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9 The Geometry of Numbers

In this chapter, we discuss some applications of geometric ideas in number theory, which is referred to under the
broad heading of the �geometry of numbers�: our general theme will be to use properties of lattices in Rn (or C)
to study questions of number-theoretic interest. We will �rst establish some geometric preliminaries that lead to
our main geometric result, Minkowski's convex-body theorem, which we then apply to classify integers that are the
sum of two, three, and four squares.

Next, we introduce the class group of a quadratic integer ring, which quanti�es quite precisely the degree to which
O√D fails to have unique factorization. We then establish Minkowski's bound on ideal class representatives, which
provides one of the most e�ective ways to compute the structure of the class group, and give examples of how to
use it to compute ideal class groups.

Afterwards, we detour somewhat to discuss representations of integers by binary quadratic forms, and show how
binary quadratic forms also possess a composition law that is closely tied to the structure of the ideal class group
of the associated quadratic integer ring.

9.1 Minkowski's Convex-Body Theorem and Applications

• First, we review some basic terminology for sets in Rn.

◦ We will denote the set of all points in Rn all of whose coordinates are integers by Zn.

• De�nition: A set B in Rn is convex if, for any x and y in B, all points on the line segment joining x and y
are also in B.
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◦ Example: The n-ball of radius r centered at the origin in Rn, given by the points (x1, x2, . . . , xn) with
x2

1 + x2
2 + · · ·+ x2

n ≤ r2, is a convex set.

◦ Example: The unit cube, given by the points (x1, x2, . . . , xn) with 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n, is a
convex set.

• We may distinguish three di�erent classes of points in Rn relative to B, based on their behaviors when we
draw balls around them.

1. If we can draw a ball around P that is entirely contained in B, then P is called an interior point of B.

2. If we can draw a ball around P that is entirely contained in Bc, the complement of B, then we call P
an exterior point of B. (Equivalently, it is an interior point of Bc.)

3. Otherwise, no matter what size of ball we draw, it will always contain some points in B and some points
in Bc. Points with this property are called boundary points.

• De�nition: The interior of the set B, denoted int(B), is the set of its interior points. A set B is open if all its
points are interior points. A set B is closed if its complement is open.

◦ There are various equivalent conditions for closed and open sets. For example, B is closed if and only if
it contains all of its boundary points if and only if any convergent sequence {an}n≥1 of points in B has
its limit in B.

◦ Example: The open unit n-ball in Rn, given by the points (x1, x2, . . . , xn) with x2
1 + x2

2 + · · ·+ x2
n < 1,

is indeed an open set, since any point in this set is an interior point.

◦ Example: The closed unit n-ball in Rn, given by the points (x1, x2, . . . , xn) with x2
1 +x2

2 + · · ·+x2
n ≤ 1, is

not an open set, since any point with x2
1 + x2

2 + · · ·+ x2
n = 1 is a boundary point, rather than an interior

point. It is in fact a closed set, since its complement is the open set with x2
1 + x2

2 + · · ·+ x2
n > 1.

◦ It is fairly straightforward to see that if B is an n-dimensional convex set in Rn, then its interior is also
convex.

• De�nition: A set B in Rn is symmetric about the origin if, for any x in B, the point −x is also in B.

◦ Example: The n-ball of radius r centered at the origin in Rn is symmetric about the origin.

◦ Non-Example: The unit cube, given by the points (x1, x2, . . . , xn) with 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n, is
not symmetric about the origin.

9.1.1 Minkowski's Convex-Body Theorems

• Our goal now is to prove that if a convex set is su�ciently nice and has a su�ciently large n-measure (i.e.,
n-volume), it must contain a lattice point.

• We �rst show the following result, which is sometimes called Blichfeldt's principle:

• Proposition (Blichfeldt's Principle): If S is a bounded measurable set in Rn whose n-measure is greater than
1, then there exist two points x and y in S such that x− y has integer coordinates.

◦ We will also remark that if we add the assumption that S is closed, then the conclusion holds also if the
measure of S is equal to 1.

◦ Proof: The idea is essentially to use the pigeonhole principle.

◦ For each lattice point a = (a1, · · · , an), let Ba be the �box� consisting of the points (x1, · · · , xn) whose
coordinates satisfy ai ≤ xi < ai+1, and let Sa = S ∩Ba be the intersection of S with Ba.

◦ Since each point of S lies in exactly one box Ba, we have
∑
a∈Zn vol(Sa) = vol(S).

◦ Now let S∗a be the set Sa translated by the vector −a: this translation preserves measure and moves Ba
to B0.

◦ Then
∑
a∈Zn vol(S∗a) = vol(S) > 1. But since all of the sets S∗a lie inside B0 which has volume 1, there

must be some overlap.
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◦ If S∗a1 ∩ S
∗
a2 contains some point P , then P + a1 ∈ S and also P + a2 ∈ S. Taking x = P + a1 and

y = P + a2 we see that x− y = a1 − a2 has integer coordinates, as claimed.

◦ Remark: This proof can also be formulated analytically in terms of the characteristic function χB(x) ={
1 if x ∈ B
0 if x 6∈ B

, which is integrable by the hypothesis that B is a measurable set. If we write ψ(x) =∑
v∈Zn χB(x + v), then ψ is bounded because B is bounded so there are only �nitely many nonzero

terms for any v ∈ Zn. We may then integrate both sides and change the order of integration and
summation (because the sum is a �nite sum of nonnegative terms) and use the translation-invariance of
the measure on Rn to see that

´
[0,1]n

ψ(x) dx =
´

[0,1]n

∑
v∈Zn χB(x+v) dx =

∑
v∈Zn

´
[0,1]n

χB(x+v) dx =∑
v∈Zn

´
[0,1]n+v

χB(x) dx =
´
Rn χB(x) dx, and this last integral is simply the measure of B.

• Now we may prove our �rst main result:

• Theorem (Minkowski's Convex Body Theorem): Let B be a convex open set in Rn that is symmetric about
the origin and whose n-measure is greater than 2n. Then B contains a nonzero point all of whose coordinates
are integers.

◦ We will remark that the bound here is sharp, in the sense that we cannot lower the bound to any number
less than 2n. We will also remark that if we replace �open� with �closed�, then we can weaken the
inequality to �n-measure greater than or equal to 2n�.

◦ Proof: Suppose B is a convex open set symmetric about 0 of measure > 2n and let 1
2B = { 1

2x : x ∈ B}.
◦ Notice that since vol(B) > 2n, we have vol( 1

2B) > 1. Apply Blichfeldt's principle to the set 1
2B: we

obtain distinct points x, y ∈ 1
2B such that x− y has integer coordinates.

◦ Then 2x ∈ B and 2y ∈ B. Furthermore, since B is symmetric about the origin, −2y ∈ B.
◦ Then because B is convex, the midpoint of the line segment joining 2x and −2y lies in B.

◦ This midpoint x− y yields the desired nonzero point in B whose coordinates are integers.

• The result of Minkowski's theorem does not apply merely to the lattice Zn of points having integer coordinates.

◦ If v1, ... , vn are (R-)linearly independent vectors in Rn, the set Λ of vectors of the form c1v1 + · · ·+cnvn,
where each ci ∈ Z, is called a lattice.

◦ A fundamental region for this lattice can be obtained by drawing all of the vectors v1, ... , vn outward
from the origin, and then �lling them in to create a �skew box�. The points in this fundamental region
give unique representatives for the quotient group Rn/Λ, up to an appropriate choice of representatives
on the boundary of the region.

◦ A basic fact from linear algebra, which essentially amounts to the de�nition of the determinant, says that
the volume of the fundamental domain is equal to the absolute value of the determinant of the matrix
whose columns are the vectors v1, ... , vn when expressed in terms of the standard basis of Rn.
◦ One may prove this fact by direct manipulations, or (more structurally), one may do it by observing
that the signed volume of the fundamental domain satis�es the same properties as the determinant:
interchanging two vectors scales the signed volume by −1, scaling a vector scales the signed volume by
the same amount, adding a multiple of one vector to another does not change the signed volume, and
the signed volume for the standard basis is 1. The determinant can be proven to be the only function
satisfying these four properties, and so the signed volume is equal to the determinant.

• By changing basis, we obtain a version of Minkowski's theorem for general lattices:

• Theorem (Minkowski's Theorem for General Lattices): Let Λ be any lattice in Rn whose fundamental domain
has volume V . If B is any open convex centrally-symmetric region in Rn whose volume is > 2nV , then B
contains a nonzero point of Λ.

◦ Proof: Apply the linear transformation T sending the basis vectors of Λ to the standard basis of Rn.
◦ Linear transformations preserve open sets, convex sets, and central symmetry, so the image of B under
this map is still open, convex, and centrally symmetric.
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◦ The volume of T (B) is equal to 1/V times the volume of B by the observation made about determinants
above, so this new open convex centrally-symmetric set T (B) has volume > 2n.

◦ Applying the previous version of Minkowski's theorem to T (B) yields that T (B) contains a nonzero point
all of whose coordinates are integers. This immediately implies that B contains a nonzero point of Λ, as
required.

9.1.2 Sums of Two and Four Squares

• As our �rst application of Minkowski's convex body theorem, we will prove that every prime p congruent to
1 modulo 4 can be expressed as the sum of two squares.

◦ We have previously established this result as a consequence of studying factorizations in Z[i].

◦ The argument we will give using Minkowski's theorem is quite di�erent.

• Theorem (Fermat's Two-Squares Theorem): If p is any prime congruent to 1 modulo 4, then there exist
integers a and b such that p = a2 + b2.

◦ We will remark that this result was �rst explicitly noted by Girard in 1625, about 15 years before Fermat
observed it. Fermat also did not provide a proof; the �rst actual proof was given by Euler.

◦ Proof: First, we observe that if p ≡ 1 (mod 4) then −1 is a square modulo p: this follows by Euler's

criterion

(
−1

p

)
≡ (−1)(p−1)/2 ≡ 1 (mod p). Alternatively, we could note that the group of nonzero

residue classes modulo p is cyclic and has order p−1, and so since 4 divides p−1, there exists an element
r of order 4: then r2 has order 2, but the only element of order 2 modulo p is −1.

◦ Now suppose −1 ≡ m2 (mod p), and consider the lattice Λ be the lattice in R2 spanned by the two
vectors 〈1,m〉 and 〈0, p〉.
◦ The determinant of these two vectors is p, so the volume of the fundamental domain is p.

◦ Let B be the interior of the disc x2
1 + x2

2 < 2p in R2, and observe that B is open, convex and centrally-
symmetric. From elementary geometry, the area of this disc is 2πp.

◦ Since 2π > 4, the volume of B is larger than 22 times the volume of the fundamental domain of Λ, and
so by Minkowski's theorem we conclude that there is a nonzero element

〈x1, x2〉 = a 〈1,m〉+ b 〈0, p〉

of Λ in B.

◦ But then

x2
1 + x2

2 = a2 + (ma+ bp)2

≡ a2(1 +m2) (mod p)

≡ 0 (mod p)

and since 〈x1, x2〉 is nonzero and has x2
1 + x2

2 < 2p, the only possibility is that x2
1 + x2

2 = p.

◦ Thus, p is the sum of two squares, and we are done.

• We can give a similar kind of argument to establish that every positive integer n can be expressed as the sum
of four squares, which is a result �rst proven by Lagrange.

◦ This result was known, in most respects, to the ancient Greeks, and was stated explicitly by Bachet in
1621 in his translation notes of the works of Diophantus.

◦ The �rst actual proof was given by Lagrange in 1770, and in 1834 Jacobi extended the result to give a
formula for the number of representations of n as a sum of four squares.

◦ Jacobi's result is as follows: if σ(n) represents the sum of the divisors of n and r4(n) is the number
of ways of writing n as the sum of four squares, then r4(n) = 8σ(n) if n is odd and r4(n) = 24σ(d) if
n = 2kd (d odd) is even.
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• We �rst show that if a, b are the sum of four squares, then so is ab:

• Lemma 1 (Products of Sums of Four Squares): If a and b are the sum of four squares, then so is ab.

◦ Proof: This follows from the following identity:

(x2
1 + x2

2 + x2
3 + x2

4)(y2
1 + y2

2 + y2
3 + y2

4) = (x1y1 + x2y2 + x3y3 + x4y4)2 + (x1y2 − x2y1 + x3y4 − x4y3)2

+(x1y3 − x2y4 − x3y1 + x4y2)2 + (x1y4 + x2y3 − x3y2 − x4y1)2

which can be veri�ed simply by multiplying out and verifying that all of the cross-terms cancel.

• We will remark that, like the corresponding identity (a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2 for sums of
two squares, which arises from the fact that the norm map on Z[i] is multiplicative, the four-squares identity
also arises from a norm map on a ring.

◦ Speci�cally, the ring in question is the ring H of (real) quaternions, which is a noncommutative ring.
(The letter H is used because the quaternions were �rst described by Hamilton.)

◦ Explicitly, H is the set of elements of the form a+ bi+ cj + dk, where a, b, c, d are real numbers, subject
to the multiplication rules i2 = j2 = k2 = ijk = −1. (From these relations one can deduce explicitly
that ij = −ji = k, jk = −kj = i, and ki = −ik = j.)

◦ The conjugation map on H is a+ bi+ cj + dk = a− bi− cj − dk, and the norm map is N(q) = qq. One
may compute explicitly that N(a+ bi+ cj + dk) = a2 + b2 + c2 + d2, and the fact that the norm map is
multiplicative (which is not obvious from its de�nition because the multiplication of quaternions is not
commutative) amounts to the four-squares identity1.

◦ In fact, since the norm of a nonzero quaternion is nonzero, the multiplicativity of the norm map implies
that every nonzero quaternion has a multiplicative inverse, which is to say, the quaternions form a division
ring (which is the noncommutative analogue of a �eld).

