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6 Rational Approximation and Diophantine Equations

In this chapter, we discuss Diophantine equations, which are concerned with the problem of solving equations
over the integers: one of the earliest nontrivial examples was posed by Diophantus, whence the general name of
�Diophantine equation� for this class of problems. One of the most famous Diophantine equations is the Fermat
equation xn + yn = zn, which we will make a central focus of studying.

There is no general procedure for deciding whether a given Diophantine equation possesses any solutions, or (even if
existence is known) for �nding them all1. Thus, many of the methods for solving Diophantine equations are rather
ad hoc, and so our goals in this chapter are primarily to provide a survey of elementary techniques. One recurring
theme, however, will be to exploit the structure of the rings Z/mZ and Z[

√
D], as we can illustrate in some of our

early examples.

We then take a bit of a detour to develop some results regarding another important topic in classical number theory:
continued fractions and rational approximation. We then apply our results to study Pell's equation x2 −Dy2 = 1,
along with a smattering of other Diophantine equations.

1The question of whether there exists an algorithm that can solve an arbitrary Diophantine equation is Hilbert's tenth problem.
A 1970 theorem of Matiyasevich, building o� of work of Davis, Putnam, and Robinson, established that determining whether a given
Diophantine equation has any solutions is undecidable.

1



6.1 Simple Examples of Diophantine Equations

• We begin with a short discussion of some simpler examples of Diophantine equations, which will serve as
motivation for some of our later discussion.

6.1.1 Linear Diophantine Equations

• The simplest equations are linear equations in two variables, since solving a linear equation in one variable
over the integers is trivial (the solution to ax = b is x = b/a, assuming a is nonzero and divides b).

◦ The general form of a linear equation in two variables is ax+ by = c, for some �xed integers a, b, and c:
our goal is to determine when this equation has an integral solution (x, y), and then to characterize all
the solutions.

• In order to give the general solution of a linear equation in two variables we will use modular arithmetic to
reduce the two-variable equation to a one-variable equation, which will require the following proposition about
linear congruences modulo m:

• Proposition (Linear Equations): The equation ax ≡ b (modm) has a solution for x if and only if d = gcd(a,m)
divides b. If d|b, then the set of all such x is given by the residue class r modulo m/d, where r is any solution
to the equation.

◦ Proof: If x is a solution to the congruence ax ≡ b (modm), then there exists an integer k with ax−mk = b.
Since d = gcd(a,m) divides the left-hand side, it must divide b.

◦ Now suppose d = gcd(a,m) divides b, and set a′ = a/d, b′ = b/d, and m′ = m/d.

◦ Then the original equation becomes a′dx ≡ b′d (mod m′d), which is equivalent to a′x ≡ b′ (mod m′), by
one of our properties of congruences.

◦ But since a′ and m′ are relatively prime, a′ is a unit modulo m′, so we can simply multiply by its inverse
to obtain x ≡ b′ · (a′)−1 (mod m′). This means that there is a unique solution to the congruence modulo
m′ = m/d, as claimed.

• Now we can solve linear Diophantine equations in two variables:

• Theorem (Linear Diophantine Equations): Let a, b, c be integers with ab 6= 0, and set d = gcd(a, b). If d - c,
then the equation ax + by = c has no solutions in integers (x, y). If d | c, then the equation has in�nitely
many solutions, and if (x0, y0) is one solution, then all the others are (x0 − bt/d, y0 + at/d), for some integer
t.

◦ Proof: If a = b = 0, then the equation ax + by = c is either trivially true (if c = 0) or trivially false (if
c 6= 0), so we can assume that the gcd d is nonzero. If one of a, b is zero, the equation is also trivial, so
we may also deal only with the case where ab 6= 0.

◦ In this case, observe that there is an integral solution to ax+ by = c if and only if there is a solution to

the congruence ax ≡ c (mod b), since then y =
c− ax
b

.

◦ From our proposition above, we know that ax ≡ c (mod b) has a solution only if d = gcd(a, b) divides c.

◦ In this case, if we set a′ = a/d, b′ = b/d, and c′ = c/d, the set of all such x is given by the residue class
x0 modulo b′, where x0 ≡ c′ · (a′)−1 (mod b′).

◦ Now if (x, y) is any solution, then by the above, we see that x = x0 − bt/d for some integer t, and then
y = y0 + at/d. This yields the full characterization of the solutions given above.

• Example: Find all solutions to 14x+ 18y = 12 in integers (x, y).

◦ First, we compute gcd(14, 18) = 2, and then divide through by the gcd to get 7x+ 9y = 6.

◦ This is equivalent to solving 7x ≡ 6 (mod 9).

◦ We compute (via the Euclidean algorithm) that the inverse of 7 mod 9 is 4, so multiplying both sides by
4 yields x ≡ 24 ≡ 6 (mod 9).
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◦ Hence one solution is (x, y) = (6,−4). The set of all solutions is then (x, y) = (6− 9t,−4 + 7t) for

t ∈ Z.

• Example: Find all solutions to 354x+ 936y = 34 in integers (x, y).

◦ Using the Euclidean algorithm we can quickly compute gcd(736, 354) = 6. Since 6 does not divide 34,

there are no solutions .

• We will remark that we could also solve linear Diophantine equations in two variables by making changes of
variable. We illustrate the idea using an example:

• Example: Find all solutions to the equation 4x+ 13y = 5.

◦ By the division algorithm, we have 13 = 3·4+1, so we can write the system in the form 4x+(3·4+1)y = 5,
and rearrange this into the form 4(x+ 3y) + 1y = 5.

◦ If we substitute u = x + 3y, this new system becomes 4u + y = 5, which we can easily solve to get
y = 5− 4u.

◦ Substituting back yields x = u− 3y = u− 3(5− 4u) = −15 + 13u.

◦ Thus, we obtain the general solution (x, y) = (−15 + 13u, 5− 4u) .

• This latter method, using changes of variable, is the most e�cient way to solve systems of linear Diophantine
equations involving more variables or equations.

◦ The approach is essentially the same as the standard linear algebra procedure of row-reducing a matrix
to solve a system of equations.

◦ The standard solution technique is to convert the system into matrix form, and then perform row and
column operations on the matrix until it is in a su�ciently simple form that the solution to the original
system is obvious.

◦ The general procedure for solving a system of linear equations over Z is essentially the same, except for
the added complication that all of the row and column operations need to be done over Z. Speci�cally,
the following operations are permissable:

1. Swap two rows or negate a row (this does not change the system) or add/subtract an integer multiple
of one row from another (this yields an equivalent system).

2. Swap two columns or negate a column (this swaps / negates the underlying variables) or add/subtract
an integer multiple of one column from another (this performs a change of variables x′ = x+ ay).

◦ As with a system of equations over a �eld, the end result will be either that the system has no solution,
a unique solution, or an in�nite family of solutions with some number of free parameters.

◦ We will not go into the technical details, since the procedure falls more properly into a course in linear
algebra or abstract algebra2. Instead, we will just give an example.

• Example: Find all solutions to 3x+ 5y + 7z = 11 in integers (x, y, z).

◦ Motivated by the division algorithm, we rewrite the equation as 3(x + y + 2z) + 2y + z = 11, and then
substitute w = x+ y + 2z.

◦ The new equation is 3w + 2y + z = 11, which we can easily solve, obtaining z = 11− 2y − 3w.

◦ Solving for x yields x = w − y − 2z = −22 + 7w + 3y, so we obtain the general solution (x, y, z) =

(−22 + 7w + 3y, y, 11− 2y − 3w) , where w, y are arbitrary integers.

