
E. Dummit's Math 3543 ∼ Dynamics, Chaos, and Fractals, Spring 2025 ∼ Homework 10 Solutions

1. Find the �xed points of each complex function and classify them as attracting, repelling, or neutral:

(a) f(z) = z + z2(z − i)(z + 1).

• The �xed points satisfy z = z + z2(z − i)(z + 1), so z2(z − i)(z + 1) = 0, with roots z = 0, i, −1 .

• We have f ′(z) = 1+ 2z(z− i)(z+1)+ z2(z+1)+ z2(z− i), so f ′(0) = 1, f ′(i) = 1+ i2(i+1) = −i,
and f ′(−1) = 1 + (−1)2(−1− i) = −i.
• Then |f ′(0)| = |f ′(i)| = |f ′(−1)| = 1, so all three points are neutral .

(b) f(z) = z2 − 3z + 5.

• The �xed points satisfy z = z2− 3z+5, so z2− 4z+5 = 0, with roots z =
4±
√
−4

2
= 2 + i, 2− i .

• We have f ′(z) = 2z − 3, so |f ′(2 + i)| = |1 + 2i| =
√
5 and |f ′(2− i)| = |1− 2i| =

√
5.

• Thus, both points are repelling .

(c) f(z) = z2 − 2iz + (i− 1).

• The �xed points satisfy z = z2 − 2iz + (i − 1), so z2 − (1 + 2i)z + (−1 + i) = 0, with roots

z =
(1 + 2i)±

√
(1 + 2i)2 − 4(−1 + i)

2
=

(1 + 2i)± 1

2
= 1 + i, i .

• We have f ′(z) = 2z − 2i, so |f ′(1 + i)| = |2| = 2 and |f ′(i)| = |2i− 2i| = 0.

• Thus, 1 + i is repelling while i is attracting .

(d) f(z) = iz2 + z + i/4.

• The �xed points satisfy z = iz2 + z + i/4, so i(z2 + 1/4) = 0, with roots z = i/2, −i/2 .

• We have f ′(z) = 2iz + 1, so |f ′(i/2)| = |0| = 0 and |f ′(−i/2)| = |2| = 2.

• Thus, i is attracting while −i is repelling .

(e) f(z) = 2z3 + 2z.

• The �xed points satisfy 2z3 + 2z = z so z(2z2 + 1) = 0 with roots z = 0,±i
√
2/2 .

• We have f ′(z) = 6z2 + 2, so |f ′(0)| = |2| = 2 and
∣∣f ′(±i√2/2)∣∣ = |−3 + 2| = 1.

• Thus, 0 is repelling while ±i
√
2/2 are neutral .

(f) f(z) = 1 +
4i

z + 2− 3i
.

• The �xed points satisfy z =
z + 2 + i

z + 2− 3i
, so z2+(2− 3i)z = z+2+ i, or z2+(1− 3i)z+(−2− i) = 0.

• Solving this quadratic equation yields z =
(−1 + 3i)±

√
−2i

2
=

(−1 + 3i)± (1− i)
2

= i, −1 + 2i .

• We have f ′(z) = − 4i

(z + 2− 3i)2
, so |f ′(i)| =

∣∣∣∣ −4i
(2− 4i)2

∣∣∣∣ = ∣∣∣∣12
∣∣∣∣ = 1

2
, so i is attracting .

• Also, |f ′(−1 + 2i)| =
∣∣∣∣ −4i(1− i)2

∣∣∣∣ = |2| = 2, so −1 + 2i is repelling .

2. For each function f(z), the given value z0 is a periodic point. Find its period and classify the associated cycle
as attracting, repelling, or neutral:

(a) f(z) = 1− i+ iz with z0 = 2.

• We have 2→ 1 + i→ 0→ 1− i→ 2 so the period is 4.
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• Since f ′(z) = i we have f ′(2) = f ′(1 + i) = f ′(0) = f ′(1− i) = i so by the chain rule formula we see

that
∣∣(f4)′(2)∣∣ = |i · i · i · i| = 1. Since this quantity equals 1, the cycle is neutral .

(b) f(z) = z2 + i with z0 = −i.
• We have −i→ −1 + i→ −i so the period is 2.

• Since f ′(z) = 2z we have f ′(−1 + i) = −2 + 2i and f ′(−i) = −2i, so by the chain rule formula we
see that

∣∣(f2)′(−1 + i)
∣∣ = |(−2 + 2i)(2i)| =

√
32. Since this quantity is greater than 1, the cycle is

repelling .

(c) f(z) = 1− 3

2
z2 − 1

2
z3 with z0 = 0.

• We have 0→ 1→ −1→ 0 so the period is 3. Since f ′(z) = −3z− 3

2
z2 we see f ′(0) = 0, f ′(1) = −9

2
,

and f ′(−1) = 3

2
, so by the chain rule formula we see that

∣∣(f3)′(0)∣∣ = ∣∣∣∣0 · (−9

2
) · 3

2

∣∣∣∣ = 0. Since this

quantity is less than 1, the cycle is attracting .