◦ Multiplication in this noncommutative manner using the letters i, j, and k might be familiar from the
algebra of the cross product of vectors in 3-space: often the notation i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, k = 〈0, 0, 1〉
is used for the basis vectors, and then for example one has i× j = k.

◦ As a historical note, the development of quaternions actually predates the modern language of vectors
by about 50 years, and so many of the classical results in physics (e.g., Maxwell's equations) predating
the 20th century were originally written in terms of quaternions rather than vectors.

◦ Due to their connection with geometry in 3 dimensions, the quaternions are often used in computer
graphics, applied physics, and engineering, since they can be used to represent spatial rotations in 3-
dimensional space far more e�ciently than matrices.

• We now show that every prime can be written as the sum of four squares. To do this we require a simple
lemma about sums of squares modulo a prime:

• Lemma 2: For any prime p, there exist integers r and s such that r2 + s2 ≡ −1 (mod p). In other words, −1
is the sum of two squares modulo p.

◦ Proof: If p = 2 the result is obvious (take r = 1, s = 0). Now suppose p is odd.

◦ From our results on quadratic residues, the set S of squares r2 modulo p contains (p + 1)/2 elements.
Thus, the set T of elements of the form −1− s2 also contains (p+ 1)/2 elements.

◦ Since there are only p residue classes modulo p, the sets S and T must have a nontrivial intersection:
then we have r2 ≡ −1− s2 (mod p) and so r2 + s2 ≡ −1 (mod p), as required.

• We can now establish our main result:

• Theorem (Lagrange's Four-Square Theorem): If n is any positive integer, then n can be written as the sum
of four squares.

1In fact, the conjugation map on H is an anti-involution: q · r = r·q. From this one hasN(qr) = qrqr = q(rr)q = (qq)(rr) = N(q)N(r)
using the fact that rr is a real number, so it commutes with q.
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◦ Proof: By Lemma 1, it su�ces to prove that every prime p can be written as the sum of four squares, so
let p be a prime. By Lemma 2, there exist integers r and s such that r2 + s2 ≡ −1 (mod p).

◦ Now let Λ be the lattice in R4 spanned by the four vectors 〈p, 0, 0, 0〉, 〈0, p, 0, 0〉, 〈r, s, 1, 0〉, and 〈s,−r, 0, 1〉.
It is a simple computation to see that the determinant of these four vectors is p2, so the volume of the
fundamental domain is p2.

◦ Let B be the convex, centrally-symmetric open set in R4 de�ned by x2
1 +x2

2 +x2
3 +x2

4 < 2p. The volume
of this ball can be computed (either directly or via a more enlightened use of cylindrical coordinates2, or
spherical coordinates3) to be 2π2p2.

◦ Since the volume of B is larger than 24 times the volume of the fundamental domain of Λ (since 2π2p2 >
16p2), we conclude that there is a nonzero element

〈x1, x2, x3, x4〉 = a 〈p, 0, 0, 0〉+ b 〈0, p, 0, 0〉+ c 〈r, s, 1, 0〉+ d 〈s,−r, 0, 1〉

of Λ in B.

◦ But then

x2
1 + x2

2 + x2
3 + x2

4 = (ap+ cr + ds)2 + (bp+ cs− dr)2 + c2 + d2

≡ (c2 + d2)(1 + r2 + s2) (mod p)

≡ 0 (mod p)

and since 〈x1, x2, x3, x4〉 is nonzero and has x2
1 +x2

2 +x2
3 +x2

4 < 2p, the only possibility is that x2
1 +x2

2 +
x2

3 + x2
4 = p.

◦ Thus, p is the sum of four squares, and we are done.

9.1.3 Sums of Three Squares

• As another application of Minkowski's convex-body theorem, we can characterize the integers that are the
sum of three squares.

◦ By testing small examples, one is rapidly led to the conjecture that n may be written as the sum of three
squares if and only if n is not a power of 4 times an integer that is 7 modulo 8 (i.e., when n 6= 4a(8b+ 7)
for some a, b).

◦ It is relatively straightforward to establish using modular arithmetic that if n = 4a(8b+ 7) then n is not
the sum of three squares. For a = 0 this follows immediately by considering n modulo 8, and then one
may induct on a.

◦ It remains to establish that integers not of this form can be written as the sum of three squares.

• We will establish one case of this theorem and then remark on the modi�cations necessary to establish the
other cases.

◦ Unlike in the case for sums of two squares and sums of four squares, the set of integers that are a sum
of three squares is not closed under multiplication: both 3 = 12 + 12 + 12 and 5 = 22 + 12 + 02 are the
sum of three squares, but 15 = 3 · 5 is not.

◦ Therefore, we cannot simply reduce to the case of considering representations of primes, as we did for
the case of sums of two and four squares.

◦ Our approach will be to use Minkowski's theorem along with our characterization of integers that are
expressible as the sum of two squares.

2For x2
1 + x2

2 + x2
3 + x2

4 = R2 let r denote the distance between a point in the plane x1 = x2 = 0 and θ be the azimuthal angle. Then

the intersection of the ball with the 2-dimensional plane obtained by �xing r and θ is a disc of radius
√
R2 − r2, so the 4-volume of the

ball is given by the integral
´ 2π
0

´R
0 π(R2 − r2) · r dr dθ = π2R4/2.

3For x2
1 + x2

2 + x2
3 + x2

4 = R2 take radial coordinate ρ ∈ [0, R] and angular coordinates θ ∈ [0, 2π], ϕ1, ϕ2 ∈ [0, π] with x1 =
ρ cos θ sinϕ1 sinϕ2, x2 = ρ sin θ sinϕ2 sinϕ2, x3 = ρ cosϕ1 sinϕ2, x4 = ρ cosϕ2. The Jacobian is then ρ3 sin2 ϕ2 sinϕ1 and so the

4-volume is
´ 2π
0

´ π
0

´ π
0

´R
0 ρ3 sin2 ϕ2 sinϕ1 dρdϕ2dϕ1dθ = π2R4/2.
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• We will treat the case where n ≡ 3 (mod 8), since the exposition is easiest to give there. This argument was
originally given by Ankeny in 1956:

• Theorem (Sums of 3 Squares, 3 Mod 8 Case): If n is a positive integer congruent to 3 modulo 8, then n is the
sum of three squares.

◦ Proof: First, we observe that there exists a prime q ≡ 1 (mod 4) such that −2q is a quadratic residue
modulo n. This follows from Dirichlet's theorem on primes in arithmetic progressions, since saying −2q
is a quadratic residue modulo n is simply a congruence condition modulo n.

◦ So, since −2q is a quadratic residue modulo n, its reciprocal is also: say with −1/(2q) ≡ t2 (mod n).

◦ Next, we observe that

(
−2q

n

)
=

(
−2

n

)( q
n

)
=

(
−2

n

)(
n

q

)
=

(
−n
q

)
by quadratic reciprocity for

Jacobi symbols and the fact that n ≡ 3 (mod 8) so that

(
−2

n

)
= +1 and that q ≡ 1 (mod 4) so that(

n

q

)
=
( q
n

)
and

(
−1

q

)
= +1.

◦ Therefore, −n is a quadratic residue modulo q, say with −n ≡ b2 (mod q) where we may assume that
b is odd. This means b2 + n = qh′ for some h′ ∈ Z, but now since n ≡ 3 (mod 8), reducing both sides
modulo 4 yields h′ ≡ 0 (mod 4), and so h′ = 4h.

◦ To summarize, we have integers q, b, and h such that −1/(2q) ≡ t2 (mod n) and b2 + n = 4qh.

◦ Let Λ be the lattice in R3 spanned by the vectors
〈
2tq,
√

2q, 0
〉
,
〈
tb, b/

√
2q,
√
n/(2q)

〉
, and 〈n, 0, 0〉. It

is a simple computation to see that the determinant of these three vectors is n3/2, so the volume of the
fundamental domain is n3/2.

◦ Now let B be the convex, centrally-symmetric open set in R3 de�ned by x2
1 +x2

2 +x2
3 < 2n, whose volume

is
4

3
π(2n)3/2 since it is merely a sphere of radius

√
2n.

◦ Since the volume of B is larger than 23 times the volume of the fundamental domain of Λ (since
4

3
π·23/2 >

8), we conclude that there is a nonzero element

〈R,S, T 〉 = x
〈

2tq,
√

2q, 0
〉

+ y
〈
tb, b/

√
2q,
√
n/(2q)

〉
+ z 〈n, 0, 0〉

of Λ in B.

◦ Then R = 2tqx+ tby + nz, S = x
√

2q + by/
√

2q, T = y
√
n/(2q), and so R2 + S2 + T 2 = (2tqx+ tby +

nz)2 + (
√

2qx+ b/
√

2qy)2 + (
√
n/(2q)y)2 ≡ (t2 + 1/(2q))(2qx+ by)2 ≡ 0 (mod n).

◦ Notice also that R2 + S2 + T 2 is an integer, because it equals R2 + 2qx2 + 2bxy + 2hy2, and all of these
quantities are integers. Thus, R2 + S2 + T 2 = n.

◦ Now we will show that the integer N = S2 + T 2 = 2qx2 + 2bxy+ 2hy2 is actually the sum of two integer
squares, which will complete the proof because then n = R2 +N is then the sum of three squares.

◦ So suppose p is an odd prime dividing N to an odd power, meaning that p2a+1 divides N but p2a+2 does
not: we wish to show that p ≡ 1 (mod 4).

◦ First suppose p does not divide n: then n ≡ R2 (mod p) and so

(
n

p

)
= +1.

◦ Also, if p = q then since −2q is a quadratic residue modulo n we have

(
−n
p

)
= +1. Otherwise if p 6= q

then 2qN = 4q2x2 + 4bqxy + 4qhy2 = (2qx + by)2 + ny2, and the only way that this quantity can be
divisible by an odd power of p is if there is a nonzero solution to e2 + nf2 ≡ 0 (mod p), which forces −n
to be a quadratic residue modulo p.

◦ In both cases we have

(
n

p

)
= +1 and

(
−n
p

)
= +1, so

(
−1

p

)
= +1 and so p ≡ 1 (mod 4).
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◦ Now suppose p does divide n. Then R2 +N = n, so since p divides N it must also divide R. Rewriting

the equation as R2 +
1

2q

[
(2qx+ by)2 + ny2

]
= n, we see that p must also divide 2qx + by. Dividing

through by p and then reducing modulo p yields
1

2q
· n
p
y2 ≡ n

p
(mod p), so since n/p is nonzero modulo

p as n is squarefree, we get y2 ≡ 2q (mod p) and thus

(
2q

p

)
= +1. Since we assumed at the very

beginning that

(
−2q

p

)
= +1, this implies

(
−1

p

)
= +1 and so p ≡ 1 (mod 4) once again.

◦ Thus, all odd primes that exactly divide N to an odd power are congruent to 1 modulo 4, so by our
characterization of sums of two squares, this means N is the sum of two squares, and so n = R2 +N is
the sum of three squares.

• We will remark that the proof for the case n ≡ 3 (mod 8) can be adapted to establish the other cases
n ≡ 1, 2, 5, 6 (mod 8) as well, by suitable minor modi�cations on the conditions taken at the beginning.

9.2 Ideal Class Groups of Quadratic Integer Rings

• We will now discuss some additional properties of the ideals in quadratic integer rings: we will introduce the
ideal class group, and then use Minkowski's convex-body theorem to establish that the ideal class group of
any quadratic integer ring is �nite. We will then use our results to compute explicitly the ideal class groups
of various quadratic integer rings.

9.2.1 The Ideal Class Group

• As we have already discussed, a quadratic integer ring O√D has unique factorization if and only if it is a
principal ideal domain, and (thus) any examples of non-unique factorization necessarily arise from nonprincipal
ideals.

◦ Our goal now is to quantify more precisely how �non-unique� the non-unique factorization in O√D can
be, which is (in a sense we will make precise) the same as asking about the various possible classes of
nonprincipal ideals.

• To motivate the ideas, consider the quadratic integer ring Z[
√
−5], which we have shown not to be a PID by

constructing explicit nonprincipal ideals I2 = (2, 1 +
√
−5), I3 = (3, 1 +

√
−5), and I ′3 = (3, 1−

√
−5).

◦ Notice, however, that the pairwise products of these nonprincipal ideals, namely, I2
2 = (4, 2(1+

√
−5),−4+

2
√
−5) = (2), I2I3 = (6, 2(1 +

√
−5), 3(1 +

√
−5),−4 + 2

√
−5) = (1 +

√
−5), I2I

′
3 = (1 −

√
−5), and

I2
3 = I3I

′ = (I ′3)2 = (3) are all principal.

◦ By searching for factorizations of other integer primes in Z[
√
−5] we can construct additional nonprincipal

ideals, such as I7 = (7, 3 +
√
−5) and its conjugate I ′7 = (7, 3−

√
−5).

◦ If we then try computing various products, like I2I3 or I3I
′
7, we will discover that no matter which pair

of nonprincipal ideals we multiply together, the result will always be principal.

◦ For example, for I2I7 = (14, 6 + 2
√
−5, 7 + 7

√
−5,−2 + 4

√
−5), we see this ideal contains 3 +

√
−5 =

2(6 + 2
√
−5) − (7 + 7

√
−5) − (−2 + 4

√
−5) and also each element in the ideal is divisible by 3 +

√
−5,

so in fact I2I7 = (3 +
√
−5).

◦ Similarly, for I3I
′
7 = (3, 1 +

√
−5)(7, 3−

√
−5) = (21, 9− 3

√
−5, 7 + 7

√
−5, 8 + 2

√
−5), we see this ideal

contains 4 +
√
−5 = 21 + (7 + 7

√
−5) − 3(8 + 2

√
−5) and also each element in the ideal is divisible by

4 +
√
−5, so in fact I3I

′
7 = (4 +

√
−5).