2In fact, it is equivalent to the procedure for converting a presentation of a �nitely generated additive abelian group into a description
of the abelian group as a direct product of cyclic groups, which is in turn a special case of the general classi�cation theorem for �nitely-
generated modules over a principal ideal domain.
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6.1.2 The Frobenius Coin Problem

• We just characterized when there exists a solution to the equation ax + by = c in integers (x, y). In various
settings (some of which are actually motivated by real-world concerns for once!), we can be interested in
knowing for which values of c this equation has a solution in nonnegative integers (x, y).

◦ If a and b are not relatively prime, clearly c must be divisible by their gcd, and (by dividing through by
the gcd) we can reduce to the case where a and b are relatively prime.

• One version of this problem uses postage stamps, which often cost irregular amounts: if, for example, there
are postage stamps worth 5 cents and stamps worth 13 cents, is it possible to use them to put exactly 79
cents' worth of postage on an envelope?

◦ The most obvious method is simply to make a list of totals that are attainable: 0, 5, 10, 13, 15, 18, 20,
23, 25, 26, 28, 30, 31, 33, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, ....

◦ Based on our list, it seems that every value above 47 is attainable. (Indeed, it is easy to see that since
48, 49, 50, 51, and 52 are all attainable, we can obtain any larger number by adding additional 5-cent
stamps.)

◦ Thus, for example, we get exactly 79 cents of postage by using three 13-cent stamps and eight 5-cent
stamps.

• Another version occurs in sports: In American football, a team can score 3 points for a �eld goal, or 7 points
for a touchdown. What possible scores can a team obtain? (Ignore safeties, missed extra points, and so forth.)

◦ Like above, we can simply list the totals that are attainable: 0, 3, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, ....

◦ Based on our list, only a few values are unattainable: 1, 2, 4, 5, 8, and 11. Indeed, it is easy to see that
since 12, 13, and 14 are attainable, any larger number is also attainable by adding more �eld goals.

• The problem of describing the largest integer that cannot be written as a nonnegative linear combination of
two integers (sometimes called the Frobenius coin problem) was �rst solved by Sylvester:

• Theorem (Sylvester): If a and b are relatively prime integers, then there are exactly
1

2
(a− 1)(b− 1) integers

that cannot be written in the form ax+ by with x, y ≥ 0, and the largest such integer is ab− a− b.

◦ Remark: In mathematics competition circles, this result is often known as the �Chicken McNuggets
Theorem�.

◦ Proof: For brevity, we say an integer is �representable� if it can be written in the form ax + by with
x, y ≥ 0.

◦ Without loss of generality, assume a < b. Arrange the nonnegative integers in an array in the following
manner:

0 1 2 · · · a− 1
a a+ 1 a+ 2 · · · 2a− 1
2a 2a+ 1 2a+ 2 · · · 3a− 1
...

...
...

...
ab− a ab− a+ 1 ab− a+ 2 · · · ab− 1

◦ Now we use the array to mark all of the representable integers. We �rst circle all of the multiples of b:
then an integer is representable precisely if it appears in the same column as some multiple of b, lower
down.

◦ For illustration, here is the array with a = 3 and b = 5:

0 1 2

3 4 5

6 7 8

9 10 11

12 11 14
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◦ Since a and b are relatively prime, the integers 0, b, 2b, ... , (a − 1)b all lie in di�erent columns. Thus,
the largest element that is left unmarked is the element one row above (a− 1)b, which is ab− a− b, so
this is the largest integer not expressible as ax+ by with x, y ≥ 0.

◦ For the other part, we simply count the number of unmarked integers in the array: the number of integers

lying above kb is bkb/ac, so there are a total of

a−1∑
k=0

⌊
kb

a

⌋
unmarked integers in the array.

◦ We can interpret this sum geometrically as the number of lattice points lying under the line y =
b

a
x, with

1 ≤ x ≤ a− 1. Equivalently, this is the total number of lattice points lying strictly inside the rectangle
with vertices (0, 0), (a, 0), (a, b), (0, b) and below the diagonal.

◦ By symmetry, since there are no lattice points on the interior of the diagonal, the points below the
diagonal represent exactly half of the lattice points lying strictly inside the a × b rectangle. Since this
full set of points represents an (a − 1) × (b − 1) rectangle, there are (a − 1)(b − 1) such lattice points.

Therefore, the number of unmarked integers in the array is
1

2
(a− 1)(b− 1), as claimed.

◦ Remark: Another way to obtain this count is to prove that if 0 ≤ c ≤ ab− a− b, then c is representable
if and only if ab− a− b− c is not representable.

• Example: If there are postage stamps worth 5 cents and stamps worth 13 cents, then with a = 5 and b = 13
in the theorem above, the largest non-representable integer is 5 · 13 − 13 − 5 = 47, and there are in total
1

2
· 4 · 12 = 24 unattainable totals.

• We could of course generalize this problem, to ask: for given integers a1, a2, ... , ak, what is the largest integer
n that cannot be written as a nonnegative integer linear combination of the ai?

◦ It turns out that there is no known general formula when k > 2.

◦ For a �xed number of denominations k, there does exist a polynomial-time algorithm (polynomial in
log ak, speci�cally) for computing this maximum integer n, but it is not appreciably faster than merely
attempting to list the possibilities!

◦ For a variable number of denominations k, it is known that computing n is NP -hard.

6.1.3 The Equation x2 + y2 = z2: Pythagorean Triples

• Now that we have discussed solving linear equations in integers, we turn our attention to the one of the
simplest quadratic Diophantine equations: characterizing integer triples (x, y, z) such that x2 + y2 = z2.

◦ Such triples are naturally called Pythagorean triples because (by the Pythagorean theorem) they form
the sides of a right triangle: a familiar example is the nearly-ubiquitous (3, 4, 5) triangle.

◦ Since the de�ning equation is homogeneous (i.e., all of the terms have the same degree), if we have one
Pythagorean triple, we can create more by scaling x, y, and z: thus we obtain (6, 8, 10), (9, 12, 15), and
so forth from (3, 4, 5).

◦ To exclude these essentially repetitious cases, we say a Pythagorean triple (x, y, z) is primitive if gcd(x, y, z) =
1, and would like to characterize the primitive triples.

◦ First we note that if (x, y, z) is a primitive Pythagorean triple, x and y cannot both be even, since then
z would also be even. Also, x and y cannot both be odd, since then x2 + y2 ≡ 2 (mod 4), but 2 is not a
square modulo 4. So we conclude that z must be odd, and that exactly one of x and y is also odd.

• Theorem (Primitive Pythagorean Triples): Every primitive Pythagorean triple of the form (x, y, z) with x
even is of the form (x, y, z) = (2st, s2 − t2, s2 + t2), for some relatively prime integers s > t of opposite
parity, and (conversely) any such triple is Pythagorean and primitive. As a consequence, the positive-integer
solutions (x, y, z) to x2 + y2 = z2 can be uniquely written as (x, y, z) = (2kst, k(s2 − t2), k(s2 + t2)) for a
unique positive integer k and relatively prime positive integers s > t of opposite parity.
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◦ For the reverse direction, it is easy to see that (2st)2 + (s2 − t2)2 = (s2 + t2)2 simply by multiplying
out. Furthermore, it is easy to check that if s and t are relatively prime and have opposite parity, that
gcd(s2 − t2, s2 + t2) = 1, so this triple is primitive. The characterization of all triples follows from our
discussion of primitive triples above, since we may take k = gcd(x, y, z).

◦ We will give three proofs of the nontrivial direction: one using the arithmetic of Z, one using the
arithmetic of Z[i], and one using geometry.

