
E. Dummit's Math 3543 ∼ Dynamics, Chaos, and Fractals, Spring 2025 ∼ Homework 11 Solutions

1. Each of the following values of c lies in a periodic bulb of the Mandelbrot set. For each value, (i) identify the
p/q labeling of that bulb based on its location, (ii) check the result of the �antenna theorem� for the bulb, and
(iii) check the result of the �lobe theorem� for the �lled Julia set corresponding to that value of c. (Note that
it may be di�cult to visually judge the �smallest� antenna of the Mandelbrot bulb or the �largest� lobes of
the Julia set, and at least one of the results will not agree with the prediction of the corresponding theorem!)

(a) c = −0.1 + 0.7i.

• Here is the indicated Mandelbrot bulb and the Julia set:

• The antenna has 3 spokes, and the smallest one is the spoke immediately counterclockwise from the
starting spoke. So the antenna theorem predicts the labeling should be 1/3.

• The �lled Julia set has junction points with 3 lobes, and (looking at the junction point on the top
right of the large central region) the �rst lobe clockwise is the second-largest. The Julia lobe theorem
predicts the labeling should be 1/3.

• The theorems suggest that this value of c lies in the 1/3 bulb. By our theorem, the 1/3 bulb is

tangent to the main cardioid at c =
1

2
e2πi(1/3) − 1

4
e4πi(1/3) ≈ −0.125 + 0.6495i. A quick glance at

the Mandelbrot set indicates that we have the correct bulb.

(b) c = 0.3 + 0.55i.

• Here is the indicated Mandelbrot bulb and the Julia set:

• The antenna has 4 spokes, and the smallest one is the spoke immediately counterclockwise from the
starting spoke. So the antenna theorem predicts the labeling should be 1/4.

• The �lled Julia set has junction points with 4 lobes, and (looking at the junction point on the top
of the large central region) the �rst lobe clockwise is the second-largest. The Julia lobe theorem
predicts the labeling should be 1/4.

• The theorems suggest that this value of c lies in the 1/4 bulb. By our theorem, the 1/4 bulb is

tangent to the main cardioid at c =
1

2
e2πi(1/4) − 1

4
e4πi(1/4) ≈ 0.25 + 0.5i. A quick glance at the

Mandelbrot set indicates that we have the correct bulb.
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(c) c = −0.5 + 0.55i.

• Here is the indicated Mandelbrot bulb and the Julia set:

• The antenna has 5 spokes, and the smallest one is the spoke 2 counterclockwise from the starting
spoke. So the antenna theorem predicts the labeling should be 2/5, which is correct.

• The �lled Julia set has junction points with 5 lobes, and (looking at the junction point on the top
of the large central region) the second lobe clockwise is the second-largest. The Julia lobe theorem
predicts the labeling should be 2/5, which is correct.

• The theorems suggest that this value of c lies in the 2/5 bulb. By our theorem, the 2/5 bulb is

tangent to the main cardioid at c =
1

2
e2πi(2/5)− 1

4
e4πi(2/5) ≈ −0.482+0.532i. A quick glance at the

Mandelbrot set indicates that we have the correct bulb.

(d) c = −0.625 + 0.425i.

• Here is the indicated Mandelbrot bulb and the Julia set:

• The antenna has 7 spokes, and the smallest one is the spoke 3 counterclockwise from the starting
spoke. So the antenna theorem predicts the labeling should be 3/7.

• The �lled Julia set has junction points with 7 lobes, and (looking at the junction point on the top
of the large central region) the third lobe clockwise is the second-largest. The Julia lobe theorem
predicts the labeling should be 3/7.

• The theorems suggest that this value of c lies in the 3/7 bulb. By our theorem, the 3/7 bulb is

tangent to the main cardioid at c =
1

2
e2πi(3/7)− 1

4
e4πi(3/7) ≈ −0.606+0.412i. A quick glance at the

Mandelbrot set indicates that we have the correct bulb.
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(e) c = 0.05 + 0.63i.