◦ These calculations suggest that there might actually be only one type of nonprincipal ideal in Z[
√
−5],

up to an appropriate notion of equivalence of ideals.

◦ We can also see that there is a natural composition operation on ideals, given by ideal multiplication,
which seems to behave nicely with respect to this equivalence.

• We will now make all of this precise:
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• De�nition: Let R = O√D be a quadratic integer ring. We de�ne a relation ∼ on the set of nonzero ideals of
R by saying I ∼ J if (a)I = (b)J for some nonzero principal ideals (a) and (b).

◦ Intuitively, we declare two ideals to be equivalent if they di�er by a principal ideal factor.

◦ Example: Inside Z[i], since every nonzero ideal I is principal, we have I ∼ (1) for all nonzero I.

◦ Example: Inside O√−5, with the notation as above, we have I2 ∼ I3: since I2
2 = (2) and I2I3 = (1+

√
−5),

we see that (1 +
√
−5)I2

2 = (2)I2I3 and thus cancelling I2 gives (1 +
√
−5)I2 = (2)I3.

• The relation ∼ is, perhaps unsurprisingly, an equivalence relation, and we can also use it to detect whether
O√D is a principal ideal domain:

• Proposition (Properties of Ideal Classes): Suppose R = O√D is a quadratic integer ring. Then the following
properties hold for the relation I ∼ J if (a)I = (b)J for some nonzero a, b ∈ R:

1. The relation is an equivalence relation on nonzero ideals. The equivalence classes under this relation are
called ideal classes.

◦ Proof: Clearly I ∼ I since (1)I = (1)I.

◦ Also, if I ∼ J then (a)I = (b)J , and then by interpreting this as (b)J = (a)I we see J ∼ I.
◦ Finally, if I ∼ J and J ∼ K then (a)I = (b)J and (c)J = (d)K, and so (ac)I = (bc)J = (bd)K
meaning I ∼ K.

2. We have I ∼ (1) if and only if I is principal. Thus, O√D is a principal ideal domain if and only if I ∼ (1)
for all nonzero ideals I of O√D.
◦ Proof: If I ∼ (1) then (a)I = (b) for some nonzero a and b. This equality requires that a divides b,
say with b = ka. Then cancelling (a) yields I = (k), so I is principal.

◦ The second statement follows immediately from the �rst, since the zero ideal (0) is principal and
thus being a PID only requires having all nonzero ideals be principal.

3. Multiplication of ideals respects ideal classes: if I ∼ I ′ and J ∼ J ′, then IJ ∼ I ′J ′.
◦ Proof: Suppose (a)I = (b)I ′ and (c)J = (d)J ′. Multiplying these relations yields (ac)IJ = (bd)I ′J ′,
so IJ ∼ I ′J ′.

• We have a natural multiplication operation on ideals, which makes the set of nonzero ideals into a semigroup.
Because the multiplication of ideals respects ideal classes, the set of ideal classes inherits this multiplication
operation; even better, it becomes an actual group:

• Proposition (Group Operation on Ideals): Let R = O√D be a quadratic integer ring and let [I] represent the
ideal class of an ideal I of R. Then the operation [I] · [J ] = [IJ ] makes the set of ideal classes into an abelian
group. This group is called the ideal class group of R (or often, just the class group of R).

◦ By a mild abuse of terminology, it is also very common to refer to �the ideal class group of the quadratic
�eld Q(

√
D)� as meaning the ideal class group of its ring of integers O√D.

◦ Proof: First, the operation is well-de�ned by (3) from the proposition above.

◦ The operation is associative and commutative because multiplication of ideals in O√D is associative and
commutative: ([I][J ])[K] = [IJ ][K] = [IJK] = [I][JK] = [I]([J ][K]) and [I][J ] = [IJ ] = [JI] = [J ][I].

◦ The ideal class of (1) is a multiplicative identity, since (1)I = I and so [(1)][I] = [I] for all I.

◦ Finally, every ideal class has an inverse: as we proved, for any ideal I the product I · I is a principal
ideal (a), and so [I][I] = [(a)] = [(1)].

• We see that the ideal classes have the structure of an abelian group under multiplication. However, by itself,
this fact does not yield very much useful information about the ideal classes: what we really want to do is
compute the structure of the ideal class group.

• Our �rst major result in this direction is that the class group is always �nite:

• Proposition (Properties of the Class Group): Suppose R = O√D is a quadratic integer ring and let [I] denote
the ideal class of an ideal I of R. Then the following are true:

9



1. If I is a nonzero ideal of R, then I contains a nonzero element α such that |N(α)| ≤ (|D|+ 1)N(I).

◦ Proof: Let m = b
√
N(I)c so that m2 ≤ N(I) < (m+ 1)2.

◦ Then since the cardinality of R/I is N(I) < (m+ 1)2, by the pigeonhole principle at least two of the
(m+ 1)2 elements {a+ b

√
D : 0 ≤ a, b ≤ m} in R must be congruent modulo I, so their di�erence

is in I.

◦ Thus, there exists a nonzero element γ ∈ I of the form a+ b
√
D where −m ≤ a, b ≤ m.

◦ Then |N(γ)| =
∣∣∣(a+ b

√
D)(a− b

√
D)
∣∣∣ =

∣∣a2 −Db2
∣∣ ≤ ∣∣a2

∣∣+ ∣∣Db2∣∣ = m2(|D|+ 1) ≤ (|D|+ 1)N(I),

as claimed.

◦ Remark: When D ≡ 1 (mod 4) this bound can be improved by working instead with the elements
of the form a + bω where ω is a generator of the quadratic integer ring. However, since we will be
improving this result shortly, we will not bother making this calculation.

2. Every ideal class of R contains an ideal J such that N(J) ≤ |D|+ 1.

◦ Proof: Let C be an ideal class and let I be any ideal in the inverse class C−1.

◦ By (1), there exists a nonzero element α ∈ I such that N(α) ≤ (|D| + 1)N(I). Because α ∈ I, by
the equivalence of divisibility and containment we see that I divides (α) and so (α) = IJ for some
ideal J .

◦ Taking norms yields N(α) = N(I)N(J), so N(J) =
N(α)

N(I)
≤ |D| + 1. Finally, taking ideal classes

gives [1] = [(α)] = [I][J ] so J ∈ [I]−1 = (C−1)−1 = C, as required.
3. The ideal class group of O√D is �nite.

◦ Proof: By (2), every ideal class contains some ideal J with N(J) ≤ |D|+ 1.

◦ But there are only �nitely many possible ideals J with N(J) ≤ |D|+ 1: there are only �nitely many
possible prime ideals that could occur in the prime factorization of J (namely, the primes of norm
at most |D|+ 1) and the power to which each such ideal can occur is bounded (since a prime power
P a has norm N(P )a, we must have a ≤ logN(P )(|D|+ 1) for all such P ).

◦ Thus, the ideal classes are all represented by a �nite list of ideals, so there are �nitely many ideal
classes.

• De�nition: If D is a squarefree integer not equal to 1, the class number of the quadratic integer ring O√D is
the order of the ideal class group of O√D. The class number is often written as h(D).

◦ As we noted earlier, the class number of O√D is equal to 1 if and only if O√D is a principal ideal domain.
A larger class number corresponds to having more inequivalent types of non-unique factorizations.

◦ Our proof of (2) in the proposition above gives us an explicit way to calculate the ideal class group
of O√D: we need only compute all of the possible prime ideals having norm at most D + 1, and then
determine the resulting structure of these ideals under multiplication.

• Example: Show that the class group of Z[
√

2] is trivial and deduce that Z[
√

2] is a principal ideal domain.

◦ From the proposition, we know that any ideal class contains an ideal J of norm at most 3.

◦ Then the only possible prime divisors of the norm are 2 and 3, so the only possible prime ideal divisors
of J are the primes lying above 2 and 3.

◦ Using the Dedekind-Kummer factorization theorem shows that in Z[
√

2] we have (2) = (
√

2)2 while the
ideal (3) is inert and has norm 9, so the only possible ideals J are (1) of norm 1 and (

√
2) of norm 2.

◦ Since both of these ideals are principal, we conclude that every ideal of Z[
√

2] is principal and so Z[
√

2]
is a principal ideal domain.

• Example: Show that the class group of Z[
√
−5] has order 2.

◦ From the proposition, we know that any ideal class contains an ideal J of norm at most 6.

◦ Then the only possible prime divisors of the norm are 2, 3, and 5 so the only possible prime ideal divisors
of J are the primes lying above 2, 3, and 5.
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◦ Using the Dedekind-Kummer factorization theorem (or appealing to our analysis from earlier) shows
that in Z[

√
−5] we have (2) = (2, 1 +

√
−5)2, (3) = (3, 1 +

√
−5)(3, 1−

√
−5), and (5) = (

√
−5)2.

◦ Thus, the possible prime ideals dividing J are I2 = (2, 1 +
√
−5) of norm 2, I3 = (3, 1 +

√
−5) and

I ′3 = (3, 1−
√
−5) both of norm 3, and I5 = (

√
−5) of norm 5.

◦ As we have previously shown, the ideal I2 is not principal, so since I
2
2 = (2) we see that [I2] is an element

of order 2 in the class group.

◦ We have also previously shown that I2I3 = (1 +
√
−5), so [I3] = [I2]−1 = [I2], and then since I3I

′
3 = (3)

we see [I ′3] = [I2] as well.

◦ Thus, since I5 is principal, we see that all of the nonprincipal ideals lie in the same class (namely, the
class [I2]) and so the class group of Z[

√
−5] has order 2.

• Example: Determine the class group of Z[
√

6] and decide whether it is a principal ideal domain.

◦ From the proposition, we know that any ideal class contains an ideal J of norm at most 7.

◦ Then the only possible prime divisors of the norm are 2, 3, 5, and 7, so the only possible prime ideal
divisors of J are the primes lying above 2, 3, 5, and 7.

◦ Using the Dedekind-Kummer factorization theorem shows that in Z[
√

6] we have (2) = (2,
√

6)2, (3) =
(3,
√

6)2, (5) = (5, 1 +
√

6)(5, 1−
√

6), and (7) is inert.

◦ Thus the possible prime ideals dividing J are I2 = (2,
√

6) of norm 2, I3 = (3,
√

6) of norm 3, and
I5 = (5, 1 +

√
6) and I ′5 = (5, 1−

√
6) both of norm 5. (Note that I7 = (7) cannot divide J since its norm

is 49.)

◦ In fact we can see I2 is principal, since it contains 2 −
√

6 and both 2 and
√

6 are divisible by 2 −
√

6.
Likewise, I3 is principal since it contains 3−

√
6 and both 3 and

√
6 are divisible by 3−

√
6, and also I5

(hence also its conjugate I ′5) is principal since 1 +
√

6 divides 5.

◦ Thus, no matter what the ideal J is, it is principal, and so the class group of Z[
√

6] is trivial , and Z[
√

6]
is a PID.

9.2.2 Minkowski's Bound

• Our ability to compute the class group relies upon being able to get a good estimate on the norm of the
smallest nonzero element in an ideal I.

◦ If D is negative, then the elements of the quadratic integer ring O√D naturally form a lattice in the
complex plane. Then any nonzero ideal I will form a sublattice, to which we can then apply Minkowski's
convex-body theorem to obtain an element of small norm.

◦ If D is positive, we will have to take a slightly di�erent approach to embed O√D into R2 as a lattice,
but we will be able to do essentially the same thing. The idea in this case is instead to map an element
α ∈ O√D to the point (α, α) ∈ R2.

• In order to pose the results consistently, we will introduce a little bit more terminology:

• De�nition: IfO√D is a quadratic integer ring, the discriminant ofO√D is de�ned as ∆ =

{
4D if D ≡ 2, 3 (mod 4)

D if D ≡ 1 (mod 4)
.

◦ This quantity is the discriminant of the minimal polynomial of the generator of O√D (whence the name).

• De�nition: Suppose D is a squarefree integer not equal to 1. We de�ne the Minkowski embedding ϕ : O√D →
R2 as follows: if D < 0, we map the element a+b

√
D ∈ O√D to (a, b

√
|D|), and if D > 0, we map the element

a+ b
√
D ∈ O√D to (a+ b

√
D, a− b

√
D).

◦ It is easy to see that the Minkowski map ϕ is a homomorphism of additive groups (i.e., it is Z-linear),
and so the image of O√D will be a 2-dimensional lattice spanned by the vectors ϕ(1) and ϕ(ω) where ω
is a generator of O√D.
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◦ If D < 0, the Minkowski embedding is simply the result of identifying the elements of O√D as points in
the complex plane. The image of the embedding is a lattice spanned by ϕ(1) = (1, 0) and ϕ(ω), which is
either (0,

√
|D|) or (1/2,

√
|D|/2) according to whether D ≡ 2, 3 or D ≡ 1 (mod 4).

◦ If D > 0, the image of the Minkowski embedding is still a lattice, since it is spanned by the linearly-

independent vectors ϕ(1) = (1, 1) and ϕ(ω) = (ω, ω), which is either (
√
D,−

√
D) or ( 1+

√
D

2 , 1−
√
D

2 ).

• Now we can prove Minkowski's bound:

• Theorem (Minkowski's Bound): Suppose D is a squarefree integer not equal to 1, let ∆ be the discriminant
of O√D, and let ϕ : O√D → R2 be the Minkowski embedding. Then the following hold:

1. The area of the fundamental domain for Λ = ϕ(O√D) is equal to

{√
∆ if D > 0

1
2

√
|∆| if D < 0

.

◦ Proof: The area of the fundamental domain for this lattice is equal to the determinant of ϕ(1), ϕ(ω),
where ω is a generator for the quadratic integer ring.