◦ The central idea in the �rst proof is to rearrange the equation and use the arithmetic of Z. The central
idea in the second proof is to exploit the fact that Z[i] has unique factorization, while the central idea
in the third proof is to use the geometry of the dehomogenized curve x2 + y2 = 1 to study the rational
solutions.

◦ Proof 1: Suppose x2 + y2 = z2 and x, y, z are relatively prime.

◦ Since y and z are both odd and x is even, we can rewrite the equation as
z − y
2
· z + y

2
=
(x
2

)2
.

◦ Now we claim that
z − y
2

and
z + y

2
are relatively prime: their gcd divides their sum z and their di�erence

y, and since y and z are relatively prime, the gcd must be 1.

◦ Since
z − y
2

and
z + y

2
share no prime divisors and their product is a square, each of them must individ-

ually be a square, by the uniqueness of prime factorization.

◦ Hence there exist integers s and t such that
z − y
2

= t2 and
z + y

2
= s2.

◦ Then z = s2 + t2 and y = s2− t2, and then we also obtain x = 2st, as claimed. Furthermore, s and t are
necessarily relatively prime and have opposite parity, since (x, y, z) is primitive.

◦ Proof 2: Suppose x2 + y2 = z2 and x, y, z are relatively prime.

◦ In Z[i], we factor the equation as (x+ iy)(x− iy) = z2.

◦ Now we claim that x + iy and x − iy are relatively prime as elements of Z[i]: any greatest common
divisor in Z[i] must divide 2x and 2y, so since x and y are relatively prime integers, the gcd must divide
2. However, x+ iy is not divisible by the Gaussian prime 1 + i, since x and y are of opposite parity.

◦ Hence, since x+ iy and x− iy are relatively prime and have product equal to a square, by the uniqueness
of prime factorization in Z[i], there exists some s + it ∈ Z[i] and some unit u ∈ {1, i,−1,−i} such that
x+ iy = u(s+ it)2.

◦ Multiplying out yields x+ iy = u
[
(s2 − t2) + (2st)i

]
. Since x is even and y is odd, we must have u = ±i:

then writing out the various possibilities yields the given parametrization.

◦ Proof 3: Suppose x2 + y2 = z2 and x, y, z are relatively prime.

◦ Dividing by z2 yields the equivalent equation
(x
z

)2
+
(y
z

)2
= 1, so it is su�cient to describe all points

(a, b) on the unit circle x2 + y2 = 1 whose coordinates are both rational numbers.

◦ To do this, consider all non-vertical lines passing through the point (−1, 0).
◦ Such a line will intersect the circle x2+y2 = 1 in exactly one other point. If the coordinates of this point
are rational, then the line will have rational slope.

◦ Conversely, if the line has rational slope
t

s
, its equation is y =

t

s
(x + 1) so we can simply compute the

other intersection point to see that it is (x, y) =

(
s2 − t2

s2 + t2
,

2st

s2 + t2

)
, which is rational.

◦ Thus, the rational points on the unit circle are those of the form

(
s2 − t2

s2 + t2
,

2st

s2 + t2

)
for some integers

s and t. Clearing the denominator yields the desired Pythagorean triples.

◦ Remark: The third proof is closely related to the Weierstrass substitution u = tan(θ/2), which transforms
an integral of any rational function of sin(θ) and cos(θ) into an integral of a rational function of u, which
can then be evaluated using partial fraction decomposition. (With the notation above, u = s/t.)

• Using the characterization above, we can easily generate a list of Pythagorean triples with small hypotenuses.
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◦ Here is a table of the Pythagorean right triangles with hypotenuse ≤ 100:
s t Primitive Triple Non-Primitive Triples

2 1 (3, 4, 5) (6, 8, 10), (9, 12, 15), ... , (60, 80, 100)
3 2 (5, 12, 13) (10, 24, 26), (15, 36, 39), ... , (35, 84, 91)
4 1 (8, 15, 17) (16, 30, 34), (24, 45, 51), ... , (40, 75, 85)
4 3 (7, 24, 25) (14, 48, 50), (21, 72, 75)
5 2 (20, 21, 29) (40, 42, 58), (60, 63, 87)
5 4 (9, 40, 41) (18, 80, 82)
6 1 (12, 35, 37) (24, 70, 74)
6 5 (11, 60, 61)

s t Primitive Triple

7 2 (28, 45, 53)
7 4 (33, 56, 65)
7 6 (13, 84, 85)
8 1 (16, 63, 65)
8 3 (48, 55, 73)
8 5 (39, 80, 89)
9 2 (36, 77, 85)
9 4 (65, 72, 97)

• Using our characterization, we can enumerate all of the Pythagorean right triangles having a side of a particular
length.

• Example: Find all Pythagorean right triangles having one side of length 20.

◦ From our result above, any such right triangle has legs of lengths k(2st) and k(s2− t2), with hypotenuse
k(s2 + t2), where s > t are positive integers of opposite parity and k is some positive integer.

◦ If 20 = 2stk, then 10 = stk, so (s, t, k) = (10, 1, 1) or (5, 2, 1) or (2, 1, 5), yielding 20-99-101, 20-21-29,
and 15-20-25 triangles.

◦ If 20 = k(s2− t2), then k must be divisible by 4. Since k 6= 20 we see k = 4, and then s2− t2 = 5 requires
s = 3 and t = 2. This yields a 20-48-52 triangle.

◦ If 20 = k(s2+ t2), then since s2+ t2 ≥ 5 the only possibilities are k = 4 (yielding s = 2 and t = 1), k = 2
(yielding s = 3 and t = 1 but these are not of opposite parity) or k = 1 (yielding s = 4 and t = 2 but
again these are not of opposite parity). This yields a 12-16-20 triangle.

◦ Hence there are �ve such triangles: (20, 99, 101), (20, 21, 29), (15, 20, 25), (20, 48, 52), (12, 16, 20) .

6.2 Rational Approximation and Transcendence

• When describing real numbers, for convenience we often want to give a nearby rational number that is a good
approximation.

◦ Indeed, this idea is implicitly embedded in the notion of the decimal expansion of a real number.

◦ For example, writing π = 3.1415926535 . . . formally means that π is the limit of the sequence 3, 3.1,
3.14, 3.141, 3.1415, 3.14159, ..., and so truncating this sequence after some �nite number of steps will
provide a good approximation of π. More speci�cally, in the case of the decimal expansion to n digits,
the approximation is accurate to within an error of 10−n.

◦ Decimal numbers are all well and good, but we can often get better approximations using arbitrary
rational numbers, rather than just ones whose denominators are powers of 10.

◦ We will now study some problems related to rational approximation of real numbers by rational numbers.

6.2.1 The Farey Sequences

• If we are seeking to approximate a real number α, one thing we might �rst look at is the set of rational
numbers of small denominator. Since we want to understand distances between nearby numbers, we should
arrange the rationals in increasing order. This yields the famous Farey sequences:

• De�nition: The Farey sequence of level n is the set of rational numbers between 0 and 1 whose denominators
(in lowest terms) are ≤ n, arranged in increasing order.

◦ Example: The Farey sequence of level 4 is
0

1
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1
.

◦ Example: To obtain the Farey sequence of level 5, we simply insert the terms with denominator 5 in the

proper locations:
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1
.
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• There are several natural and immediate questions about the Farey sequence of level n: for example, how
many terms does it have? Are consecutive terms related to each other? In going from the (n − 1)st to the
nth sequence, how many terms are added and where do they go?