• Here is the indicated Mandelbrot bulb and the Julia set:

• The antenna has 10 spokes, and there are two small spokes that look to be about the same size: one
is 3 counterclockwise from the starting spoke, and the other is 6 counterclockwise from the starting
spoke. So the antenna theorem predicts the labeling should be 3/10 or 6/10. (It is probably not
6/10 because the bulb labelings are always in lowest terms.)

• The �lled Julia set has junction points with 10 lobes, and (looking at the junction point on the top
of the large central region) the third lobe clockwise is the second-largest. The Julia lobe theorem
predicts the labeling should be 3/10, which is correct.

• The theorems suggest that this value of c lies in the 3/10 bulb. By our theorem, the 2/5 bulb is

tangent to the main cardioid at c =
1

2
e2πi(3/10)− 1

4
e4πi(3/10) ≈ 0.048+0.622i. A quick glance at the

Mandelbrot set indicates that we have the correct bulb.

(f) c = 0.375 + 0.27i.

• Here is the indicated Mandelbrot bulb and the Julia set:

• The antenna has 11 spokes, and there are two small spokes that look to be about the same size: one
is 4 counterclockwise from the starting spoke, and the other is 6 counterclockwise from the starting
spoke. So the antenna theorem predicts the labeling should be 4/11 or 6/11.

• The �lled Julia set has junction points with 11 lobes, and (looking at the junction point on the top of
the central region) the second lobe clockwise is the second-largest. The Julia lobe theorem predicts
the labeling should be 2/11.

• The theorems suggest a few di�erent possible values of c. Searching for the appropriate tangency

point to the main cardioid will quickly reveal that the correct value is 2/11, since
1

2
e2πi(2/11) −

1

4
e4πi(2/11) ≈ 0.371 + 0.266i.

• If we look back at the antenna, we see that the second spoke is smaller than most of the others (it
is about the third smallest of the 11 spokes) but it is de�nitely bigger than the 4th and 6th spokes!

2. Choose three complex numbers c and plot (i) the Mandelbrot set near c, and (ii) the Julia set associated with
qc(x) = x2 + c. In your response, please include the value of c and the Mandelbrot and Julia set plots.

• As an open-ended problem, there are many possible responses.
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3. Observe in the plot of the 1/2 and 2/3 bulbs of the Mandelbrot set, there are various smaller bulbs progressing
from the 1/2-bulb to the 2/3-bulb. Consider the sequence of bulbs B1, B2, B3, B4, ... with B1 being the
1/2-bulb, B2 being the 2/3-bulb, and for each n ≥ 2, Bn+1 is the largest bulb between Bn and Bn−1.

(a) Find the labelings of the �rst �ve of these bulbs. Have you seen these numbers before?

• From our results, the largest bulb between those with labelings a/b and c/d has labeling (a+c)/(b+d).

• So, iterating this starting with 1/2 and 2/3 produces the next �ve as 3/5, 5/8, 8/13, 13/21, 21/34 .

• These ratios are in fact the famous Fibonacci numbers Fn, de�ned by F1 = F2 = 1 and Fn+1 =
Fn + Fn−1 for n ≥ 2.

• Indeed, it is easy to show by induction that the labeling of the nth bulb in the sequence (with 1/2
being the �rst) is Fn/Fn+1 for each n: the �rst two are correct, and then if two consecutive bulbs
are Fn−1/Fn and Fn/Fn+1, then the next is (Fn−1 + Fn)/(Fn + Fn+1) = Fn+1/Fn+2.

(b) It can be shown that the ratio p/q for this sequence of bulbs converges to 1/ϕ where ϕ = (1 +
√
5)/2 is

the famous golden ratio. Plot the Julia set for the point c = 1
2e
i/ϕ − 1

4e
2i/ϕ corresponding to this value

on the main cardioid. Does it have any interesting features?

