals, Summer-2 2023 ∼ Homework 1 Solutions

1. Let g(x) = x2.

(a) Compute the �rst four points on the orbit of 1, on the orbit of −2, and on the orbit of 1/2.

• 1, 1, 1, 1 , −2, 4, 16, 256 ,
1

2
,
1

4
,
1

16
,

1

256
.

(b) Compute g2(x), g3(x), and g4(x). What is the general formula for gn(x)?

• We have g2(x) = x4 , g3(x) = x8 , g4(x) = x16 , and in general, gn(x) = x2
n

.

(c) Find all real numbers x that are eventually periodic points for g.

• Using the formula from (b) we need x2
n

= x, which factors as x(x2
n − 1) = 0.

• Thus we get either x = 0 or x2
n

= 1 yielding x = ±1.
• We have 0 → 0 → 0 → · · · so 0 is a periodic point of order 1, and also 1 → 1 → 1 → · · · so 1 is a
periodic point also of order 1.

• Finally, −1→ 1→ 1→ 1→ · · · so −1 is eventually periodic.

2. For each function f and each point below, identify whether the point is (i) periodic, (ii) eventually periodic,
or (iii) non-periodic.

(a) f(x) = x2 − 2, with points x =
√
2, x =

√
5, x = −1, x =

1 +
√
5

2
.

• We have
√
2→ 0→ −2→ 2→ 2→ 2→ · · · , so

√
2 is eventually periodic .

• We have
√
5 → 3 → 7 → 47 → 2207 → 4870847 → · · · and it is clear that the values will continue

growing in absolute value, so
√
5 is non-periodic .

• We have −1→ −1→ −1→ · · · , so −1 is periodic : indeed it is a �xed point.

• We have
1 +
√
5

2
→ −1 +

√
5

2
→ −1−

√
5

2
→ −1 +

√
5

2
→ · · · , so 1 +

√
5

2
is eventually periodic .

(b) f(x) =
1

3
(3 + 5x− 2x3), with points x =

1

2

√
10, x = −3, x = 0, and x = 3.

• We have
1

2

√
10→ 1→ 2→ −1→ 0→ 1→ · · · , so 1

2

√
10 is eventually periodic .

• We have −3 → 14 → −1805 → 3820487076 → · · · and it is clear that the values will continue
growing in absolute value, so −3 is non-periodic .

• We have 0→ 1→ 2→ −1→ 0→ · · · , so 0 is periodic .

• We have 3→ −12→ 1133→ −969611202→ · · · and it is clear that the values will continue growing

in absolute value, so 3 is non-periodic .

(c) f(x) = |2x− 2| − x, with points x = 5, x = 10, x =
5

3
, x = −1

5
.

• We have 5→ 3→ 1→ −1→ 5→ · · · , so 5 is periodic .

• We have 10→ 8→ 6→ 4→ 2→ 0→ 2→ · · · , so 2 is eventually periodic .

• We have
5

3
→ −1

3
→ 3→ 1→ −1→ 5→ 3→ · · · , so 5

3
is eventually periodic .

• We have −1

5
→ 13

5
→ 3

5
→ 1

5
→ 7

5
→ −3

5
→ 19

5
→ 9

5
→ −1

5
→ · · · , so −1

5
is periodic .
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3. Find all real �xed points (if there are any) for the following functions, and classify each of them as attracting,
repelling, or neutral.

(a) a(x) = x2 − 4x+ 4.

• x4 − 4x+ 4 = x gives (x− 1)(x− 4) = 0 so the �xed points are x = 1, 4 .

• Since a′(1) = −2 and a′(4) = 4, they are both repelling .

(b) b(x) = x2 + 4.

• x4 + 4 = x gives x =
1± i

√
15

2
so there are no real �xed points .

(c) c(x) = x2 − 1

2
x+

1

2
.

• The �xed points are x = 1,
1

2
. We have c′(1) =

3

2
so 1 is repelling , and c′(

1

2
) =

1

2
so

1

2
is attracting .

(d) d(x) = x3.

• x3 = x gives x(x2 − 1) = 0 so x = −1, 0, 1 .

• We have d′(−1) = 3 so −1 is repelling , d′(0) = 0 so 0 is attracting , and d′(1) = 3 so −1 is repelling .

(e) e(x) =
10

x2 + 1
.

• 10

x2 + 1
= x gives x3 + x− 10 = 0, which factors as (x− 2)(x2 + 2x+ 5) = 0 and the quadratic has

roots x = −1± 2i. So the only real �xed point is x = 2 .

• We have e′(2) = −8

5
so 2 is repelling .

(f) f(x) =
2x3

3x2 − 1
.

• Solving x =
2x3

3x2 − 1
gives x = 0,−1, 1 . We also have f ′(x) =

6(x4 − x2)
(3x2 − 1)2

, after simpli�cation.

• Then f ′(0) = 0, f ′(1) = 0, and f ′(−1) = 0, so each �xed point is attracting .

(g) g(x) = x cos(x).