◦ Several of these can be immediately answered: of all rational numbers of the form
k

n
, the ones in lowest

terms will be those with gcd(k, n) = 1. Thus, the number of such terms added in going from the (n−1)st
Farey sequence to the nth is simply ϕ(n).

◦ By a trivial induction, we see that the length of the Farey sequence of level n is 1 +
∑n
d=1 ϕ(d). It is a

nontrivial problem to estimate the rate of growth of this function, but it turns out to be approximately
3

π2
n2.

◦ Some brief numerical investigation quickly leads to a number of simple properties of the Farey sequences:

• Proposition (Properties of Farey Sequences): Let n be a positive integer.

1. If
a

b
and

c

d
are consecutive terms in the Farey sequence of level n, then bc− ad = 1.

◦ Proof: Suppose
a

b
and

c

d
are consecutive terms in the Farey sequence of level n.

◦ In the plane, draw the triangle whose vertices are (0,0), (b, a), and (d, c).

◦ By Pick's Theorem3, the area of this lattice-point triangle is
1

2
B + I − 1, where B is the number of

lattice points on the boundary and I is the number of points in the interior. We claim B = 3 and
I = 0.

◦ To see this, suppose there were a lattice point (x, y) in the interior, where (necessarily) y ≤ max(b, d).
Then the slope of the line joining (0, 0) to (x, y) would lie strictly between a/b and c/d: but then
y/x would be between a/b and c/d in the Farey sequence, which by hypothesis it is not.

◦ Now suppose there were a lattice point on the boundary not equal to one of the vertices. It cannot
lie on the side joining (0,0) and (b, a), since a and b are relatively prime. Similarly, it cannot lie
on the side joining (0,0) and (d, c). If it were on the side joining (b, a) and (d, c), then by the same
argument given above, there would be a term between a/b and c/d in the Farey sequence.

◦ Thus, B = 3 and I = 0, so the triangle has area
1

2
. By basic geometry (either by enclosing this

triangle with larger right triangles, or by noting that the area of the triangle is half of the magnitude

of the cross product 〈b, a, 0〉 × 〈d, c, 0〉 = 〈0, 0, bc− ad〉), the area of this triangle is
1

2
|bc− ad|, so

since bc > ad we conclude immediately that bc− ad = 1.

2. If
a

b
,
e

f
, and

c

d
are three consecutive terms in a Farey sequence, then

e

f
=
a+ c

b+ d
.

◦ Notation: This last expression is sometimes called the mediant of a/b and c/d. (It is also occasionally
called the baseball average, since it is the expression, frequently computed in baseball, used when
combining several hit percentages into a single statistic.)

◦ Proof: Suppose
a

b
,
e

f
, and

c

d
are consecutive. By (1), since a/b and e/f are consecutive we have

be− af = 1, and by (2) since e/f and c/d are consecutive we have cf − de = 1.

◦ This is a system of two linear equations in the two variables e and f , so solving it (e.g., by multiplying
the �rst equation by d, the second by a, and adding) yields e = (a + c)/(bc − ad) and f = (b +

d)/(bc− ad): thus, e
f
=
a+ c

b+ d
, as claimed.

◦ One can check directly that
a+ c

b+ d
appears between

a

b
and

c

d
in the Farey sequence of level b + d,

since
a

b
<
a+ c

b+ d
<
c

d
.

3Pick's theorem is a result from elementary geometry that says that the area of a plane lattice polygon is equal to
1

2
B+ I− 1, where

B is the number of lattice points on the boundary and I is the number of points in the interior. To prove this result, one may �rst
establish that it holds for rectangles and is also consistent under gluing regions together or removing pieces of regions. Applying these
results shows that it holds for right triangles, then arbitrary triangles, and �nally arbitrary polygons.
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3. If
a

b
and

c

d
are rational numbers between 0 and 1 with bc− ad = 1, then these two terms are consecutive

entries in the Farey sequence of level max(b, d). The �rst term that will appear between them (in a later

sequence) is
a+ c

b+ d
, and this �rst occurs in the Farey sequence of level b+ d.

◦ Proof: For the �rst statement, suppose
e

f
is the term immediately following

a

b
in the Farey sequence

of level max(b, d).

◦ Then be−af = 1 by (1). Subtracting bc−ad = 1 yields b(c−e)−a(d−f) = 0, so b(c−e) = a(d−f).
Since a and b are relatively prime, we conclude that b divides d − f . Since f ≤ max(b, d) < b + d,
the only possibility is that f = d, and then e = c.

◦ Alternatively, we could have observed that both (e, f) and (c, d) are solutions to the linear Diophan-
tine equation bx− ay = 1, and used the structure of the solutions to deduce this result.

◦ For the second statement, we just showed that a/b and c/d are consecutive in the Farey sequence of
level max(b, d).

◦ Now increase the level of the sequence in increments of 1: if e/f is the �rst term to appear between
a/b and c/d, then by (2), it would necessarily be the case that e = (a + c)/(bc − ad) = a + c and
f = (b+ d)/(bc− ad) = b+ d.

4. The rational numbers
a

b
and

c

d
are consecutive terms in the Farey sequence of level n if and only if

bc− ad = 1 and b+ d > n.

◦ Proof: We must have bc− ad = 1 by (1). Also, if b+ d ≤ n, then
a+ c

b+ d
is a term between a/b and

c/d as noted in (2).

◦ Thus, we must have bc − ad = 1 and b + d > n. But if both conditions hold, then (3) immediately
implies that there are no terms between a/b and c/d in the Farey sequence of level n.

5. If a/b and e/f are consecutive terms in the Farey sequence of level n, the term immediately following

e/f is c/d, where c =

⌊
n+ b

f

⌋
e− a and d =

⌊
n+ b

f

⌋
f − b.

◦ Proof: By the mediant property (2), we know that
e

f
=
a+ c

b+ d
. Thus, there must exist some integer

k such that a+ c = ke and b+ d = kf , so that c = ke− a and d = kf − b. Since the closest term to

e/f will have k as large as possible, and since d ≤ n, the largest possible value of k is

⌊
n+ b

f

⌋
.

• Using the above results, we can construct the portion of any Farey sequence around any desired rational
number, without needing to compute all of the terms in the sequence.

• Example: Find the �rst three terms after 11/202 in the Farey sequence of level 500.

◦ By the above results, if 11/202 and c/d are consecutive terms, then 202c− 11d = 1.

◦ Solving this Diophantine equation using the Euclidean algorithm produces the solutions (c, d) = (3 +
11k, 55 + 202k) for k ∈ Z.

◦ The larger the value of k is, the smaller the value of
c

d
− 11

202
=

1

202d
will be. The largest possible value

for k is k = 2, so the �rst term is
25

457
.

◦ Now we can apply the two-term recursion to 11/202 and 25/457 to quickly �nd the next terms: they are
14/255 and 17/308.

◦ Thus, the three terms are
25

457
,

14

255
,

17

308
.

• In some cases, we can �ll in the portion of any desired Farey sequence between two consecutive terms of some
Farey sequence by taking mediants.

• Example: Find all terms between 7/33 and 14/65 in the Farey sequence of level 100.
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◦ First, we notice that these terms are not consecutive (in any Farey sequence), because 14 ·33−7 ·65 = 7,
not 1.

◦ We start by �nding terms between them: the mediant of these two terms is 21/98 = 3/14.

◦ Now 7/33 and 3/14 are consecutive in the Farey sequence of level 33, since 33 · 3− 7 · 14 = 1.

◦ Also, 3/14 and 14/65 are consecutive in the Farey sequence of level 65, since 14 · 14− 3 · 65 = 1.