◦ If D < 0, we have ϕ(1) = (1, 0) and ϕ(ω) = (Re(ω), Im(ω)) is either (0,
√
|D|) or (1/2,

√
|D|/2)

according to whether D ≡ 2, 3 or D ≡ 1 (mod 4). Then the determinant is
√
|D| or

√
|D|/2

respectively, and in both cases we see that the area equals
1

2

√
|∆|.

◦ If D > 0, we have ϕ(1) = (1, 1) and ϕ(ω) = (ω, ω) is either (
√
D,−

√
D) or ( 1+

√
D

2 , 1−
√
D

2 ). Then

the determinant is 2
√
D or

√
D respectively, and in both cases, we see that the area equals

√
∆.

2. If I is any nonzero ideal of R and ΛI = ϕ(I) is the image of I under the Minkowski embedding, then the
fundamental domain for ΛI has area equal to N(I) times the fundamental domain for Λ.

◦ Proof: Note that ΛI is a sublattice (i.e., an additive subgroup) of Λ = ϕ(O√D).

◦ Since ϕ is an isomorphism of additive abelian groups that maps O√D to Λ and I to ΛI , we see that
Λ/ΛI ∼= O√D/I. Taking cardinalities then yields #(Λ/ΛI) = #(O√D/I) = N(I).

◦ Geometrically, this means that the fundamental domain for ΛI consists of N(I) copies of the fun-
damental domain for Λ. Thus, the fundamental domain for ΛI has area N(I) times the area of the
fundamental domain for Λ, as claimed.

3. Every nonzero ideal I ofR contains a nonzero element α with |N(α)| ≤ µ·N(I), where µ =

{
1
2

√
∆ if D > 0

2
π

√
|∆| if D < 0

.

◦ Proof: Let ΛI = ϕ(I) be the image of I under the Minkowski embedding. By (1) and (2), the

fundamental domain of ΛI has area

{
N(I) ·

√
∆ if D > 0

N(I) · 1
2

√
|∆| if D < 0

.

◦ First suppose D > 0 and let B be the convex, centrally-symmetric closed set in R2 de�ned by
|x1| + |x2| ≤ N(I)1/2∆1/4

√
2. It is simply a square of side length 2N(I)1/2∆1/4 so its area is

4N(I)
√

∆.

◦ By Minkowski's theorem, since the area of B equals 22 times the area of the fundamental domain of
ΛI , there necessarily exists some nonzero element ϕ(α) = (α, α) of ΛI in B.

◦ Then |N(α)| = |α| |α| ≤
[
|α|+ |α|

2

]2

≤ N(I) · 1

2

√
∆ where we used the arithmetic-geometric mean

inequality xy ≤
[
x+y

2

]2
which holds for any nonnegative x, y. This is the desired inequality.

◦ Now suppose D < 0 and let B be the convex, centrally-symmetric closed set in R2 de�ned by

x2
1 + x2

2 ≤
2

π
N(I)

√
|∆| , which is simply a circle of area 2N(I)

√
|∆|.

◦ By Minkowski's theorem, since the area of B equals 22 times the area of the fundamental domain of
ΛI , there necessarily exists some nonzero element ϕ(α) = (Re(α), Im(α)) of ΛI in B.

◦ Then N(α) = Re(α)2 + Im(α)2 is the sum of the squares of the coordinates of ϕ(α), which by the

hypotheses on B is at most
2

π

√
|∆| ·N(I), as claimed.

4. Every ideal class of R contains an ideal J with N(J) ≤

{
1
2

√
∆ if D > 0

2
π

√
|∆| if D < 0

.
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◦ Proof: This follows identically as in our earlier proof, merely with the constant 1 + |D| replaced by
the constant µ from (3) above.

• Minkowski's bound is quite a lot better than the estimate we obtained earlier, since it is asymptotic to√
∆ ∼ D1/2 rather than to D itself, so for large D we have far fewer ideals to examine in order to compute

the class group.

• Example (again): Show that the class group of Z[
√
−5] has order 2.

◦ Since −5 ≡ 3 (mod 4), we have ∆ = −20, and so Minkowski's bound says that every ideal class of R

contains an ideal of norm at most
2

π

√
20 ≈ 2.8471 < 3, so the only nontrivial ideals we need to consider

are ideals of norm 2.

◦ Since (2) splits as (2) = (2, 1 +
√
−5)2, and we have previously shown that (2, 1 +

√
−5) is nonprincipal,

we conclude that the class group is generated by the nonprincipal ideal I2 = (2, 1 +
√
−5). Since I2 has

order 2 as I2
2 = (2), the class group has order 2 as claimed.

• Example: Show that the class group of O√−19 is trivial and deduce that it is a principal ideal domain.

◦ Since −19 ≡ 1 (mod 4), we have ∆ = −19, and so Minkowski's bound says that every ideal class of R

contains an ideal of norm at most
2

π

√
19 ≈ 2.7750 < 3, so the only nontrivial ideals we need to consider

are ideals of norm 2.

◦ The minimal polynomial of the generator is x2 − x+ 5, which is irreducible modulo 2. Therefore, (2) is
inert, and so there are no ideals of norm 2 in O√−19.

◦ Therefore, the only ideal class is the trivial class, so the class group is trivial and O√−19 is a PID.

◦ Remark: It can be shown that O√−19 is not Euclidean with respect to any norm (though this is not
quite so easy to do), so it provides an example of a PID that is not a Euclidean domain.

• Example: Determine the class group of Z[
√

5].

◦ Since 5 ≡ 1 (mod 4), we have ∆ = 5, and so Minkowski's bound says that every ideal class of R contains

an ideal of norm at most
1

2

√
5 ≈ 1.1180 < 2, so there can be no nontrivial ideal classes.

◦ Thus, the class group of Z[
√

5] is trivial.

• Example: Determine the class group of Z[
√

6].

◦ Since 6 ≡ 2 (mod 4), we have ∆ = 24, and so Minkowski's bound says that every ideal class of R contains

an ideal of norm at most
1

2

√
24 ≈ 2.4495 < 3, so the only nontrivial ideals we need to consider are ideals

of norm 2.

◦ The minimal polynomial of the generator is x2 − 6, which has a repeated root r = 0 modulo 2, so (2) is
rami�ed: (2) = (2,

√
6)2. This ideal I2 = (2,

√
6) is in fact principal as we showed earlier (it is generated

by 2 +
√

6).

◦ Therefore, the only ideal class is the trivial class, so the class group is trivial.

• Example: Determine the class group of Z[
√

10].

◦ Since 10 ≡ 2 (mod 4), we have ∆ = 40, and so Minkowski's bound says that every ideal class of R

contains an ideal of norm at most
1

2

√
40 ≈ 3.1623 < 4, so the only nontrivial ideals we need to consider

are ideals of norm 2 and norm 3.

◦ The minimal polynomial of the generator is x2− 10, which has a repeated root r = 0 modulo 2, so (2) is
rami�ed: (2) = (2,

√
10)2. This ideal I2 = (2,

√
10) is not principal, since any generator would necessarily

have norm ±2, but there are no elements of norm ±2 since x2 − 10y2 = ±2 has no solutions modulo 5.
Thus, [I2] is an element of order 2 in the class group since I2 is not principal but I2

2 is.
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◦ For 3, since x2 − 10 has roots ±1 modulo 3, we see (3) splits: (3) = (3, 1 +
√

10)(3, 1−
√

10). The ideal
I3 = (3, 1 +

√
10) and its conjugate I ′3 = (3, 1 −

√
10) are both nonprincipal, since any generator would

necessarily have norm ±3, but there are no elements of norm ±3 since x2 − 10y2 = ±3 has no solutions
modulo 5.

◦ We can then compute I2
3 = (9, 3 + 3

√
10, 11 + 2

√
10). To test for principality we can look for elements

of norm 9, and looking at such elements (e.g., 1 ±
√

10) will reveal this ideal is in fact principal and
generated by (1 +

√
10). Explicitly, 1 +

√
10 = 9 + (3 + 3

√
10)− (11 + 2

√
10) ∈ I2

3 and each generator is
divisible by 1 +

√
10. Then (I ′3)2 = (1−

√
10), so [I3] and [I ′3] are both ideal classes of order 2 and they

are equal.

◦ It remains to determine the relationship between I2 and I3. Indeed, I2I3 = (6, 2+2
√

10, 3
√

10, 10+
√

10).
To test for principality we can look for elements of norm 6, and looking at such elements (e.g., 4±

√
10)

will reveal this ideal is in fact principal and generated by (4 +
√

10), since 4 +
√

10 = (10 +
√

10)− 6 and
each generator is divisible by 4 +

√
10. Thus since [I2][I3] = (1) = [I2]2, we see [I2] = [I3].

◦ Thus, we conclude that there is one nonprincipal ideal class of order 2, so the class group is isomorphic
to Z/2Z.

• Example: Determine the class group of O√−31.

◦ Since −31 ≡ 1 (mod 4), we have ∆ = −31, and so Minkowski's bound says that every ideal class of R

contains an ideal of norm at most
2

π

√
31 ≈ 3.5445 < 4, so the only nontrivial ideals we need to consider

are ideals of norm 2 and 3.

◦ The minimal polynomial of the generator ω = 1+
√
−31

2 is x2 − x+ 8.

◦ For (2) we see the polynomial has roots 0 and 1 so we get (2) = (2, 1+
√
−31

2 )(2, 1−
√
−31

2 ). If the ideal

I2 = (2, 1+
√
−31

2 ) or its conjugate I ′2 = (2, 1−
√
−31

2 ) were principal then it would be generated by an

element of norm 2, but there are no elements of norm 2 since this would require N(x+y
√
−31

2 ) = 2, but
there are no solutions to x2 + 31y2 = 8.

◦ The ideal I2
2 cannot be principal either, since it would have to be generated by an element of norm 4,

but the only such elements are ±2 and we already have the ideal factorization (2) = I2I
′
2 and I2 6= I ′2

since 2 is not rami�ed.

◦ On the other hand, I3
2 has norm 8, and there are elements of norm 8, namely,

1±
√
−31

2
. Indeed, we

can see that I3
2 = (8, 2 + 2

√
−31,−15 +

√
−31, −23−7

√
−31

2 ) so this ideal contains 8 + 2(2 + 2
√
−31) +

−23−7
√
−31

2 = 1+
√
−31

2 . Thus I3
2 = ( 1+

√
−31

2 ) is principal, and so [I2] is an element of order 3 in the class
group with inverse [I ′2] = [I2]2.

◦ For (3) we see the polynomial x2 − x + 8 is irreducible modulo 3, so (3) is inert of norm 9 and it does
not yield a nontrivial element of the class group.

◦ Therefore, the class group is generated by [I2] and is isomorphic to Z/3Z.

9.3 Binary Quadratic Forms

• We will now discuss representations of integers by binary quadratic forms, which are expressions of the form
f(x, y) = ax2 + bxy + cy2 for �xed integers a, b, c not all zero.

◦ We have already classi�ed the integers that are represented by the forms x2 + y2, x2 + 2y2, x2 +xy+ y2,
and x2 + 3y2 using unique factorization in the quadratic integer rings Z[i], Z[

√
−2], and O√−3.

◦ Our goal is now to broaden our focus and analyze integers represented by other binary quadratic forms.

9.3.1 Representations of Integers by Binary Quadratic Forms

• De�nitions: The discriminant of the binary quadratic form f(x, y) = ax2 +bxy+cy2 is ∆ = b2−4ac. If f takes
both positive and negative values on R then we say f is inde�nite. If f takes only nonnegative values we say f
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is positive semide�nite, and if in addition f = 0 only when (x, y) = (0, 0) we say f is positive de�nite. Finally,
we say f is negative semide�nite (respectively, negative de�nite) if −f is positive semide�nite (respectively,
positive de�nite).

◦ From elementary algebra, we know that the discriminant characterizes the behavior of the roots of f : if
D > 0 then f has two real roots (and they are rational whenever ∆ is a perfect square), if ∆ = 0 then f
has a repeated (rational) root, and if D < 0 then f has no real roots.

◦ Thus, f is inde�nite precisely when ∆ > 0, f is de�nite precisely when ∆ < 0 (it is positive de�nite for
a > 0 and negative de�nite for a < 0), and f is semide�nite but not de�nite when ∆ = 0 (it is positive
semide�nite when a+ c > 0 and negative semide�nite when a+ c < 0).

◦ Example: The forms x2 − y2 (∆ = 4), xy (∆ = 1), and x2 − 5xy + y2 (∆ = 21) are all inde�nite.

◦ Example: The forms x2 +y2 (∆ = −4), x2 +2xy+3y2 (∆ = −8), x2 (∆ = 0), and x2 +2xy+y2 (∆ = 0)
are all positive semide�nite. The �rst two are positive de�nite while the last two are not.

◦ Example: The forms −x2 + 2xy − 2y2 (∆ = −4) and −4x2 − 6xy − 9y2 (∆ = 0) are both negative
semide�nite. The �rst is negative de�nite while the second is not.

• We will observe that the discriminant ∆ of any quadratic form is always congruent to 0 or 1 modulo 4, so it
is always the discriminant of a quadratic integer ring up to a square factor.

◦ Conversely, if ∆ is 0 or 1 modulo 4 and is squarefree up to a factor of 4, then the norm N(x+ yω) where

ω is the generator of the quadratic integer ring O√D (
√
D or 1+

√
D

2 ) of the �eld Q(
√

∆) gives a quadratic
form of discriminant ∆. In this case, ∆ is simply the discriminant of the ring O√D itself.

• Now we can discuss representations of integers by quadratic forms:

• De�nition: If f is a binary quadratic form and n is an integer, we say f represents n if there exist integers x
and y such that f(x, y) = n, and we say f properly represents n if these x, y are also relatively prime.

◦ Example: f = x2 + y2 represents 2, 9, and 13, but it does not properly represent 9 because there is no
solution to x2 + y2 = 9 with x, y relatively prime.