(d) f(z) = 3z + 4/z with z0 = i.

• We have i → −i → i so the period is 2. Since f ′(z) = 3 − 4

z2
we see f ′(i) = f ′(−i) = 7 so by the

chain rule formula we see that
∣∣(f2)′(i)∣∣ = |7 · 7| = 49. Since this quantity is greater than 1, the

cycle is repelling .

(e) f(z) = z2 with z0 = cos
2π

9
+ i sin

2π

9
= e2πi/9.

• We have e2πi/9 → e4πi/9 → e8πi/9 → e16πi/9 → e32πi/9 = e14πi/9 → e28πi/9 = e10πi/9 → e20πi/9 =
e2πi/9 so the period is 6. Since f ′(z) = 2z we see f ′(eiθ) = 2eiθ so by the chain rule formula we
see that

∣∣(f6)′(e2πi/9)∣∣ = ∣∣2e2πi/9 · 2e4πi/9 · 2e8πi/9 · 2e16πi/9 · 2e14πi/9 · 2e10πi/9∣∣ = 64. Since this

quantity is greater than 1, the cycle is repelling .

3. For the following quadratic functions, (i) plot the Julia set / �lled Julia set, (ii) use the picture to identify
whether the Julia set for that function is connected or disconnected, and then (iii) justify your answer by
computing the orbit of the critical point and using the fundamental dichotomy.

(a) f1(z) = z2 − 0.4− 0.1i.

• Here are the plots of the �lled Julia set and Julia set:

• The Julia set appears to be a closed curve enclosing a connected region (namely the �lled Julia set).

• Numerically computing the critical orbit shows that it rapidly converges to the �xed point z0 ≈
−0.3086− 0.0618i.

• Since the critical orbit stays bounded, by the fundamental dichotomy that the Julia set is connected .

(b) f2(z) = z2 + 0.2− i.
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• Here is a plot of the Julia set:

• The Julia set appears to be a disconnected Cantor set.

• Numerically computing the �rst few terms of the critical orbit yields {0, 0.2−i,−0.76−1.4i,−1.1824+
1.128i, 0.3257 − 3.6675i}. At this point, the orbit has escaped the circle |z| = 2 so by the escape
criterion it will necessarily escape to ∞.

• Since the critical orbit escapes, by the fundamental dichotomy the Julia set is a disconnected Cantor set .

(c) f3(z) = z2 + i.

• Here is a plot of the Julia set:

• The Julia set appears to be a connected �dendrite� set: it is not a curve and does not enclose a
region, but it is connected.

• Computing the �rst few terms of the critical orbit yields {0, i,−1 + i,−i,−1 + i,−i, . . . } so we see
that 0 is eventually periodic and hence has a bounded orbit.

• Since the critical orbit stays bounded, by the fundamental dichotomy the Julia set is connected .

(d) f4(z) = z2 − 0.53 + 0.6i.

• Here are the plots of the �lled Julia set and Julia set:

• The Julia set appears to be connected, but rather complicated. It does appear to enclose a number
of connected regions making up the �lled Julia set.

• Numerically computing 1000 iterates of the critical point shows that it converges to a 10-cycle,
given approximately by {0.023− 0.007i,−0.530 + 0.600i,−0.609− 0.035i,−0.160 + 0.643i,−0.917 +
0.394i, 0.156− 0.123i,−0.521 + 0.561i,−0.574 + 0.015i,−0.201 + 0.582i,−0.829 + 0.366i}.
• Since the critical orbit stays bounded, by the fundamental dichotomy the Julia set is connected .

3



4. For the following non-quadratic functions, (i) plot the Julia set and �lled Julia set and (ii) use the picture to
identify whether the Julia set for that function seems to be connected or disconnected.

(a) f5(z) = z3 + 0.4z − i.
• Here are the plots of the �lled Julia set and Julia set:

• The Julia set appears to be connected , but rather complicated. It does appear to enclose a number
of connected regions making up the �lled Julia set (which bears a vague resemblance to a lobster,
with two large claws and a tail).

(b) f6(z) =
z3 − 1

z + i
.

• Here are the plots of the �lled Julia set and Julia set:

• The Julia set appears to be disconnected , but not a Cantor set.

• It appears that the �lled Julia set has a number of separate connected region-like components, each
of which seems to be separated by some distance from the others, and which is bounded by a curve.

(c) N(z) = z − z3 − 1

3z2
.

• Here are plots of the Julia set using the escape-time and backwards-iteration methods:

• It is hard to tell, but based on the escape-time plot (which seems more conclusive), the Julia set

appears to be connected .

• Notice that this function is the Newton iterating function for f(z) = z3 − 1, which has three roots
in the complex plane given by 1, e2πi/3, e4πi/3. This helps explain the obvious 2π/3 rotational
symmetry of the Julia set.
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• The Julia sets for Newton iterating functions tend to be very interesting: each of the attracting
basins of the �xed points has boundary equal to the Julia set, which produces very unusual pictures
when the degree is larger than 2.