◦ At this point, we just need to �ll in the missing terms. Because the terms we have identi�ed are all
adjacent, these are all given by computing mediants of the terms already found. We can stop computing
mediants when the sum of two consecutive denominators exceeds 100 in each step.

◦ Filling in all of the remaining mediants yields the sequence
7

33
,
17

80
,
10

47
,
13

61
,
16

75
,
19

89
,

3

14
,
20

93
,
17

79
,
14

65
.

• Example: Find all terms between 6/77 and 5/62 in the Farey sequence of level 80.

◦ First, we notice that these terms are not consecutive (in any Farey sequence), because 5 ·77−6 ·62 = 13,
not 1.

◦ The mediant of these terms is 12/139, which is not in the desired Farey sequence of level 80.

◦ Instead, we can search for the term a/b immediately following 6/77, which necessarily has 77a− 6b = 1.
Solving this linear Diophantine equation using the Euclidean algorithm yields a = 5 + 6k, b = 64 + 77k,
so we may take a/b = 5/64.

◦ Since the mediant of 6/77 and 5/64 is not in the Farey sequence of level 80, we may generate the remaining
terms up to 5/62 using the two-term recursion.

◦ This yields the sequence
6

77
,

5

64
,

4

51
,

3

38
,

5

63
,

2

25
,

5

62
.

• We can use the Farey sequences to give some basic results about rational approximation:

• Proposition (Rational Approximation via Farey): Let n be a positive integer and α be a real number. Then
the following hold:

1. There exists a rational number
p

q
such that 0 < q ≤ n and

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(n+ 1)
.

◦ Proof: By replacing α with α− bαc as necessary, we can assume that α lies in [0, 1].

◦ Now consider the Farey sequence of level n, and let
a

b
and

c

d
be two consecutive terms such that

a

b
≤ α ≤ c

d
. By our earlier results, we know that bc− ad = 1 and b+ d ≥ n+ 1.

◦ The number α either lies in the interval

[
a

b
,
a+ c

b+ d

]
or in

[
a+ c

b+ d
,
c

d

]
.

◦ In the �rst case,
∣∣∣α− a

b

∣∣∣ ≤ ∣∣∣∣ab − a+ c

b+ d

∣∣∣∣ = |ad− bc|b(b+ d)
≤ 1

b(n+ 1)
.

◦ In the second case,
∣∣∣α− c

d

∣∣∣ ≤ ∣∣∣∣ cd − a+ c

b+ d

∣∣∣∣ = |ad− bc|d(b+ d)
≤ 1

d(n+ 1)
.

◦ Hence, in either case, we obtain a rational number
p

q
such that

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(n+ 1)
.

2. If α is irrational, then there are in�nitely many distinct rational numbers p/q such that |α− p/q| < 1/q2.

◦ Proof: Apply (1) to the Farey sequence of level n for each n: this yields a collection of rational

numbers
pn
qn

such that

∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qn(n+ 1)
<

1

q2n
, and with qn ≤ n.

◦ Since α is irrational, none of these di�erences can be zero, and so there must be in�nitely many

di�erent terms
pn
qn

, since the distances

∣∣∣∣α− pn
qn

∣∣∣∣ become arbitrarily small, but remain nonzero.

3. If α is irrational, then there are in�nitely many pairs of positive integers (m,n) such that |mα− n| < 1/m.
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◦ This is an approximation theorem �rst proven by Dirichlet and is sometimes known as Dirichlet's
Diophantine approximation theorem.

◦ Proof: Clear denominators in (2).

• We can illustrate these results with a typical irrational α =
√
2 ≈ 1.4142136 . . . for various n.

◦ For example, with n = 5 (in the Farey sequence of level 5) the two entries surrounding
√
2 − 1 are 2/5

and 1/2. We can see that
∣∣√2− 7/5

∣∣ ≈ 0.0142 <
1

5 · 5
, so 7/5 has the desired property in (1) of the

proposition. In fact, 3/2 also has the desired property, since
∣∣√2− 3/2

∣∣ ≈ 0.0858 <
1

5 · 2
.

◦ Taking an increasing sequence of values of n up to n = 100 then yields various
p

q
with

∣∣∣∣√2− p

q

∣∣∣∣ < 1

q2

as indicated in (2): speci�cally, we obtain the sequence 1, 2, 3/2, 4/3, 7/5, 10/7, 17/12, 24/17, 41/29,
58/41, 99/70, 140/99, ....

6.2.2 Continued Fractions

• We now discuss another method for generating rational approximations of a given real number α.

◦ If we want to give an approximation to α, it will be of the form a0 + x where a0 = bαc is the greatest
integer less than or equal to α and 0 ≤ x < 1.

◦ In such a situation, we have 1/x > 1, so we could approximate 1/x as an integer a1 = b1/xc, yielding an
approximation to α of the form a0 +

1

a1
.

◦ For example, if we wanted to approximate π, we would compute bπc = 3, and then note x = π − 3 =
0.141592 . . . has 1/x ≈ 7.06251 . . . , and so we get the well-known approximation to π of 3+ 1/7 = 22/7.

◦ Alternatively, instead of stopping after one step, we could then approximate 1/x in the same way: it is
of the form a1 + y where a1 = b1/xc and 0 ≤ y < 1. We can continue this procedure as long as each of
the rounded-o� values are not exact integers.

◦ For π, the next step would be noting that y = 1/x − 7 ≈ 0.06251 has 1/y ≈ 15.9966, and so we get
an approximation 1/x − 7 ≈ 16, which yields an approximation to π of 3 + 1/(7 + 1/16) = 355/113 ≈
3.14159292, which is accurate to 6 decimal places.

◦ It is clear that we can continue this procedure to generate increasingly accurate rational approximations
of α.

◦ The resulting expression has the form a0 +
1

a1 +
1

a2 + · · ·

, which is called a continued fraction:

• De�nition: A �nite continued fraction is an expression of the form a0 +
1

a1 +
1

a2 +
1

. . . +
1

ak−1 +
1

ak

, where

the ai are positive real numbers. For brevity, we will denote this expression using the much more compact
notation [a0, a1, · · · , ak]. If the ai are integers, we term it a simple continued fraction.

◦ Example: [2, 3, 4] = 2 +
1

3 +
1

4

=
30

13
.

◦ We note a few very basic properties: [a0, a1, . . . , ak] = a0 +
1

[a1, . . . , ak]
= [a0, a1, . . . , ak−1 +

1

ak
].
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• Clearly, every simple continued fraction is a rational number. Conversely, every rational number can be
written as a simple continued fraction: if p/q is any positive rational number in lowest terms, then if we apply
the Euclidean algorithm to write

p = q1q + r1

q = q2r1 + r2

r1 = q3r2 + r3
...

rk−1 = qkrk + 1

rk = qk+1

where we know the last remainder will be 1 since p/q is in lowest terms, then it is an easy induction to verify

that
p

q
= [q1, q2, . . . , qk, qk+1].

◦ Furthermore, by the uniqueness of the Euclidean algorithm, all of the quotients are unique, so the
expression is unique, except for the fact that we can write [q1, q2, . . . , qk] = [q1, q2, . . . , qk − 1, 1].

◦ If we exclude the case where the �nal term is equal to 1, then every positive rational number can be
written uniquely as a continued fraction.

• Example: To convert
17

7
into a continued fraction, we �rst compute

17 = 2 · 7 + 3

7 = 2 · 3 + 1

3 = 3 · 1

so that, by the above,
17

7
= [2, 2, 3] .