◦ Example: f = x2 + xy + y2 represents 3, 4, and 7, but it does not properly represent 4 because there is
no solution to x2 + xy + y2 = 4 with x, y relatively prime.

• Ultimately, we would like to be able to classify the integers represented (or properly represented) by a given
quadratic form. This turns out to be quite di�cult, but we can establish some more basic results.

• Proposition (Representations by Forms of Discriminant ∆): Suppose ∆ is a nonzero integer congruent to 0 or
1 modulo 4.

1. If n is a nonzero integer, then there exists a binary quadratic form of discriminant ∆ that properly
represents n if and only if D is a quadratic residue modulo 4n.

◦ Proof: First suppose that ∆ is a quadratic residue modulo 4n, say with ∆ ≡ b2 (mod 4n), so that
b2−∆ = 4nc for some integer c. Then the quadratic form f(x, y) = nx2 +bxy+cy2 has discriminant
b2 − 4nc = ∆ and it properly represents n since f(1, 0) = n.

◦ Conversely, suppose ax2+bxy+cy2 = n with x, y relatively prime and with b2−4ac = ∆. Multiplying
by 4a and completing the square gives 4an = 4a2x2 + 4abxy+ 4acy2 = (2ax+ by)2 + (b2− 4ac)y2 so
that (b2 − 4ac)y2 ≡ (2ax+ by)2 (mod 4n).

◦ Therefore, b2 − 4ac is a quadratic residue modulo 4n/ gcd(y, 4n). By a symmetric argument, we see
b2 − 4ac is also a quadratic residue modulo 4n/ gcd(x, 4n), and since x, y are relatively prime, this
means b2 − 4ac is a quadratic residue modulo 4n, as required.

2. If p is an odd prime, then there exists a binary quadratic form of discriminant ∆ that represents p if and
only if ∆ is a quadratic residue modulo p.

◦ Proof: Since p is squarefree, any representation of p must automatically be proper.

◦ Then by (1), we see that p is represented by a form of discriminant ∆ if and only if ∆ is a quadratic
residue modulo 4p.

◦ However, since p is odd and ∆ is 0 or 1 modulo 4 (hence is a square modulo 4), by the Chinese
remainder theorem this is equivalent to saying that ∆ is a quadratic residue modulo p.
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9.3.2 Equivalence of Binary Quadratic Forms

• The results above give an easy way to decide whether there is some quadratic form of discriminant ∆ that
represents a given prime p.

◦ It therefore stands to reason that if we can understand the structure of the quadratic forms of a given
discriminant ∆, then we might be able to determine whether p is represented by a particular quadratic
form of discriminant ∆.

◦ To begin, we can see that there are simple changes of variable we can perform that do not a�ect rep-
resentability: for example, the binary quadratic forms f(x, y) = x2 + y2 and g(x, y) = f(x − y, y) =
x2 − 2xy + 2y2 represent the same integers, since the pair (x, y) ∈ Z2 if and only if (x− y, y) ∈ Z2.

◦ On the other hand, the binary quadratic forms f(x, y) = x2 + y2 and g(x, y) = f(2x, y) = 4x2 + y2 do
not represent the same integers (e.g., f represents 2 while g does not).

◦ More generally, we may identify any two quadratic forms that are obtained via a linear change of variables
from one another, as long as the change of variables is invertible over Z.

• The easiest way to keep track of such changes of basis is to use matrices:

• De�nition: If f(x, y) = ax2 + bxy + cy2 is a binary quadratic form, its associated matrix is the symmetric

matrix Mf =

[
a b/2
b/2 c

]
.

◦ The connection is that the quadratic form f(x, y) is equal to xTMfx where x =

[
x
y

]
is the column

vector of the two variables. We also observe that det(Mf ) = ac− b2/4 = −∆/4.

• It is then easy to write down how a binary quadratic form f transforms under a change of coordinates x 7→ Ax:
explicitly, we have f(Ax) = (Ax)TMf (Ax) = xT [ATMfA]x, and so the associated matrix of the new form is
ATMfA.

◦ For the purposes of representations of integers, we want only to consider changes of variables x 7→ Ax
that are a bijection from Z2 to itself, since this ensures that the possible input vectors x are the same for
both forms. It is easy to see that this is equivalent to saying that A is an invertible matrix with integer
entries whose inverse also has integer entries.

◦ These conditions imply that det(A−1) = 1/det(A) ∈ Z, so A must have determinant ±1. Conversely,

by the adjugate inverse formula A−1 =
1

det(A)
A†, which for 2 × 2 matrices reads as

[
e f
g h

]−1

=

1

eh− fg

[
h −f
−g e

]
, the condition of having integer entries and determinant ±1 is su�cient for x 7→ Ax

to be a bijection from Z2 to itself.

• For various reasons (primarily, that the resulting theory is much nicer), we will restrict our attention to
changes of coordinates with determinant +1 only, which yields the matrix group SL2(Z) = {M ∈ GL2(Z) :
det(M) = 1}.

◦ From our discussion above, for any A ∈ SL2(Z), we see that the integers represented by the forms f(x)
and f(Ax) will be the same, as will the integers properly represented by these two forms.

• De�nition: We de�ne the relation ∼ on binary quadratic forms by writing f ∼ g if there exists a matrix
A ∈ SL2(Z) such that g(x) = f(Ax), which is to say that g is obtained from f by an invertible orientation-
preserving linear change of variables with integer coe�cients. Equivalently, f ∼ g if there exists A ∈ SL2(Z)
such that Mg = ATMfA.

◦ Example: The quadratic forms f(x, y) = x2 + y2 and g(x, y) = f(x − y, y) = x2 − 2xy + 2y2 have

f ∼ g, since we can take the matrix A =

[
1 −1
0 1

]
∈ SL2(Z). For the matrix calculation, we have

Mf =

[
1 0
0 1

]
and Mg =

[
1 −1
−1 2

]
and indeed we have Mg = ATMfA.
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◦ Example: The quadratic forms f(x, y) = x2 + 2xy − y2 and g(x, y) = 7x2 + 22xy + 17y2 have f ∼ g,

since we can take the matrix A =

[
2 3
1 2

]
∈ SL2(Z); one may check that g(x, y) = f(2x+ 3y, x+ 2y).

◦ It is not hard to see that ∼ is an equivalence relation:

1. To see f ∼ f , simply take A = 1.

2. If f ∼ g then Mg = ATMfA and so (A−1)TMg(A
−1) = Mf so that g ∼ f .

3. If f ∼ g and g ∼ h let Mg = ATMfA and Mh = BTMgB: then Mh = (AB)TMf (AB) so f ∼ h.
◦ Also, by taking determinants, if f ∼ g then det(Mg) = det(AT ) det(Mf ) det(A) = det(Mf ) and so forms
in the same equivalence class under ∼ will have the same discriminant.

• Since we are interested in representability of integers by quadratic forms, and representability is the same for
di�erent forms in the same equivalence class under ∼, our next task is to identify nice representatives for the
equivalence classes under ∼.

• De�nition: If f(x, y) = ax2 + bxy + cy2 is a binary quadratic form whose discriminant ∆ is not a square, we
say f is reduced when − |a| < b ≤ |a| ≤ |c|, and if b = |a| we also insist that |a| < |c|, while if |a| = |c| then
we also insist that b ≥ 0.

◦ Example: The forms x2 + y2, x2 − y2, −3x2 + 3xy + 4y2, and 2x2 + xy + 3y2 are all reduced.

◦ Example: The forms x2 + 2xy, xy − 2y2, and 2x2 + 2xy + y2 are not reduced.

• Theorem (Reduced Forms): Let ∆ be a nonsquare integer congruent to 0 or 1 modulo 4 and suppose f(x, y) =
ax2 + bxy + cy2 is a reduced form of discriminant ∆. Then the following hold:

1. If D < 0 then a, c must have the same sign and |a| ≤
√
−∆/3. If ∆ > 0 then a, c have opposite signs

and |a| <
√

∆/2. In either case, there are �nitely many reduced forms of discriminant ∆.

◦ Proof: If a, c have the same sign then ∆ = b2 − 4ac = b2 − 4 |a| |c| ≤ 0, while if a, c have opposite
signs then ∆ = b2 − 4ac = b2 + 4 |ac| ≥ 0. Since ∆ 6= 0 we see that ∆ has the same sign as −ac.
◦ If ∆ < 0 then because |a| ≤ |c| we see that ∆ = b2 − 4 |a| |c| ≤ a2 − 4a2 = −3a2 so |a| ≤

√
−∆/3. If

∆ > 0 then again because |a| ≤ |c| we see that ∆ = b2 + 4 |ac| ≥ 4a2 and so |a| ≤
√

∆/2.

◦ In either case there are �nitely many values of a. For each of these values of a, there are only �nitely
many possible b since |b| ≤ |a|, and then c = (b2 − ∆)/(4a) is determined. Thus, there are only
�nitely many reduced forms of discriminant ∆.

2. Every equivalence class of quadratic forms of discriminant ∆ contains at least one reduced form.

◦ As motivation, note that SL2(Z) is generated4 by the matrices S =

[
0 −1
1 0

]
and T =

[
1 1
0 1

]
.

◦ The idea is then to show that if we have a non-reduced form, we must be able to apply either S
or a power of T to obtain a �smaller� form, and so iterating this procedure must eventually yield a
reduced form.

◦ Proof: Suppose f(x, y) = ax2 + bxy + cy2 has discriminant ∆ and has associated matrix Mf .

◦ Then STMfS =

[
c −b/2
−b/2 a

]
corresponds to the form cx2− bxy+ay2, which swaps the x2- and

y2-coe�cients while leaving the absolute value of the xy-coe�cient unchanged.

◦ Also, (Tm)TMfT
m =

[
a a+mb/2

a+mb/2 m2a+mb+ c

]
corresponds to the form ax2 + (b + 2am)xy +

(am2 + bm+ c)y2, which leaves the x2-coe�cient unchanged and shifts the xy-coe�cient by 2am.

◦ Thus, starting with f , we may apply the following steps:

(a) If b is not in the interval (− |a| , |a|], let m be the unique integer such that b+ 2am ∈ (− |a| , |a|]
and apply Tm to the quadratic form. This yields an equivalent form whose xy-coe�cient is
b+ 2am ∈ (− |a| , |a|] and whose x2-coe�cient is the same. Then go to step (b).

4We will not actually use this fact, but one may prove it by applying the Euclidean algorithm to the �rst column of a matrix M
of SL2(Z): note that T−qM will subtract q times the second row from the �rst row, and SM will swap the rows and negate the �rst
one: these (up to the scaling by −1) are precisely the operations in the Euclidean algorithm. Applying it will turn the �rst column into
[1 0]T , and then the second column must be [m 1]T since it is in SL2(Z), and this is just Tm. This gives a procedure for writing any
matrix in SL2(Z) in terms of S and T .
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(b) If b is in the interval (− |a| , |a|], test if |a| = |c|. If so and if b ≥ 0, the form is reduced; otherwise
if b < 0 then applying S will yield a reduced form. Otherwise, test whether |a| < |c|. If so, the
form is reduced, and if not, apply S to the quadratic form. This yields an equivalent form whose
x2-coe�cient is smaller in absolute value, and return to step (a).

◦ After applying the steps once, the form is either reduced or has an x2-coe�cient that is strictly
smaller in absolute value, and so iterating the procedure must eventually yield a reduced form.
Since each application of S or T yields an equivalent form, we conclude that every equivalence class
contains at least one reduced form.

3. There are �nitely many equivalence classes of binary quadratic forms of discriminant ∆.

◦ Proof: Each equivalence class contains at least one reduced form by (2), and there are �nitely many
reduced forms by (1).

• We may apply the algorithm in (2) to �nd equivalent reduced forms:

• Example: Find a reduced form equivalent to f(x, y) = 17x2 + 99xy − 46y2.

◦ First, since b 6∈ (−17, 17] we �nd m with b+ 34m ∈ (−17, 17], which gives m = −3.

◦ Applying T 3 yields the equivalent form g(x, y) = f(x− 3y, y) = 17x2 − 3xy − 190y2.

◦ Now because |a| < |c|, the resulting form 17x2 − 3xy − 190y2 is reduced.

• Example: Find a reduced form equivalent to f(x, y) = 119x2 − 145xy + 17y2.

◦ First, since b 6∈ (−119, 119] we �nd m with b+ 238m ∈ (−119, 119], which gives m = 1.

◦ Applying T yields the equivalent form g(x, y) = f(x+ y, y) = 119x2 + 93xy − 9y2.

◦ Now because |a| > |c| the form is not reduced so we apply S to get the form h(x, y) = f(−y, x) =
−9x2 − 93xy + 119y2.

◦ Then since b 6∈ (−9, 9] we �nd m with b+ 18m ∈ (−9, 9], which gives m = 5.

◦ Applying T 5 yields the equivalent form i(x, y) = f(x+ 5y, y) = −9x2− 3xy+ 359y2. Since |a| < |c|, this
form −9x2 − 3xy + 359y2 is reduced.

• Example: Find a reduced form equivalent to f(x, y) = 81x2 − 65xy + 13y2.

◦ First apply S, yielding 13x2 + 65xy + 81y2. Then apply T−2, yielding 13x2 + 13xy + 3y2.

◦ Next apply S, yielding 3y2 − 13xy + 13y2. Then apply T 2, yielding 3y2 − xy − y2.

◦ Finally, applying S yields −x2 + xy + 3y2 , which is reduced.

• For small values of ∆ we can also use the partial description of reduced forms in (2) from the theorem to
make a full list of reduced forms.

◦ By deciding which of these are equivalent to one another, we can then determine the precise number of
equivalence classes of forms.

• Example: Find all reduced forms of discriminant ∆ = −4 and show that there is only one equivalence class
of positive-de�nite forms.