• x cos(x) = x factors as x [cos(x)− 1] = 0, so x = 0 or cos(x) = 1. The latter happens precisely
when x = 2πk for an integer k (which subsumes the case x = 0), so the �xed points are x =

2πk for any integer k .

• We have g′(x) = cos(x)−x sin(x), so g′(2πk) = 1 for all integers k. Thus, each �xed point is neutral .

(h) h(x) = |x|.

• |x| = x is true whenever x ≥ 0 . Since w′(x) = 1 for x > 0 and w′(0) is unde�ned, all of these �xed

points are neutral .

4. For each of the following functions f(x), the point x = 0 lies in a periodic orbit. Classify this orbit as
attracting, repelling, or neutral:

(a) f(x) = 1− 3

2
x2 − 1

2
x3.

• We have 0 → 1 → −1 → 0 so the orbit has length 3. Since f ′(x) = −3x − 3

2
x2 we see f ′(0) = 0,

f ′(1) = −9

2
, and f ′(−1) = 3

2
, so by the chain rule formula we see that (f3)′(0) = 0 · (−9

2
) · 3

2
= 0.

Hence the orbit is attracting .
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(b) f(x) = 5− x.
• We have 0→ 5→ 0 so the orbit has length 2. Since f ′(x) = −1 we see f ′(0) = f ′(5) = −1 so by the

chain rule formula we see that (f2)′(0) = (−1) · (−1) = 1. Hence the orbit is neutral .

(c) f(x) = 2 + 2x− 1

4
x2 − 1

4
x3.

• We have 0 → 2 → 3 → −1 → 0 so the orbit has length 4. Since f ′(x) = 2 − 1

2
x − 3

4
x2 we

see f ′(0) = 2, f ′(2) = −2, f ′(3) = −25

4
, f ′(−1) =

7

4
, so by the chain rule formula we see that

(f4)′(0) = 2 · (−2) · (−25

4
) · 7

4
=

175

4
. Hence the orbit is repelling .

(d) f(x) =
√
2(x2 − x) + (1− x).

• We have 0→ 1→ 0 so the orbit has length 2. Since f ′(x) =
√
2(2x− 1)− 1 we see f ′(0) = −

√
2− 1

and f ′(1) =
√
2 − 1 so by the chain rule formula we see that (f2)′(0) = (−

√
2 − 1)(

√
2 − 1) = −1.

Hence the orbit is neutral .

(e) f(x) = 1 + 0.1x+ 2.1x2 − 1.2x3.

• We have 0→ 1→ 2→ 0 so the orbit has length 3. Since f ′(x) = 0.1+4.2x−3.6x2 we see f ′(0) = 0.1,
f ′(1) = 0.7, and f ′(2) = −5.9, so by the chain rule formula we see that (f3)′(0) = 0.1 · 0.7 · (−5.9) =
−0.413. Hence the orbit is attracting .

(f) f(x) = − 4

π
tan−1(x+ 1).

• We have 0→ −1→ 0 so the orbit has length 2. Since f ′(x) = − 4

π
· 1

1 + (x+ 1)2
we see f ′(0) = − 2

π
,

f ′(−1) = − 4

π
, so by the chain rule formula we see that (f2)′(0) =

8

π2
< 1. Hence the orbit is

attracting .

5. Find the two �xed points and the unique 2-cycle for the function p(x) = x2 − 7, and classify each of them as
attracting, repelling, or neutral.

• Solving p(x) = x gives x =
1±
√
29

2
. Since p′(x) = 2x we see that p′ is equal to 1 ±

√
29 at the

respective �xed points, so both of them are repelling .

• We can compute
p(p(x))− x
p(x)− x

=
x4 − 14x2 − x+ 42

x2 − x− 7
= x2+x− 6, whose roots give the 2-cycle {2,−3} .

• We have p′(2) = 4 and p′(−3) = −6, so by the classi�cation of cycles, since 4 · (−6) has absolute value

greater than 1, the cycle is repelling .

6. Let m(x) =
1

1− x
, de�ned for x 6= 1.

(a) Does m(x) have any real �xed points? What about m2(x)?

• For m, we would need
1

1− x
= x, which is the same as x2 − x + 1 = 0. This has no real solutions,

so m has no real �xed points .

• We have m2(x) =
1

1− 1

1− x

= 1− 1

x
, so to get a �xed point we would need 1− 1

x
= x. But this is

the same as x2 − x+ 1 = 0, so as above, m2 has no real �xed points .
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(b) Find the �rst ten elements in the orbit of x = 2 under m.

• 2,−1, 1
2
, 2,−1, 1

2
, 2,−1, 1

2
,−1 . (It is a 3-cycle, as mandated by part (c).)

(c) Show that every value of x (except x = 0 and x = 1) lies on a 3-cycle under m.

• We have m3(x) = m2(m(x)) = 1 − 1

1/(1− x)
= x, provided that x 6= 1 and x 6= 0 (since we need

both m(x) and m2(x) to be de�ned).

• Since m3(x) = x for every x, that means every value of x 6= 0, 1 lies on a cycle of length at most 3.
But by part (a) we know there are no �xed points for m, so there are no cycles of length less than
3. So every such point lies on a cycle of length exactly 3.