◦ Another way of doing this is just to work it out explicitly, by writing
17

7
= 2+

3

7
= 2+

1

7/3
= 2+

1

2 +
1

3

.

• Example: To convert
67

19
into a continued fraction, we compute

67 = 3 · 19 + 10

19 = 1 · 10 + 9

10 = 1 · 9 + 1

9 = 9 · 1

so that
67

19
= [3, 1, 1, 9] .

• If we truncate a continued fraction after some number of terms, we will obtain an approximation to the true
value.

• De�nition: If C = [a0, a1, . . . , ak] is given, then the continued fraction Cn = [a0, a1, . . . , an] for n < k is called
the nth convergent to C.

◦ Example: For
117

101
= [1, 6, 3, 5], the successive convergents are [1] = 1, [1, 6] =

7

6
, [1, 6, 3] =

22

19
, and

[1, 6, 3, 5] =
117

101
.

◦ Observe that
117

101
≈ 1.1584, while

7

6
≈ 1.1666 and

22

19
≈ 1.1580.

◦ Notice that the convergents are fairly close to the actual value of the continued fraction, and their
accuracy improves as we take higher convergents. We will make this idea rigorous in a moment.
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• Here are some simple properties of the convergents of continued fractions:

• Proposition (Properties of Convergents): Let C = [a0, a1, . . . , ak] where the ai are positive, and de�ne p−1 = 1,
p0 = a0, and pn = anpn−1 + pn−2, and also q−1 = 0, q0 = 1, and qn = anqn−1 + qn−2. We then have the
following:

1. The convergent Cn = pn/qn.

◦ Proof: We use induction on n. The base cases n = 1 and n = 2 are trivial, since [a0] = a0/1 and
[a0, a1] = a0 + 1/a1 = (a0a1 + 1)/a1, as claimed.

◦ For the inductive step, suppose we know that the result holds for n ≤ m. By hypothesis, for any x,

it is the case that [a0, a1, . . . , am−1, x] =
pm−1x+ pm−2
qm−1x+ qm−2

.

◦ Now observe that [a0, a1, . . . , am−1, am, am+1] = [a0, a1, . . . , am−1, am +
1

am+1
] and apply the above

result with x = am +
1

am+1
to obtain

[a0, a1, . . . , am−1, am +
1

am+1
] =

(
am +

1

am+1

)
pm−1 + pm−2(

am +
1

am+1

)
qm−1 + qm−2

=
(ampm−1 + pm−2) + pm−1/am+1

(amqm−1 + qm−2) + qm−1/am+1

=
pm + pm−1/am+1

qm + qm−1/am+1

=
am+1pm + pm−1
am+1qm + qm−1

=
pm+1

qm+1
,

as desired.

2. We have pnqn−1 − pn−1qn = (−1)n−1 and pnqn−2 − pn−2qn = (−1)n−2an.
◦ Proof: For the �rst statement, by the recursion we can write

pnqn−1 − pn−1qn = (anpn−1 + pn−2)qn−1 − pn−1(anqn−1 − qn−2)
= −(pn−1qn−2 − pn−2qn−2)

so since p1q0 − p0q1 = 1, by a trivial induction we see that pnqn−1 − pn−1qn = (−1)n−1.
◦ The second statement follows in the same way. (We skip the algebra.)

3. We have Cn − Cn−1 =
(−1)n−1

qn−1qn
and Cn − Cn−2 =

(−1)n−2an
qn−2qn

.

◦ Proof: Divide the relations pnqn−1− pn−1qn = (−1)n−1 and pnqn−2− pn−2qn = (−1)n−2an from (3)
by qnqn−1 and qnqn−2 respectively.

4. We have C1 > C3 > C5 > · · · > C6 > C4 > C2, and |C − Cn| ≤
1

qnqn+1
<

1

q2n
.

◦ Proof: From Cn − Cn−2 =
(−1)n−2an
qn−2qn

in (3), we see that Cn < Cn−2 if n is odd, and Cn > Cn−2 if

n is even.

◦ Hence, by a trivial induction, we see C1 > C3 > C5 > · · · and · · · > C6 > C4 > C2.

◦ Furthermore, since C2n+1 > C2n for every n, we can combine the two chains of inequalities to obtain
the third statement.

◦ For the last statement, we simply observe that the inequalities above imply that C is between Cn

and Cn+1 for every n, hence the triangle inequality implies |C − Cn| ≤ |Cn+1 − Cn| =
1

qnqn+1
<

1

q2n
.
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• We will mention that property (1) gives a fairly e�cient procedure for computing the numerators and denom-
inators of the convergents Cn = pn/qn, using a computational procedure that is sometimes referred to as the
�magic box�. It works as follows:

◦ The rows in the table are the sequences an, pn, and qn.

◦ Starting with the terms an, which we assume are given to us, we can then evaluate pn = anpn−1 + pn−2
and qn = anqn−1 + qn−2 after starting with the initial conditions p−2 = 0, q−2 = 1, p−1 = 1, q−1 = 0.

◦ Explicitly, we calculate the next term in the row for pn by evaluating an times the previous entry plus
the entry before that, and similarly for the next term in the row for qn.

◦ For example, here is the magic box calculation for the continued fraction [2, 4, 5, 1, 3] = 215/96:

n -2 -1 0 1 2 3 4
an 2 4 5 1 3
pn 0 1 2 9 47 56 215
qn 1 0 1 4 21 25 96

To illustrate, the entries in the column for n = 4 are calculated as 3 · 56+ 47 = 215 and 3 · 25+ 21 = 96.

6.2.3 In�nite Continued Fractions

• We have discussed �nite continued fraction expansions (of rational numbers) and shown that their convergents
obey some nice relations, and we can compute the simple continued fraction expansion of any rational number
using the Euclidean algorithm.

◦ We would now like to extend our discussion to include irrational numbers: what, for example, does it
mean to ask for the continued fraction expansion of

√
2, or of π, or ln(2)?

◦ None of these is a rational number, so any such expansion cannot be �nite.

◦ To handle this, we simply extend our de�nition of continued fraction to an in�nite continued fraction by
taking a limit.

• De�nition: Given a sequence a0, a1, a2, ... of positive integers, we de�ne the in�nite continued fraction
α = [a0, a1, a2, . . . ] to be the limit lim

n→∞
[a0, a1, . . . , an] of its �nite continued fraction convergents.

◦ It is worthwhile explaining why this limit exists. From our results on convergents, we know that if
Cn = [a0, a1, . . . , an], then C1 > C3 > C5 > · · · > C6 > C4 > C2.

◦ Thus, the sequence C1, C3, C5, ... is monotone decreasing and bounded below (by C2), hence it has a
limit by the monotone convergence theorem4.

◦ Similarly, the sequence C2, C4, C6, ... is monotone increasing and bounded above (by C1), hence it also
has a limit by the monotone convergence theorem.

◦ These two limits must be equal because |Cn − Cn+1| < 1/q2n, which tends to zero as n→∞.

◦ Alternatively (though essentially equivalently), we could observe that the intervals [C2n, C2n−1] form
a set of nested closed intervals of lengths tending to zero, so by the nested intervals theorem5, their
intersection is a single point C equal to the limit of the sequence Ci.

• We can now establish some of the basic properties of in�nite continued fractions.

• Proposition (Properties of In�nite Continued Fractions): Let α = [a0, a1, a2, . . . ] be an in�nite simple contin-
ued fraction with nth convergent Cn = [a0, a1, . . . , an] = pn/qn. Then the following hold:

4The monotone convergence theorem says that any monotone increasing sequence that is bounded above (i.e., any sequence a1 <
a2 < a3 < · · · such that all terms are less than some �nite number M) has a limit. By negating everything, it equivalently says that
any monotone decreasing sequence bounded below has a limit.