◦ From the analysis in (2) we see that any reduced form ax2 + bxy + cy2 of discriminant ∆ = −4 must
have |a| ≤

√
4/3, so since a 6= 0 this means a = ±1. Then since |b| ≤ |a| we have b = 0,±1.

◦ Also, since c = (b2 − ∆)/(4a) must be an integer, b must be even. Thus the only possible forms have
a = ±1 and b = 0, which yields the two forms x2 + y2 and its negative −x2 − y2.

◦ Therefore, since only x2+y2 is positive-de�nite, it represents the only equivalence class of positive-de�nite
forms.

• Example: Find all reduced forms of discriminant ∆ = 13 and determine the number of equivalence classes.
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◦ From the analysis in (2) we see that any reduced form ax2 + bxy+ cy2 of discriminant ∆ = 5 must have
|a| ≤

√
13/2 < 2, so since a 6= 0 this means a = ±1. Then since b ∈ (− |a| , a] we must have b = 0 or

b = 1.

◦ However, since c = (b2 − ∆)/(4a) must be an integer, b must be odd, and so b = 1. We then get two
possible forms for a = −1 and a = 1 respectively: f(x, y) = −x2 + xy+ 3y2 and g(x, y) = x2 + xy− 3y2.

◦ Although both of these forms are reduced, they are in fact equivalent: if we take the matrix A =[
2 −3
1 −1

]
then it is straightforward to check that ATMfA = Mg, and so f ∼ g.

◦ Therefore, there is only one equivalence class of forms of discriminant ∆ = 13.

• Example: Find all reduced forms of discriminant ∆ = −40 and determine the number of equivalence classes.

◦ From the analysis in (2) we see that any reduced form ax2 +bxy+cy2 of discriminant ∆ = −40 must have
|a| ≤

√
40/3 < 4, so since a 6= 0 this means a = ±1,±2,±3. Then since b ∈ (− |a| , a] and b2−4ac = −40

so that b is even, we must have b = 0,±2.

◦ If a = 1 then b = 0 and then c = (b2 + 40)/(4a) = 10, and if a = −1 then b = 0 and c = −10.

◦ If a = ±2 then b = 0, 2 so that c = (b2 +40)/(4a) = ±5 or ±44/8, but the second case yields non-integral
c.

◦ If a = ±3 then b = 0,±2 so that c = (b2 + 40)/(4a) = ±40/12 or ±44/12 but these are not integral
either.

◦ So in summary, we obtain two positive-de�nite forms x2 + 10y2 and 2x2 + 5y2 along with their negatives
(which are negative-de�nite) −x2 − 10y2 and −2x2 − 5y2.

◦ The positive-de�nite and negative-de�nite forms are not equivalent to one another, and so we only have
to consider equivalence of the two positive-de�nite forms. But they are not equivalent because they do
not represent the same numbers: for example, 2x2 + 5y2 represents both 2 and 5, while x2 + 10y2 does
not.

◦ Therefore, all these reduced forms are inequivalent, and so there are four inequivalent forms in total.

• Example: Find all reduced forms of discriminant ∆ = −31 and determine the number of equivalence classes.

◦ From the analysis in (2) we see that any reduced form ax2 +bxy+cy2 of discriminant ∆ = −31 must have
|a| ≤

√
31/3 < 4, so since a 6= 0 this means a = ±1,±2,±3. Then since b ∈ (− |a| , a] and b2−4ac = −31

so that b is odd, we must have b = ±1,±3.

◦ If a = 1 then b = 1 and then c = (b2 + 31)/(4a) = 8, and if a = −1 then b = 1 and c = −8.

◦ If a = 2 then b = ±1 and then c = (b2 + 31)/(4a) = 4, and if a = −2 then b = ±1 and c = −4.

◦ Finally, if a = ±3 then b = ±1 or 3 and then c = (b2 + 31)/(4a) is either 32/± 6 or 40/± 6, but none of
these are integers.

◦ So in summary, we obtain three positive-de�nite forms x2 +xy+8y2, 2x2 +xy+4y2, 2x2−xy+4y2 along
with their negatives (which are negative-de�nite): −x2−xy−8y2, −2x2−xy−4y2, and −2x2 +xy−4y2.

◦ The positive-de�nite and negative-de�nite forms are not equivalent to one another, and so we only have
to consider equivalence of the positive-de�nite forms.

◦ It is not hard to see that x2 +xy+8y2 is not equivalent to either of the others, since it does not represent
2 whereas the other two do. The other two forms 2x2 + xy + 4y2, 2x2 − xy + 4y2 are also inequivalent,
although this is harder to show. (In particular, we cannot use the approach from the last example: these
two forms represent the same integers because they are obtained via a change of variables (x, y) 7→ (x,−y)
of determinant −1.)

◦ We can show the inequivalence using associated matrices: so suppose we had A =

[
a b
c d

]
∈ SL2(Z)

such that AT
[

2 1/2
1/2 4

]
A =

[
2 −1/2
−1/2 4

]
.

◦ SinceA has determinant 1, we haveA−1 =

[
d −b
−c a

]
and so we equivalently must solveAT

[
2 1/2

1/2 4

]
=[

2 −1/2
−1/2 4

]
A−1, so that

[
a c
b d

] [
2 1/2

1/2 4

]
=

[
2 −1/2
−1/2 4

] [
d −b
−c a

]
.
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◦ This yields an explicit linear system that reduces to 2a− 2d = a+ 2b+ 4c = 2b+ 4c+ d = −4a+ 4d = 0,
so that a = d = −2b− 4c. But then ad− bc = (2b+ 4c)2 − bc = 4b2 + 15bc+ 16c2 cannot equal 1, as can
be seen by completing the square: (2b+ 15c/4)2 + (31/16)c2 = 1 implies (8b+ 15c)2 + 31c2 = 16 and this
has no integer solutions.

◦ Therefore, all three of these reduced forms are inequivalent, and so there are six inequivalent forms in
total.

• In the examples above, we identi�ed reduced forms that were equivalent when ∆ > 0, but all of our examples
of reduced forms with ∆ < 0 were inequivalent. In fact, reduced forms of negative discriminant always yield
distinct equivalence classes:

• Proposition (Inequivalence of Reduced Forms for ∆ < 0): Suppose ∆ < 0 is the discriminant of a quadratic
integer ring.

1. If f(x, y) = ax2 +bxy+cy2 is a reduced positive-de�nite form of discriminant ∆, then a, c, and a−|b|+c
are the smallest nonzero integers properly represented by f .

◦ Proof: Since the de�niteness of a form is preserved by equivalence, without loss of generality we may
work only with the positive-de�nite forms.

◦ Now suppose f(x, y) = ax2 + bxy + cy2 is reduced, so that |b| ≤ a ≤ c. If x2 ≥ y2 then f(x, y) ≥
ax2− |b|xy+ cy2 ≥ (a− |b|+ c)y2, and similarly if y2 ≥ x2 then f(x, y) ≥ (a− |b|+ c)x2. Therefore,
f(x, y) ≥ (a− |b|+ c) min(x2, y2).

◦ We have f(x, 0) = ax2 and f(0, y) = cy2, so the only integers with xy = 0 properly represented by f
are f(±1, 0) = a and f(0,±1) = c. Otherwise, f(x, y) ≥ a− |b|+ c, and since f(1, 1) = f(−1,−1) =
a+ b+ c and f(1,−1) = f(−1, 1) = a− b+ c, the value a− |b|+ c is also properly represented by f .

◦ Any other value represented by f necessarily has min(x2, y2) ≥ 4 and is larger than these three
values.

◦ Therefore, the smallest nonzero integers properly represented by f are a, c, and a− |b|+ c.

2. If f and g are reduced positive-de�nite forms of discriminant ∆ and f ∼ g, then in fact f = g.

◦ Proof: Suppose f(x, y) = ax2 +bxy+cy2 and g(x, y) = a′x2 +b′xy+c′y2 are reduced positive-de�nite
forms of discriminant ∆.

◦ Since the forms are reduced, we have a ≤ c ≤ a− |b|+ c and also a′ ≤ c′ ≤ a′ − |b′|+ c′.

◦ Since f ∼ g, as we have shown, the integers properly represented by g are the same as those properly
represented by f . Therefore, by (1), we must have a = a′, c = c′, and |b| = |b′|, so b = ±b′.
◦ In the case where a = c or where |b| = a, since both forms are reduced we must also have b and
b′ ≥ 0, so b = b′.

◦ Otherwise, suppose |b| < a < c and that g(x, y) = f(px + qy, rx + sy) where ps − qr = 1. Then
a = g(1, 0) = f(p, q) and c = g(0, 1) = f(r, s) are proper representations of a and c respectively, and
it is easy to see that f properly represents a only at (x, y) = (±1, 0) and f properly represents c
only at (x, y) = (0,±1).

◦ This forces (p, q) = (±1, 0) and (r, s) = (0,±1), and then the determinant condition requires
(p, q, r, s) = (1, 0, 0, 1) or (−1, 0, 0,−1), and in both cases this yields g(x, y) = f(x, y).

3. Every equivalence class of binary quadratic forms of discriminant ∆ is represented by a unique reduced
form.

◦ Proof: For positive-de�nite forms this follows immediately from (2), since as we showed earlier, every
equivalence class contains at least one reduced form.

◦ For negative-de�nite forms we can simply scale everything by −1 and note that equivalence preserves
the de�niteness type of a form.

• If we can classify all of the binary quadratic forms of a given discriminant, we can often identify exactly which
primes may be represented by a given form.

◦ As we proved earlier, a prime p is (properly) represented by a form of discriminant ∆ if and only if ∆ is
a square modulo p.
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◦ If the equivalence classes of the forms of discriminant ∆ are represented by f1, f2, . . . , fk, then (at least)
one of the fi represents p if and only if ∆ is a square modulo p.

◦ For ∆ = −4, for instance, this result says that p is represented by the unique equivalence class represen-
tative f(x, y) = x2 + y2 if and only if −4 is a square modulo p, which is in turn equivalent to saying that
−1 is a square modulo p, which (as we have already noted numerous times) is equivalent to saying that
p ≡ 1 (mod 4).

◦ For ∆ = 13, we see that p is represented by the unique equivalence class representative f(x, y) =
x2 + xy − 3y2 if and only if 13 is a square modulo p, which (by quadratic reciprocity) is equivalent to
saying that p is a quadratic residue modulo 13, which is to say, when p = 13 or when p ≡ 1, 3, 4, 9, 10, 12
(mod 13).

9.3.3 Composition of Binary Quadratic Forms

• We now investigate the composition of binary quadratic forms, which we will motivate �rst via some examples.

◦ As we have already seen during our discussion of solutions to Pell's equation, the product (a+ b
√
D)(c+

d
√
D) = (ac+Dbd) + (ad+ bc)

√
D is also an element of Z[

√
D].

◦ Taking norms on both sides yields (a2 +Db2)(c2 +Dd2) = (ac+Dbd)2 +D(ad+ bc)2, which shows that
the product of two integers represented by the quadratic form x2 +Dy2 is also represented by this same
quadratic form.

◦ More generally, if D ≡ 1 (mod 4), because the quadratic integer ring O√D is a ring, the product of
two elements a + bω and c + dω is again an element of this ring, and so the product of two elements
represented by the norm form x2 + xy + 1−D

4 y2 is also represented by that form.

◦ For some values of ∆, we have found several inequivalent forms of discriminant ∆, only one of which
necessarily corresponds to a norm form x2 +Dy2 or x2 + xy + 1−D

4 y2.

• For example, for D = −10 corresponding to ∆ = −40, we identi�ed two inequivalent positive-de�nite forms
x2 + 10y2 and 2x2 + 5y2.

◦ Some small values represented by x2 + 10y2 are 0, 1, 4, 9, 10, 11, 14, 16, 19, 25, 26, 35, ... , while some
small values represented by 2x2 + 5y2 are 0, 2, 5, 7, 8, 13, 18, 20, 22, 23, 28, 32, ....

◦ Aside from 0, these lists are disjoint. The �rst list is closed under multiplication (as we showed above),
but the second visibly is not: indeed, 2, 5, and 7 are all on the second list, but their pairwise products
10, 14, and 35 actually all appear on the �rst list.

◦ In fact, this holds for any product of two elements from the second list: we can see that if we multiply
out (2a2 + 5b2)(2c2 + 5d2) = 4a2c2 + 10(a2d2 + b2c2) + 25b2d2, the result is of the form x2 + 10y2 for
x = 2ac+ 5bd and y = bc− ad.
◦ If we multiply an element on the �rst list by an element on the second list, we seem always to obtain
something on the second list: for example, 10 · 2 = 20, 14 · 2 = 28, 4 · 5 = 20, and so forth.

◦ Like above, this holds in general: if we multiply out (2a2+5b2)(c2+10d2) = 2a2c2+5b2c2+20a2d2+50b2d2,
the result is of the form 2x2 + 5y2 for x = ac+ 5bd and y = bc− 2ad.

◦ All of this together shows that the equivalence classes of positive-de�nite quadratic forms of discriminant
∆ = −40 have a group structure isomorphic to Z/2Z under multiplication, with the form x2 + 10y2 as
the identity and the form 2x2 + 5y2 as the nontrivial element in the group.

• We can �nd similar patterns with the quadratic forms for other discriminants, although in some cases they
are harder to identify.