• We can see some interesting self-similarity features, but this Julia set does not seem to have any
especially unusual properties relative to other typical Julia sets for quadratic maps:

4. There are many bulbs of the Mandelbrot set that are not attached directly to the main cardioid, but rather
to another bulb. Each of these values of c lies in a �secondary bulb� attached to a �primary bulb� of the main
cardioid: identify the p/q labeling of the primary bulb to which it is attached, and �nd the period inside the
secondary bulb.

(a) c = −0.21 + 0.8i.

• By plotting the bulb in Mandel we can see that c = −0.21 + 0.8i lies in a period-9 bulb attached to
the 1/3-bulb, which has period 3. (Equivalently, we could compute 1000 or so iterates of the orbit
of the critical point 0 and look at the period of the cycle it is attracted to. This is in fact exactly
what Mandel does!)

(b) c = 0.13− 0.63i.

• According to Mandel, c = 0.13− 0.63i lies in a period-14 bulb attached to the 5/7-bulb, which has
period 7.

(c) c = 0.390 + 0.232i.

• According to Mandel, c = 0.390 + 0.232i lies in a period-24 bulb attached to the 1/6-bulb, which
has period 6.

(d) c = −0.547− 0.557i.

• According to Mandel, c = −0.547− 0.557i lies in a period-15 bulb attached to the 3/5-bulb, which
has period 5.

(e) Is there any relation between the periods in the secondary bulb and the primary bulb?

• In each case the period of the secondary bulb is a multiple of the period of the primary bulb. (In
fact, this is true in great generality!)
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5. Let pd,c(z) = zd + c, where d ≥ 3 is an integer, and observe that pd,c has a single critical point at z = 0.
By the theorem on the structure of Julia sets for polynomial maps, we see that the Julia set for the map
pd,c = zd + c is either a totally disconnected Cantor-like set, or consists of a single connected component,
according to whether the orbit of 0 escapes to ∞ or not. De�ne the multibrot set Md to be the set of points
c ∈ C for which the Julia set of pd,c is connected: equivalently, Md is the set of points for which the orbit of
0 under pd,c remains bounded.

(a) Plot the sets M3, M4, M5, and M6, and then compare them to one another and to the Mandelbrot set
M . [In Mandel, you can plot these sets using the �Function� menu. Typing �q� will open a menu to
change the value of d.]

• Here are the multibrot sets:

• Each of the sets has a vaguely similar shape: a central large lobed region (with an attracting �xed
point), with smaller bulbs attached to the boundary having attracting cycles of larger periods.

• They have the same sort of �ne structure as the Mandelbrot set, with each bulb containing various
antennae and smaller bulbs attached to them. In general, the setsMd possess more symmetries than
the Mandelbrot set.

(b) Show that if |z| > max(|c| , 21/(d−1)), then there is a λ > 1 such that |pd,c(z)| ≥ λ |z|. Conclude that for
any such z, the orbit of z under pd,c escapes to ∞. [Hint: Modify the proof of the escape criterion for
quadratic maps.]

• By the assumption that |z|d−1 > 2 there is a λ > 1 such that |z|d−1 − 1 > λ.

• Then by the triangle inequality, we have |pc,d(z)| ≥ |z|d − |c| ≥ |z|d − |z| = |z| (|z|d−1 − 1) ≥ λ |z|.
• Since λ > 1 this implies |pc,d(z)| ≥ λ |z| > |z| > max(|c| , 21/(d−1)).

• Thus, pc,d(z) > max(|c| , 21/(d−1)), so so we may iteratively apply the argument to see that
∣∣∣pkc,d(z)∣∣∣ ≥

λk |z|, and since λ > 1 and |z| > 21/(d−1) we conclude that
∣∣∣pkc,d(z)∣∣∣→∞ as k →∞.

(c) Show that every point in the multibrot set Md lies within or on the circle of radius 21/(d−1) centered at
the origin. [Hint: Consider the second iterate of 0 and use part (b).]