5The nested intervals theorem says that if I1, I2, I3, . . . is an in�nite sequence of nested closed intervals (i.e., where In+1 ⊆ In for
each n) that are bounded, then the intersection ∩∞n=1In is also a closed interval. Furthermore, if the lengths of the intervals tend to
zero, then the intersection consists of a single point. This result is a special case of Cantor's intersection theorem in Rn, which says
that the intersection of a nested sequence of compact sets is a nonempty compact set.
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1. We have |α− Cn| ≤
1

qnqn+1
<

1

q2n
.

◦ Proof: The proof follows identically from the �nite case done earlier, since α lies between Cn and
Cn+1.

2. Any in�nite continued fraction α is irrational. Furthermore, any two di�erent irrational numbers have
di�erent in�nite continued fraction expansions.

◦ Proof: For the �rst statement, suppose α = p/q were rational. By the proposition above, we know

that 0 <

∣∣∣∣pq − pn
qn

∣∣∣∣ < 1

q2n
, meaning that 0 < |pqn − pnq| <

q

qn
.

◦ However,
q

qn
goes to zero as n→∞, since q is �xed but qn is a strictly increasing sequence. This is

impossible, since if qn > q the expression |pqn − pnq| would be an integer between 0 and 1.

◦ For the second statement, �rst observe that C0 < α < C1, meaning that a0 < α < a0 +
1

a1
, so we

see that bαc = a0.

◦ Next, observe that α = lim
n→∞

[a0, a1, · · · , an] = lim
n→∞

(
a0 +

1

[a1, · · · , an]

)
= a0 +

1

[a1, a2, · · · ]
.

◦ Now suppose β = [b0, b1, · · · ] and β = α. By taking �oors, we see that b0 = a0.

◦ Then [b1, b2, · · · ] =
1

β − b0
=

1

α− a0
= [a1, a2, · · · ]. Taking �oors again shows b1 = a1.

◦ Repeating the argument yields bi = ai for every i, so α and β are identical.

• So far, we have discussed the ideas behind in�nite continued fractions, but we have not actually computed
any!

◦ It is not hard, from the above, to work out the procedure for converting an irrational number α into an
in�nite continued fraction [a0, a1, a2, . . . ].

◦ First, we must have a0 = bαc, as we observed above.

◦ Then, as we also observed, [a1, a2, . . . ] =
1

α− a0
, so if we de�ne α1 =

1

α− a0
(which is greater than

1 because 0 < α − a0 < 1 by irrationality of α and the de�nition of the �oor function), we must have
a1 = bα1c.

◦ Now we repeat: we set α2 =
1

α1 − a1
and take a2 = bα2c.

◦ In general, we obtain the terms recursively, via the relations a0 = bαc, αi =
1

αi−1 − ai−1
, and ai = bαic.

As noted above, each of the ai will be a positive integer, because αi will always be greater than 1.

◦ We should verify that the resulting continued fraction [a0, a1, a2, . . . ] actually converges to α. To do this,
we observe (essentially by the de�nition) that α = [a0, a1, . . . , an, αn+1], and then compute

|α− [a0, a1, . . . , an]| =

∣∣∣∣pnαn+1 + pn−1
qnαn+1 + qn−1

− pn
qn

∣∣∣∣
=

1

qn(qnαn+1 + qn−1)

<
1

qnqn−1

because αn+1 is positive. Since this tends to zero as n → ∞, we see that α is indeed equal to
lim
n→∞

[a0, a1, . . . , an].

• Example: Find the continued fraction expansion of
√
2.

◦ With α =
√
2, we �nd, successively,

n 0 1 2 · · ·
αn

√
2

√
2 + 1

√
2 + 1 · · ·

an 1 2 2 · · ·
αn − an

√
2− 1

√
2− 1

√
2− 1 · · ·
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and since each term after this will repeat, we see that
√
2 = [1, 2, 2, 2, 2, . . . ] .

• Example: Find the continued fraction expansion of
√
7.

◦ With α =
√
7, we �nd, successively,

n 0 1 2 3 4 · · ·

αn
√
7

√
7 + 2

3

√
7 + 1

2

√
7 + 1

3

√
7 + 2 · · ·

an 2 1 1 1 4 · · ·

αn − an
√
7− 2

√
7− 1

3

√
7− 1

2

√
7− 2

3

√
7− 2 · · ·

and since each term after this will repeat, we see that
√
7 = [2, 1, 1, 1, 4, 1, 1, 1, 4, . . . ] .

• Example: Find the �rst ten terms of the continued fraction expansion of π.

◦ With α = π, we �nd, numerically, that the �rst ten terms are [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, . . . ]. This is easy
to do even with a hand calculator: simply subtract o� the integer part, reciprocate, and repeat.

◦ There is no apparent pattern, and the sequence does not seem to repeat, in the nice way that the two
previous examples did.

• Two of the continued fractions in the examples above eventually begin repeating. We will give this situation
a special name:

• De�nition: An in�nite continued fraction [a0, a1, a2, . . . ] is (eventually) periodic if there is some integer n such
that ar = an+r for all su�ciently large r. We employ the notation [a0, a1, a2, . . . , ak, ak+1, ak+2, . . . , ak+n] to
indicate that the block of integers under the bar repeats inde�nitely.

◦ This is the same notation used for repeating decimals. (This is reasonable, since it is essentially the same
situation, too.)

• Example: Find the real number α = [1] and �nd its �rst ten convergents.

◦ By the periodicity of the expansion, we know that α = 1 +
1

α
=
α+ 1

α
.

◦ This yields a quadratic equation for α, namely α2 = α+ 1, whose solutions are α =
1±
√
5

2
.

◦ Since α > 1, we need the plus sign, so α =
1 +
√
5

2
. (This is the famous golden ratio.)

◦ We can compute the convergents explicitly: the �rst ten are 1, 2,
3

2
,
5

3
,
8

5
,
13

8
,
21

13
,
34

21
,
55

34
, and

89

55
.

◦ Notice that these are simply ratios of consecutive Fibonacci numbers, which (once noticed) follows easily

from the de�nition of α, since we have
pn+1

qn+1
= 1 +

1

pn/qn
=

qn
pn + qn

, and so we see pn+1 = qn and

qn+1 = pn + qn = qn−1 + qn, which along with p1 = q1 = 1 is precisely the de�nition of the Fibonacci
numbers.

◦ Remark: In fact, our results about the convergence of the convergents provide a proof that lim
n→∞

Fn+1

Fn
=

1 +
√
5

2
.

• Example: Find the real number α = [2, 5] and �nd its �rst ten convergents.

◦ By the periodicity of the expansion, we know that α = 2 +
1

5 +
1

α

= 2 +
α

5α+ 1
=

11α+ 2

5α+ 1
.

◦ This yields a quadratic equation for α, namely α(5α+ 1) = 11α+ 2, whose solutions are α =
5±
√
35

5
.
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◦ Since α > 1, we need the plus sign, so α =
5 +
√
35

5
.

◦ The �rst ten convergents are 2,
11

5
,
24

11
,
131

60
,
286

131
,
1561

715
,
3408

1561
,
18601

8520
,
40610

18601
,
221651

101525
.

• So far, all of the periodic continued fractions we have seen have been solutions of a quadratic polynomial in
Q[x]. This is not an accident:

• Theorem (Periodic Continued Fractions): If α has a periodic continued fraction, then α is an irrational root
of a quadratic polynomial with integer coe�cients. (We call such a number a quadratic irrational.)