◦ For example, for discriminant ∆ = −84, one may show that there are four positive-de�nite reduced
forms: x2 + 21y2, 2x2 + 2xy + 11y2, 3x2 + 7y2, and 5x2 + 4xy + 5y2. Here are the integers less than 100
represented by each form:

Form Integers

e x2 + 21y2 0, 1, 4, 9, 16, 21, 22, 25, 30, 36, 37, 46, 49, 57, 64, 70, 81, 84, 85, 88, 93

a 2x2 + 2xy + 11y2 0, 2, 8, 11, 15, 18, 23, 32, 35, 42, 44, 50, 51, 60, 71, 72, 74, 92, 95, 98, 99

b 3x2 + 7y2 0, 3, 7, 10, 12, 19, 27, 28, 31, 34, 40, 48, 55, 63, 66, 75, 76, 82, 90

c 5x2 + 4xy + 5y2 0, 5, 6, 14, 17, 20, 24, 33, 38, 41, 45, 54, 56, 62, 68, 69, 77, 80, 89, 96
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◦ If we hypothesize that the reduced forms up to equivalence form a group under multiplication, then since
x2 + 21y2 is the norm form on Z[

√
−21], its set of represented integers is closed under multiplication, so

it corresponds to the identity element.

◦ If we label the other three classes as a, b, and c, then it is not hard to verify that a · a = e for small
entries in the table (e.g., 8 · 11 = 88, 2 · 23 = 46, etc.), and also b · b = e (e.g., 3 · 7 = 21, 7 · 12 = 84) and
c · c = e (e.g., 5 · 6 = 30, 6 · 14 = 84).

◦ This suggests the group structure is isomorphic to the Klein 4-group, and so we should also have a · b = c
(2 · 3 = 6, 11 · 7 = 77, etc.), a · c = b (2 · 5 = 10, 11 · 6 = 66), and b · c = a (3 · 14 = 42, 10 · 5 = 50), which
all do seem to hold.

◦ We would expect, as above, that all of these should arise from algebraic identities. This is in fact the
case, although it is not so easy to �nd and verify all of them.

◦ But for example, we have (a2 +21b2)(2c2 +2cd+11d2) = 2x2 +2xy+11y2 for x = ac−bc+ad+10bd and
y = 2bc− ad+ bd, and also (2a2 + 2ab+ 11b2)(3c2 + 7d2) = 5x2 + 4xy + 5y2 for x = ac− ad+ 2bc+ 4bd
and y = −ac− ad+ bc− 4bd.

• Part of the di�culty is that in some cases, the integers represented by inequivalent forms are the same, so we
cannot use tables to identify the group structure, nor can we necessarily identify the composition structure
by searching for algebraic identities.

◦ For example, consider the case ∆ = −31, where we showed that there are three equivalence classes of
positive-de�nite forms represented by x2 + xy + 8y2, 2x2 + xy + 4y2, and 2x2 − xy + 4y2. Here are the
integers less than 50 represented by each form:

Form Integers

e x2 + xy + 8y2 0, 1, 4, 8, 9, 10, 14, 16, 20, 25, 28, 31, 32, 35, 36, 38, 40, 47, 49

a 2x2 + xy + 4y2 0, 2, 4, 5, 7, 8, 10, 14, 16, 18, 19, 20, 25, 28, 32, 35, 36, 38, 40, 41, 45, 49

b 2x2 − xy + 4y2 0, 2, 4, 5, 7, 8, 10, 14, 16, 18, 19, 20, 25, 28, 32, 35, 36, 38, 40, 41, 45, 49

◦ We can see that the forms 2x2 + xy+ 4y2 and 2x2− xy+ 4y2 represent the same integers, since they are
related via an improper change of variables (x, y) 7→ (x,−y) of determinant −1.

◦ As in the examples above, we can write down algebraic identities that yield a group structure on the
equivalence classes of these forms. However, because of the presence of the improper change of variables
relating two of the forms, we can also generate composition relations that do not yield a group structure.

◦ For example, despite the fact that we want the norm form x2 + xy + 8y2 to be the identity element of
the group, so that e · a = a, we have the identity (a2 + ab + 8b2)(2c2 + cd + 4d2) = 2x2 ± xy + 4y2 for
x = ±(ac − 4bd) and y = ad + 4bc − 2bc + bd, so depending on our choice of sign, we could either take
e · a = a (which is the identity we want if we are to have a group structure) or e · a = b (which would not
give a group structure).

• Many of the properties of binary quadratic forms we have discussed were �rst treated by Legendre: for example,
he gave the de�nition of a reduced form, discussed the equivalence of forms, and described a procedure for
computing the composition of two forms.

◦ However, Legendre's treatment also allowed what we now call improper equivalence of forms (i.e., changes
of coordinates with determinant −1), which collapses the equivalence classes further and makes it very
di�cult to identify the right composition structure.

◦ To give an example in the case where ∆ is negative and even, Legendre observed that for forms f(x, y) =
ax2 + 2bxy + cy2 and g(x, y) = a′x2 + 2b′xy + c′y2 with a, a′ relatively prime, then if B ≡ ±b (mod a)
and also B ≡ ±b′ (mod a′), then B2 −∆/4 ≡ b2 + (ac − b2) ≡ 0 (mod a) and similarly B2 −∆/4 ≡ 0
(mod a′), so B2 −∆/4 ≡ 0 (mod aa′).

◦ One can then write down an appropriate linear change of variables to show that the product f(x, y)g(x′, y′)

is equal to aa′X2 + 2BXY +
B2 −∆/4

aa′
Y 2 for X and Y appropriate bilinear forms in x, y and x′, y′.

◦ However, because of the choice of ± signs in Legendre's composition above, there are multiple di�erent
possible results of composing two forms, and (as with the example for ∆ = −31) these need not actually
yield forms lying in the same equivalence class.
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◦ The resolution of this quite tricky issue was �rst accomplished by Gauss, who introduced the notion
of proper equivalence5 (which is our relation ∼) and identi�ed a consistent procedure for composing
quadratic forms that does give them the structure of a group: this is known as Gauss direct composition.
However, his treatment is fairly complicated, owing to the necessity of identifying the correct choice of
compositions whenever there is more than one option, although it is quite remarkable how much of the
general theory he was able to characterize, given that the notion of an abstract group was still decades
away from being developed.

9.3.4 Dirichlet's Composition of Quadratic Forms

• We will describe a simpli�ed composition law that is due to Dirichlet.

• De�nition: Let f(x, y) = ax2 + bxy + cy2 and g(x, y) = a′x2 + b′xy + c′y2 be binary quadratic forms of
discriminant ∆. Suppose that gcd(a, a′, (b+ b′)/2) = 1. Then the Dirichlet composition of f(x, y) and g(x, y)
is the binary quadratic form h(x, y) = Ax2 + Bxy + Cy2 where A = aa′, B is the unique integer in (−A,A]

satisfying B ≡ b (mod 2a), B ≡ b′ (mod 2a′), and B2 ≡ ∆ (mod 4aa′), and C =
B2 −∆

4aa′
.

◦ Clearly the new form also has discriminant ∆, since C =
B2 −∆

4aa′
=
B2 −∆

4A
, and the coe�cients A,B,C

are integers since the assumptions on B indicate that B2−∆ is divisible by 4aa′. We also remark that b
and b′ have the same parity since they are both congruent to ∆ mod 2, so the gcd condition is well-posed.

◦ It is less obvious why there is a unique value of B in (−A,A] satisfying the simultaneous congruences
B ≡ b (mod 2a), B ≡ b′ (mod 2a′), and B2 ≡ ∆ (mod 4aa′), but this can be shown6 to hold in general.

◦ The Dirichlet composition does yield composition identities like the ones we described earlier: by hy-
pothesis, B is congruent to b (mod 2a) and to b′ (mod 2a′), so by applying the appropriate power of
T we see that f(x, y) = ax2 + bxy + cy2 and g(x, y) = a′x2 + b′xy + c′y2 are equivalent to the forms
f ′(x, y) = ax2 +Bxy + a′Cy2 and g′(x, y) = a′x2 +Bxy + aC ′y2 respectively.

◦ Then one has f ′(x1, y1)g′(x2, y2) = AX2 + BXY + CY 2 where X = x1x2 − Cy1y2 and Y = ax1x2 +
a′y1y2 +By1x2.

◦ Example: For ∆ = −40, to compute the Dirichlet composition of x2+10y2 with itself, we see A = 1·1 = 1,
B ≡ 0 (mod 2), B ≡ 0 (mod 2), and B2 ≡ −40 (mod 4), so that B = 0, and then C = (B2−∆)/(4A) = 10.
Thus, the Dirichlet composition of x2 + 10y2 with itself is again x2 + 10y2.

◦ Example: For ∆ = −40, to compute the Dirichlet composition of x2 + 10y2 with 2x2 + 5y2, we see
A = 1 · 2 = 2, B ≡ 0 (mod 2), B ≡ 0 (mod 4), and B2 ≡ −40 (mod 8), so that B = 0, and then
C = (B2 −∆)/(4A) = 5. Thus, the Dirichlet composition of x2 + 10y2 with 2x2 + 5y2 is 2x2 + 5y2.

◦ Example: For ∆ = −84, to compute the Dirichlet composition of 2x2 + 2xy + 11y2 with 3x2 + 7y2, we
see A = 2 · 3 = 6, B ≡ 2 (mod 4), B ≡ 0 (mod 6), and B2 ≡ −84 (mod 24), so that B = 6, and then
C = (B2 − ∆)/(4A) = 5. Thus, the Dirichlet composition of x2 + 10y2 with 2x2 + 2xy + 11y2 with
3x2 + 7y2 is 6x2 + 6xy + 5y2. This form is not reduced, but applying S yields 5y2 − 5xy + 6y2 and then
applying T yields the reduced form 5x2 + 4xy + 5y2.

◦ It can be shown using direct manipulations that Dirichlet composition is well-de�ned on equivalence
classes of forms (we will omit this argument, since the calculations are fairly involved).

◦ Thus, in situations where the condition for evaluating the Dirichlet composition is not met (i.e., when
gcd(a, a′, (b+ b′)/2) > 1) we may instead use equivalent non-reduced forms for computing compositions.

5In fact, Gauss's notion of proper equivalence is the origin of the term �equivalence relation�.
6First, if B is a solution to the �rst two congruences, then (B − b)(B − b′) is divisible by 2a · 2a′ = 4aa′, which means that

B2− (b+ b′)B+ bb′ ≡ 0 (mod 4aa′). Then the third congruence is equivalent to (b+ b′)B ≡ bb′+ ∆ (mod 4aa′), and cancelling a factor

of 2 yields the equivalent congruence b+b′

2
B ≡ bb′+∆

2
(mod 2aa′). Then by scaling the �rst two congruences, we see that the full system

is equivalent to a′B ≡ a′b (mod 2A), aB ≡ ab′ (mod 2A), and b+b′

2
B ≡ bb′+∆

2
(mod 2A). Finally, because gcd(a, a′, (b + b′)/2) = 1,

we can write 1 = pa+ qa′ + r b+b
′

2
for p, q, r ∈ Z: then one may verify that B = qa′b+ pab′ + r bb

′+∆
2

is a solution to this system and
that the solution is unique modulo 2A.
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◦ Example: For ∆ = −40, to compute the Dirichlet composition of 2x2 + 5y2 with itself, we cannot use
the composition formula directly since gcd(a, a′, (b+ b′)/2) = 2. Instead, if we compute the composition
of 2x2 + 5y2 with the equivalent form 5x2 + 2y2 obtained by applying S, we get A = 2 · 5 = 10, B ≡ 0
(mod 4), B ≡ 0 (mod 10), and B2 ≡ −40 (mod 40), so that B = 0, and then C = (B2 −∆)/(4A) = 1.
Thus, the Dirichlet composition of 2x2 + 5y2 with 2x2 + 5y2 is 10x2 + y2. This form is not reduced, but
applying S yields the reduced form x2 + 10y2.

• Dirichlet's composition law makes the collection of equivalence classes of forms of discriminant ∆ into an
abelian group:

• Theorem (Composition of Quadratic Forms): Suppose ∆ is the discriminant of a quadratic integer ring and
let F be the set of equivalence classes of quadratic forms of discriminant ∆. Then F has the structure of an
abelian group under Dirichlet composition. The identity of F is the norm form on the quadratic integer ring
∆ and the inverse of the class containing ax2 + bxy + cy2 is the class containing ax2 − bxy + cy2.

◦ Proof: As we remarked on above, Dirichlet composition is well-de�ned on equivalence classes. To show
that it is an abelian group, we must show that the operation is associative, commutative, and that the
identity and inverses are as claimed.

◦ Associativity is a direct (albeit quite tedious) calculation, which we will omit.

◦ Commutativity is immediate from the de�nition, because the de�nition of the Dirichlet composition is
symmetric in f and g.

◦ For the identity, we want to compose the norm form on O√D with a reduced form ax2 + bxy + cy2.
Clearly the gcd condition is satis�ed, since the norm form has leading coe�cient 1. Then A = a and we
require B to be the unique integer in (−A,A] satisfying B ≡ b (mod 2a) with B2 ≡ ∆ (mod 4a), but
clearly B = b satis�es this condition so since b ∈ (− |a| , |a|] is reduced, we simply have B = b. Then

C =
B2 −∆

4a
= c, and so the result of the composition is again just ax2 + bxy + cy2.

◦ For inverses, we want to compose ax2 + bxy + cy2 with ax2 − bxy + cy2. If we instead apply S to the
second form to obtain cx2 + bxy + ay2, we then have gcd(a, c, (b+ b)/2) = gcd(a, b, c) = 1 because ∆ is
squarefree except for a factor of 4. Then the Dirichlet composition of ax2 +bxy+cy2 with cx2 +bxy+ay2

has A = ac, B ≡ b (mod 2a), B ≡ b (mod 2c), and B2 ≡ ∆ (mod 4ac), but clearly B = b satis�es this

condition. Then C =
b2 − (b2 − 4ac)

4ac
= 1, so the resulting composition is acx2 + bxy + y2. Applying S

yields x2−bxy+acy2, and then applying the appropriate power of T reduces this to a form x2 +(∆/4)y2

if ∆ is even, or x2 + xy + 1−∆
4 y2 if ∆ is odd, and this is precisely the norm form, as claimed.