• Suppose |c| > 21/(d−1): then q2c (0) = cd+c has absolute value at least
∣∣cd∣∣−|c| ≥ |c| ·(|c|d−1−1) > |c|

and by hypothesis |c| = max(|c| , 21/(d−1)).
• So by the escape criterion of part (b), we see that the orbit of 0 will escape to ∞.

(d) Show that pd,c(z) is conjugate to pd,ωc(z), where ω = e2πi/(d−1).

• Let h(z) = ωz: clearly, h is a homeomorphism.

• Also, h(pd,c(z)) = ωzd + ωc = (ωz)d + ωc = pd,ωc(h(z)), so h is the required conjugation.

(e) Show that the multibrot set Md for any d ≥ 3 is invariant under rotation by an angle of 2π/(d − 1)
radians about the origin. [Hint: Use part (d).]

• By part (d), we see that pd,c is conjugate to pd,ωc. So in particular, the orbit of z will escape to ∞
under pd,c if and only if ωz escapes under pd,ωc.

• Set z = 0: then the orbit of 0 will escape under pd,c if and only if the orbit of 0 will escape under
pd,ωc.

• Equivalently, c lies in the multibrot set Md if and only if ωc does.

• Since this holds for every c, and multiplication by ω is equivalent to rotating the plane by the angle
2π/(d− 1), we conclude that the multibrot set Md is invariant under rotation by 2π/(d− 1).
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(f) Prove that pd,c(z) has an attracting or neutral �xed point if and only if c = reit − rdeidt for some
0 ≤ t ≤ 2π and some real number r with 0 ≤ r ≤ d−1/(d−1). [Hint: Suppose α = reit is the �xed point
where r ≥ 0 is real. Find the condition on r and then solve for c.]

• Suppose α = reit is the �xed point. For α to be attracting or neutral is equivalent to saying that

pd,c(α) = α and
∣∣∣p′d,c(α)∣∣∣ ≤ 1.

• Since p′d,c(α) = dαd−1 we see
∣∣∣p′d,c(α)∣∣∣ =

∣∣dαd−1∣∣ = d |α|d−1 = drd−1, so with r ≥ 0 the second

condition becomes simply drd−1 ≤ 1 so that r ≤ d−1/(d−1).
• Then the condition pd,c(α) = α becomes αd + c = α and so c = α − αd = reit − rdeidt for some r
with 0 ≤ r ≤ d−1/(d−1). Conversely, reversing all of the calculations above shows that for such c, the
point α = reit is in fact attracting or neutral so pd,c does have an attracting or neutral �xed point
as desired.

(g) Conclude that the multibrot set Md contains a �central lobe� consisting of the region inside the curve
z = d−1/(d−1)(eit − d−1eidt) for 0 ≤ t ≤ 2π. Plot the central lobe together with the multibrot set for
d = 3 and d = 4.

• By a theorem from in class, any attracting cycle will attract a critical point of pd,c, so since pd,c has
only the critical point z = 0, if there is an attracting cycle then it will attract the critical orbit hence
the critical orbit will be bounded.

• Thus, in particular, if pd,c has an attracting �xed point, the critical orbit will be bounded, and so
the corresponding c will lie in the multibrot set Md.

• By (f), for each z on the curve parametrized by z = d−1/(d−1)(eit−d−1eidt) for 0 ≤ t ≤ 2π, the value
α = d−1/(d−1)eit is a neutral �xed point, and for all z inside that curve, namely z = reit − rdeidt for
some 0 ≤ r < d−1/(d−1), the point α = reit is an attracting �xed point and therefore c lies inside the
set Md.

• The central lobes and their boundary curves can be parametrized in xy-coordinates by taking real
and imaginary parts: for instance the boundary curve is given by x = d−1/(d−1)(cos t − d−1 cos dt),
y = d−1/(d−1)(sin t− d−1 sin dt), for 0 ≤ t ≤ 2π.

• Here are the plots for d = 3 and d = 4:
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