7. Let f(x) = ex − tan(x).

(a) Show that f(x) has a �xed point in the interval (1.0, 1.1).

• We use the Intermediate Value Theorem on g(x) = f(x) − x = ex − tan(x) − x, since this function
is continuous.

• Because g(1.0) = 0.1609 and g(1.1) = −0.0606 (to four decimal places), the function g necessarily
has a zero α in the interval (1.0, 1.1).

• Then g(α) = 0 says equivalently that f(α) = α, so that α is a �xed point of f , as desired.

(b) Show that f(x) does not have a �xed point in the interval (0.7, 0.8). [Hint: Show that f(x)−x is positive
on this interval.]

• On the interval (0.7, 0.8) we have f(x)−x = ex− tan(x)−x ≥ e0.7− tan(0.8)− 0.8 = 0.1841 to four
decimal places.

• This means f(x)− x is positive on the entire interval, so f(x) cannot equal x there meaning that f
cannot have a �xed point.

(c) Show that f(x) has a 2-cycle {α, β} where 0.7 < α < 0.8.

• We use the Intermediate Value Theorem on h(x) = f2(x)− x, since this function is continuous.

• Because h(0.7) = 0.1571 and h(0.8) = −0.0347 (to four decimal places), the function h necessarily
has a zero α in the interval (0.7, 0.8).

• Then h(α) = 0 says equivalently that f2(α) = α. By (b), this value α cannot be a �xed point of f ,
so α has order 2 and so {α, f(α)} is a 2-cycle.

8. Let f : [0, 1) → [0, 1) be de�ned as f(x) =


3x if 0 ≤ x < 1/3

3x− 1 if 1/3 ≤ x < 2/3

3x− 2 if 2/3 ≤ x < 1

. Observe that f(x) = 3x modulo 1,

which is also equivalent to saying that f(x) = {3x} is the fractional part of 3x.

(a) Sketch the graph of y = f(x) and compare it to the doubling function D(x) =

{
2x if 0 ≤ x < 1/2

2x− 1 if 1/2 ≤ x < 1
.

• The plot of y = f(x) is on the left, while the doubling function is on the right. The only di�erence
is the number of segments (3 versus 2):

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
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(b) Find all the �xed points of f .

• If 0 ≤ x < 1

3
then 3x = x gives x = 0.

• If
1

3
≤ x < 2

3
then 3x− 1 = x gives x =

1

2
.

• If
2

3
≤ x < 1 then 3x− 2 = x gives x = 1, which fails.

• So there are two �xed points: x = 0,
1

2
.

(c) Describe the orbits of x =
1

3
,
1

4
,
1

7
, and

1

45
under f .

• We have
1

3
→ 0→ 0→ 0→ 0→ · · · , so the orbit settles at 0.

• Next,
1

4
→ 3

4
→ 1

4
→ 3

4
→ 1

4
→ · · · , so the orbit is a 2-cycle.

• Third,
1

7
→ 3

7
→ 2

7
→ 6

7
→ 4

7
→ 5

7
→ 1

7
→ · · · , so the orbit is a 6-cycle.

• Finally,
1

45
→ 1

15
→ 1

5
→ 3

5
→ 4

5
→ 2

5
→ 1

5
→ · · · , so we see the orbit eventually settles in a

4-cycle.

(d) Suppose x =
p

q
is a rational number. Show that x is either periodic or eventually periodic for f . [Hint:

Consider the numerator and denominator of f(x).]

• Suppose x =
p

q
. Note that f(x) will be another rational number in [0, 1) with denominator q, though

possibly not in lowest terms.

• Since there are only q such numbers (namely,
0

q
,
1

q
, ... ,

q − 1

q
), we will eventually see that a value

repeats, meaning that
p

q
falls into a cycle.

(e) Suppose x is a periodic point of exact period k. Show that x must be a rational number and in fact that
the denominator of x divides 3k − 1. [Hint: Use the fact that fn(x)− 3nx is an integer.]

• As noted above, f(x) = 3x modulo 1. Thus, f2(x) = 9x modulo 1, f3(x) = 27x modulo 1, and in
general, fn(x) = 3nx modulo 1. But by de�nition, this means fn(x)− 3nx is an integer.

• Now suppose fn(x) = x. By the above, we have fn(x) = 3nx− k where k is an integer, so putting

this together yields x = 3nx− k so x =
k

3n − 1
.

• This expression is a rational number whose denominator in lowest terms must divide 3n − 1.

(f) Find �ve points that are periodic of exact order 3 for f .

• We will �nd all such points. By part (e) such a point must be a rational number of the form
p

q
where

q must divide 33 − 1 = 26. Thus, x =
p

26
for some integer p with 0 ≤ p ≤ 25.

• Then f(f(f(x))) =
27p

26
modulo 1, and it is not hard to see that this is equal to

p

26
= x. So

f(f(f(x))) = x for all such x.

• Finally, all such values will have period exactly 3, except for p = 0 and p = 13, which are the two
�xed points from part (b).

• So the points of exact order 3 are the values
p

26
for integers 1 ≤ p ≤ 25, except p = 13 .
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