9.3.5 Quadratic Forms and Ideal Class Groups

• In fact, the abelian group we obtain by composing binary quadratic forms of discriminant ∆ is essentially just
the ideal class group of the quadratic integer ring O√D:

• Theorem (Quadratic Forms and Ideal Class Groups): Suppose ∆ < 0 is the discriminant of a quadratic
integer ring O√D. Then the group F of equivalence classes of binary quadratic forms of discriminant ∆
under composition is isomorphic to the group I × {±1} of equivalence classes of ideals of O√D under ideal
multiplication, together with a sign ±1. More explicitly, if ϕFI : F → I × {±1} is the map that sends a

quadratic form ax2 + bxy+ cy2 to the pair ((a,
−b+

√
∆

2
), sign(a)), then ϕFI is a group isomorphism, and its

inverse is the map ϕIF : I × {±1} → F that takes an ideal I = (n, ω) of norm n (with ω 6∈ Z) along with a

sign s ∈ {±1} to the quadratic form s · N(nx− sωy)

N(I)
.

◦ What this result says is that, up to some minor business with ± signs, we obtain an isomorphism between
the group of binary quadratic forms under composition with the ideal class group.

◦ In particular, when ∆ < 0, the positive-de�nite forms have a + sign and the negative-de�nite forms have
a − sign: thus, the theorem gives an isomorphism between classes of positive-de�nite forms (which are
uniquely represented by reduced positive-de�nite forms) and classes in the ideal class group.
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◦ For positive ∆, the nonuniqueness of reduced forms in a given equivalence class causes issues with the
sign ±1. However, one can essentially salvage this result by restricting the de�nition of reduced forms
and accounting for the sign ambiguity, which depends on whether the fundamental unit of O√D has
positive or negative norm.

◦ Proof: First we show that the maps are well de�ned.

◦ If we start with a quadratic form ax2 + bxy+ cy2 of discriminant ∆, then as we have observed numerous

times, b ≡ ∆ mod 2, and so
−b+

√
∆

2
∈ O√D. Then the result of applying ϕFI to ax2 + bxy + cy2 is

indeed an ideal of O√D.
◦ Furthermore, if we apply S or T to the quadratic form, the resulting ideal class is not changed: applying T

changes b to b+2a, and as ideals we have (a,
−b+

√
∆

2
) = (a,

−(b+ 2a) +
√

∆

2
), while applying S changes

(a,
−b+

√
∆

2
) to (c,

b+
√

∆

2
), and these are the same ideal class because

b+
√

∆

2
· (a, −b+

√
∆

2
) =

a · (c, b+
√

∆

2
).

◦ Therefore ϕFI is a well-de�ned map from F to I × {±1}.
◦ For ϕIF , suppose that (n, ω) is an ideal of O√D and s ∈ {±1}. Then N(nx+ sωy) = (nx+ sωy)(nx+

sωy) = n2x2 +sn(ω+ω)xy+s2ωωy2 is a quadratic form. Furthermore, all of its coe�cients are divisible

by the norm of I since (N(I)) = I · I = (n2, n(ω+ω), ωω), so the quotient s
N(nx− sωy)

N(I)
= snx2 + (ω+

ω)xy+sωωn y
2 is still a quadratic form with integer coe�cients. Its discriminant is

n2(ω + ω)2 − 4n2ωω

N(I)2
=

(ω − ω)2 = ∆ since we may assume ω is of the form
−b+

√
∆

2
by an appropriate linear change of basis

for I.

◦ Furthermore, if we scale the ideal I by a principal factor, the resulting quadratic form is not changed,

since the ratio s
N(nx− sωy)

N(I)
is invariant if we scale n, ω by the same constant. Therefore, ϕIF is a

well-de�ned map from I × {±1} to F .

◦ If we apply ϕIF to the ideal ϕFI(ax
2 + bxy+ cy2) = ((a,

−b+
√

∆

2
), s) where s = sign(a), we obtain the

quadratic form s· 1

|a|
(ax−s−b+

√
∆

2
y)(ax−s−b−

√
∆

2
y) =

1

a
(a2x2−sabxy+s2acy2) = ax2 +bxy+cy2.

Thus, ϕIF ◦ ϕFI is the identity.
◦ Oppositely, if we apply ϕFI to the ideal I = (n, ω) and sign s, we obtain snx2 + (ω + ω)xy + sωωn y

2 as
noted above. Then since n > 0, we see sign(sn) = s, and the underlying ideal is generated by sn and

−(ω + ω) +
√

∆

2
= ω, hence is simply I = (n, ω). Thus, ϕFI ◦ ϕIF is the identity as well, so the maps

ϕFI and ϕIF are inverses.

◦ Finally, ϕIF is multiplicative on ideals, since both the numerator and denominator are multiplicative.
Thus, ϕIF is a group isomorphism and its inverse is ϕFI , which is the desired result. (It is harder to check
directly that ϕFI is an isomorphism since the description of Dirichlet composition is more complicated,
but this fact is embedded in the results we have already shown.)

• Here are some examples using forms and ideal class groups we have previously computed:

◦ Example: For D = −1, with ∆ = −4, we have two reduced binary quadratic forms x2 +y2 and −x2−y2.
Applying the map ϕFI to them yields the same ideal (1, i) = Z[i] along with a sign ±1. Conversely,

applying ϕIF to I = (1, i) and the sign +1 yields the quadratic form
N(x+ iy)

N(1)
= x2 +y2, while applying

ϕIF to I = (1, i) and the sign −1 yields the quadratic form −N(x− iy)

N(1)
= −x2 − y2.
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◦ Example: For D = −10, with ∆ = −40, we have two reduced positive-de�nite forms x2 + 10y2 and
2x2 + 5y2. Applying the map ϕFI to x

2 + 10y2 yields the ideal (1,
√
−10) = (1) representing the trivial

ideal class, while 2x2 + 5y2 yields the ideal (2,
√
−10) which as we have seen represents the nontrivial

ideal class. Conversely, applying ϕIF to I = (1,
√
−10) and the sign +1 yields the quadratic form

N(x+ y
√
−10)

1
= x2 + 10y2, while applying ϕIF to I = (2,

√
−10) and the sign +1 yields the quadratic

form
N(2x+ y

√
−10)

2
= 2x2 + 5y2.

◦ Example: For D = ∆ = −31, we have three reduced positive-de�nite forms x2 +xy+8y2, 2x2 +xy+4y2,

and 2x2 − xy + 4y2. Applying the map ϕFI to x2 + xy + 8y2 yields the ideal (1, −1+
√
−31

2 ) = (1)

representing the trivial ideal class, while 2x2 +xy+ 4y2 yields the ideal (2, −1+
√
−31

2 ) which is one of the

two ideal factors of (2), and 2x2 + xy + 4y2 yields (2, 1+
√
−31

2 ) which is the other ideal factor of (2).

• As an application of computing the class group, we can give characterizations (in certain cases) of the primes
represented by a quadratic form.

◦ To illustrate, consider the two inequivalent positive-de�nite forms x2 + 10y2 and 2x2 + 5y2 with discrim-
inant ∆ = −40.

◦ From our results earlier, we see that a prime p is represented by one of these forms if and only if −40 is a
quadratic residue modulo p. Excluding p = 2, 5 (which are both clearly represented by the second form

and not the �rst), by quadratic reciprocity we have

(
−40

p

)
=

(
−10

p

)
=

(
−2

p

)(
5

p

)
=

(
−2

p

)(p
5

)
.

Since

(
−2

p

)
= +1 for p ≡ 1, 3 (mod 8) and

(p
5

)
= +1 for p ≡ 1, 4 (mod 5), we see that

(
−40

p

)
= +1

for p ≡ 1, 9, 11, 19 (mod 40) (both symbols are +1) and for p ≡ 7, 13, 23, 37 (mod 40) (both symbols are
−1).

◦ Thus, a prime p 6= 2, 5 is represented by one of x2+10y2 and 2x2+5y2 if and only if p ≡ 1, 7, 9, 11, 13, 19, 23, 37
(mod 40).

◦ But if p is represented by x2 + 10y2, then p ≡ x2 (mod 5), so p must be a quadratic residue modulo 5
and so p ≡ 1, 9, 11, 19 (mod 40).

◦ Likewise, if p is represented by 2x2 + 5y2, then p ≡ 2x2 (mod 5) so p must be a quadratic nonresidue
modulo 5 and so p ≡ 7, 13, 23, 37 (mod 40).

◦ Since these cases partition the primes, we conclude that the primes represented by x2 +10y2 are precisely
the primes p ≡ 1, 9, 11, 19 (mod 40), while the primes represented by 2x2 + 5y2 are precisely 2, 5, and
the primes p ≡ 7, 13, 23, 37 (mod 40).

◦ By composing these forms, we can then classify all integers represented by these forms: they may have
arbitrary square factors times a product of primes 2, 5, and p ≡ 1, 7, 9, 11, 13, 19, 23, 37 (mod 40). Since
x2 + 10y2 represents the trivial element of the class group, we also see that the form representing n will
be x2 +10y2 when the total number of primes dividing n to an odd power among 2, 5 and p ≡ 7, 13, 23, 37
(mod 40) is even, while the form will be 2x2 + 5y2 when the total number of such primes is odd.

• There are many open problems regarding class groups of quadratic �elds. A natural immediate question is to
determine which quadratic integer �elds have class number n for each �xed n.

◦ The case n = 1 is known as the class number 1 problem, and (per our earlier discussion) it is equivalent
to asking which quadratic integer rings have unique factorization. It was conjectured by Gauss in 1801
that there are only �nitely many imaginary quadratic �elds of class number 1.

◦ It was proven by Heilbronn in 1934 that there are only �nitely many imaginary quadratic �elds of any
�xed class number (so that in particular the class number h(−d) → ∞ as d → ∞). This result was
sharpened by Siegel to obtain an ine�ective bound h(−d) ≥ c

√
d for a positive constant c whose value

was not e�ectively known.

◦ Heilbronn also showed that there were at most 10 imaginary quadratic �elds of class number 1; since 9
such �elds, corresponding to D = −1, −2, −3, −7, −11, −19, −43, −67, and −163 were known, this
meant there could exist at most one more.
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◦ The nonexistence of this 10th �eld was essentially proven by Heegner in 1952 using modular forms, but
his proof had some minor gaps and it was not accepted7 until Stark gave a full proof of the result in
1967. Baker also gave a proof, using an entirely di�erent method (linear forms in logarithms), in 1966.

◦ These results have subsequently been extended to classify all imaginary quadratic �elds with a given small
class number: for instance, there are 18 �elds of class number 2, corresponding to D = −5,−6,−10,−13,
−15,−22,−35,−37,−51,−58,−91,−115,−123,−187,−235,−267,−403,−427, there are 16 �elds of class
number 3, and so forth.

• For real quadratic �elds, the results are quite di�erent: Gauss conjectured in this case that there are in�nitely
many real quadratic �elds of class number 1.

◦ This problem of determining whether there actually are in�nitely many real quadratic �elds of class
number 1 is still open (as of 2021). In fact, it is not known de�nitively whether there are in�nitely many
�elds of class number greater than 1 either!

◦ Many small values of D do yield real quadratic �elds of class number 1. In fact, the only values of D less
than 100 that do not are D = 10, 15, 26, 30, 34, 35, 39, 42, 51, 55, 58, 65, 66, 70, 74, 78, 85, 87, 91, 95 which
all have class number 2 along with D = 79 which has class number 3 and D = 82 which has class number
4.

• There are various conjectures about various aspects of the class groups of real and imaginary quadratic �elds.

◦ One set of predictions are the Cohen-Lenstra heuristics, which posit, for odd primes p, the density with
which any given abelian p-group will appear as the p-power torsion part of a class group (i.e., the Sylow
p-subgroup) of a real or imaginary quadratic �eld.

◦ For the prime p = 2, the structures of p-power torsion subgroups of class groups are fully understood,
and are consequences of what is called genus theory, which is a name due to Gauss (as is the term
�equivalence class�, which �rst appeared in Gauss's treatment of quadratic forms) that has nothing to do
with other uses of the word �genus�, e.g., in topology.

◦ Intuitively, the Cohen-Lenstra heuristics say that the probability, in an appropriate sense, that a given
abelian p-group P will occur as the p-part of the class group of an imaginary quadratic �eld should be
proportional to 1/#Aut(P ). This may initially seem to be a rather unnatural weighting, but in fact it is
quite sensible in the appropriate context: given a group acting on a set X, if we wish to select an orbit
of the group uniformly at random, we should weight each of the elements of X by 1 over the size of its
orbit and then pick an element of X at random with that weighting.

◦ By summing 1/#Aut(P ) over all �nite abelian p-groups P , one obtains a constant µP , which can be com-
puted (though not easily). Then the Cohen-Lenstra heuristics predict that the proportion of imaginary

quadratic �elds whose p-power torsion subgroup is isomorphic to P is equal to
1/#Aut(P )

µP
.

◦ Some various results for other primes: the probability that the class number is divisible by 3 (i.e., that
the 3-part of the class group is not trivial) is approximately 43.99%, the probability that it is divisible
by 5 is approximately 23.97%, and the probability that it is divisible by 7 is approximately 16.32%.

◦ A similar heuristic holds for real quadratic �elds, although the weighting is slightly di�erent. For real
quadratic �elds, the probability that a prime p divides the class number is predicted to be 1−

∏
k≥2(1−

p−k), which for p = 3 is approximately 15.98%, for p = 5 is approximately 4.96%, and for p = 7 is
approximately 2.37%.

◦ All of these results agree extremely well with the available numerical data.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2024. You may not reproduce or distribute this
material without my express permission.

7Heegner was not a professional mathematician (he was in fact a radio engineer and high school teacher), which certainly contributed
to the lack of belief in his claim to have settled a 150-year-old conjecture of Gauss by the broader mathematical community. Sadly, he
died in 1965, before his results gained general acceptance.
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