(d) f(z) = 2z5 − (1 + i)z3/4 + (1− i)/2.
• Here are the plots of the �lled Julia set and Julia set:

• Based on both plots the Julia set clearly seems connected .

(e) f(z) = (3z3 − 2iz + 2)/(z2 + 3).

• Here are plots of the Julia set using the escape-time and backwards-iteration methods:

• The Julia set appears to be a disconnected Cantor set.

5. Plot their Julia sets for four holomorphic functions of your choice. In your response, please include the
functions and also the Julia set plots.

• This is an open-ended problem. For some examples you can see the plots in problems 3 and 4.

6. Consider the holomorphic function fk(z) = zk, where k ≥ 2 is an integer.

(a) Show that, except for z = 0, every eventually periodic point of fk lies on the unit circle |z| = 1.

• If fak (z) = f bk(z) with a < b, then this implies zk
a

= zk
b

, which is in turn equivalent to zk
a

(zk
b−ka −

1) = 0.

• The solutions to this equation are z = 0 and the roots of zk
b−ka = 1, and by taking absolute values

of both sides of the latter equation we immediately deduce |z| = 1.

• Thus, every eventually periodic point of fk lies on the unit circle.

(b) Show that every periodic cycle for fk, except for the �xed point z = 0, is repelling.

• Suppose {z1, z2, · · · , zd} is periodic, and not the �xed point z = 0. By part (a), each |zi| = 1, so we
have |f ′k(zi)| =

∣∣k zk−1i

∣∣ = k.

• Therefore, the product
∏d
i=1 |f ′k(zi)| = kd > 1, so the cycle is repelling.
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(c) If z = e2πit where t ∈ [0, 1], show that z is eventually periodic for fk if and only if t is a rational number.

• The point is that the map fk is conjugate (by considering the value of tmodulo 1) to the multiplication-
by-k map on the interval [0, 1] modulo 1. We can then use the same arguments as those used all the
way back on homework 1 (!).

• Explicitly, we have fa(z) = e2πit·k
a

and f b(z) = e2πit·k
b

, and these are equal if and only if 2πit(kb−
ka) is an integer multiple of 2πi, which is to say that t(kb − ka) is an integer, or that t is rational.

• Conversely, if t =
p

q
is rational, then fn(e

2πi(p/q)) = e2πi(a/q) where a = np mod q. Thus, all the

iterates of t will lie in the �nite set {1, e2πi(1/q), e2πi(2/q), · · · , e2πi((q−1)/q)}, and so eventually they
must begin repeating, meaning that t is eventually periodic.

7. The goal of this problem is to explain some symmetries in the Julia sets we have examined.

(a) Show that the Julia set for any map in the quadratic family qc(z) = z2+ c is symmetric about the origin.

• Since qc(z) = qc(−z), the orbit of −z is bounded if and only if the orbit of z is bounded.

• Thus, the �lled Julia set is symmetric about the origin. Since the Julia set is the boundary of the
�lled Julia set, it will also be symmetric about the origin.

(b) Show that the Julia set for the map qc(z) = z2 + c is the re�ection across the real axis of the Julia set
for the map qc(z) = z2 + c.

• Observe that qc(z) = z2 + c = qc(z), so the orbit of z under qc is bounded if and only if the orbit of
z is bounded under qc.

• Thus, z lies in the �lled Julia set for qc if and only if z lies in the �lled Julia set for qc, meaning that
they are re�ections across the real axis of one another.

• Then as in part (a), the same must hold for their boundaries, so the Julia sets are also re�ections.

(c) Deduce that when c is a real number, the Julia set for the map qc(z) = z2 + c is symmetric about the
real and imaginary axes.

• If c is real then qc(z) = qc(z).

• So by part (a), the Julia set is symmetric about the origin, and by part (b) it is symmetric about
the real axis. Combining these two statements shows it is symmetric about the imaginary axis as
well.

(d) Show that the Julia set for the function N(z) = z− z
3 − 1

3z2
from problem 4(c) has a 2π/3-radian rotational

symmetry around the origin. [Hint: For ω = e2πi/3, show that N(ωz) = ωN(z).]

• Per the hint, letting ω = e2πi/3 so that ω3 = 1 we see N(ωz) = ωz − ω3z3 − 1

3ω2z2
= ωz − ωz

3 − 1

z2
=

ωN(z).

• Iterating, we have Nn(ωz) = ωNn(z). Therefore, if the orbit of z is bounded, then so is the orbit of
ωz, because the points in its orbit are just ω times the points in the orbit of z.

• This means z lies in the �lled Julia set if and only if ωz does, and so as in the previous parts, the
same holds for the boundary of the �lled Julia set.

• But since multiplication by ω corresponds to a 2π/3-radian counterclockwise rotation around the
origin, that means the Julia set has a 2π/3-radian rotational symmetry, as claimed.
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