◦ Proof: Let α = [a0, a1, a2, . . . , ak, ak+1, ak+2, . . . , ak+n], and γ = [ak+1, ak+1, . . . , ak+n].

◦ Then by the periodicity of the expansion, we have γ = [ak+1, . . . , ak+n, γ].

◦ Expanding this out yields γ =
pn−1γ + pn−2
qn−1γ + qn−2

, which is a quadratic equation for γ.

◦ Since γ is irrational (being an in�nite continued fraction), we conclude that γ =
b+
√
c

d
for some integers

b, c, and d.

◦ Then α = [a0, a1, a2, . . . , ak, γ] is also a rational function in γ (and irrational), so clearing the denominator

shows that α =
e+
√
f

g
for some integers e, f , and g, which is also a root of a quadratic polynomial.

• The converse of this theorem is true also, but requires quite a bit more work. There are various approaches,
but we will use an approach motivated by the arithmetic of Q(

√
D).

• De�nition: Let α be a quadratic irrational. The minimal polynomial m(x) of α is the unique quadratic
polynomial of which α is a root having the form ax2 + bx+ c for relatively prime integers a, b, c where a > 0.
We also de�ne the discriminant of α to be the value b2 − 4ac ∈ Z.

◦ In other settings, the minimal polynomial is assumed to be monic and have rational coe�cients. We take
integer coe�cients in our de�nition here because we want to work with properties that rely on having
integer coe�cients rather than rational coe�cients.

◦ We will observe that because α is real and irrational, the discriminant of α is always positive, since it is
the term under the square root in the quadratic formula for the roots of m(x).

◦ Example: The minimal polynomial of
√
2 is x2 − 2, of discriminant 8.

◦ Example: The minimal polynomial of the golden ratio (1 +
√
5)/2 is x2 − x− 1, of discriminant 5.

◦ Example: The minimal polynomial of (3 +
√
13)/7 is 49x2 − 42x− 4, of discriminant 2548.

• We have a few additional de�nitions:

• De�nition: If α =
p+
√
D

q
is a quadratic irrational, then the other root of its minimal polynomial is its

conjugate α =
p−
√
D

q
. We say that α is reduced if α > 1 and also −1/α > 1.

◦ In general, the minimal polynomial of α will be q2(x−α)(x−α) = q2x2−2pqx+(p2−D) up to scaling by
a divisor of q (the coe�cients need not be relatively prime, since p2 −D could have a factor in common
with q).

◦ Example: The conjugate of α =
√
2 is α = −

√
2, so α is not reduced since −1/α is not greater than 1.

◦ Example: The conjugate of α = (1+
√
5)/2 is α = (1−

√
5)/2, so α is reduced since both α and −1/α = α

are greater than 1.

• Now we can prove that every quadratic irrational has a periodic continued fraction expansion:

• Theorem (Quadratic Irrationals and Continued Fractions): Let α be a quadratic irrational with discriminant
D, and let αn be the nth remainder term obtained in computing the continued fraction expansion of α, so

that α0 = α and αn =
1

αn−1 − bαn−1c
for all n ≥ 1. Then the following hold:
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1. The remainder term αn has discriminant D for all n ≥ 1.

◦ Proof: We �rst show α1 has discriminantD, so suppose α has minimal polynomialm(x) = ax2+bx+c
and write bαc = a0.

◦ Since α = a0+1/α1 this means a(a0+1/α1)
2+b(a0+1/α1)+c = 0, whence a(a0α1+1)2+b(a0α1+

1)α1 + c(α1)
2 = 0; equivalently, (aa20 + ba0 + c)α2

1 + (2aa0 + b)α1 + a = 0.

◦ Since a, b, c are relatively prime, so are aa20 + ba0 + c, 2aa0 + b, and a.

◦ Thus up to sign, the minimal polynomial of α1 is (aa20 + ba0 + c)x + (2aa0 + b)x + a, and so its
discriminant is (2aa0 + b)2 − 4a(aa20 + ba0 + c) = b2 − 4ac = D, as claimed.

◦ The desired result then follows by a trivial induction on n.

2. If α is a reduced quadratic irrational, then αn is also reduced.

◦ Proof: As in (1) we show that if α is reduced then α1 is reduced, and then apply a trivial induction.

◦ If α is reduced, then α1 =
1

α− bαc
> 1 since 0 < α− bαc < 1.

◦ Also, α1 =
1

α− bαc
is negative because α is negative, and its absolute value is between 0 and 1

because bαc ≥ 1. Thus, −1/α1 > 1 as required, and so α1 is reduced.

3. There are only �nitely many reduced quadratic irrationals of discriminant D.

◦ Proof: Suppose α is a reduced quadratic irrational of discriminant D and minimal polynomial
m(x) = ax2 + bx+ c, where b2 − 4ac = D and a > 0.

◦ Since α =
−b+

√
D

2a
is reduced, we have −1/α > 1 and so −1 < α < 0. Thus α + α = −b/a is

positive, so since a > 0 that means b < 0.

◦ Furthermore, α =
−b−

√
D

2a
and a > 0, this requires −b −

√
D < 0 and so b > −

√
D. Thus

−
√
D < b < 0 and so there are �nitely many possible b.

◦ But then since α =
−b+

√
D

2a
must have α > 1, we see that a < −b +

√
D < 2

√
D. Since a is

positive, there are �nitely many possible a.

◦ Then, �nally, since c = (b2−D)/(4a), there are �nitely many possible triples (a, b, c) and thus �nitely
many possible α.

4. The remainder term αn is reduced for su�ciently large n.

◦ Proof: By de�nition, for any n ≥ 1, we have αn =
1

αn−1 − bαn−1c
> 1. It remains to obtain a

bound on −1/αn.
◦ First, by de�nition we have α = [a0, a1, . . . , an, αn], so if we set [a0, a1, . . . , an] = pn/qn, then so that

α =
pnαn + pn−1
qnαn + qn−1

.

◦ Conjugating yields α =
pnαn + pn−1
qnαn + qn−1

since the pi and qi are integers hence unchanged by conjugating.

◦ Rearranging this last expression gives − 1

αn
= − qnα− pn

qn−1α− pn−1
=

qn
qn−1

· α− pn/qn
α− pn−1/qn−1

.

◦ For large n, as we have shown, pn/qn → α, and thus the second term approaches
α− α
α− α

= 1 (note

that the denominator is nonzero because α is irrational). The �rst term qn/qn−1 is always greater
than 1, and its limit cannot equal 1 because qn ≥ qn−1 + qn−2, so dividing by qn−1 and taking the
limit would give 1 ≥ 1 + 1, impossible.

◦ Therefore, for su�ciently large n, we see −1/αn > 1, and so αn is reduced.

5. The continued fraction expansion of a real number α is periodic if and only if α is a quadratic irrational.

◦ Proof: We proved earlier that if α has a periodic continued fraction expansion, then α is a quadratic
irrational.

◦ For the converse, suppose α is a quadratic irrational of discriminant D. Then by (1), every remainder
term in the continued fraction expansion of α has discriminant D.
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◦ By (4), the nth remainder term is reduced for su�ciently large n. But by (3), there are only �nitely
many such remainder terms, so by the pigeonhole principle there must be at least one repetition
somewhere.

◦ But once a remainder term repeats, the rest of the expansion will be the same, and so the expansion
is periodic, as claimed.

6. The continued fraction expansion of a real number α is purely periodic (i.e., is of the form α =
[a0, a1, . . . , an]) if and only if α is a reduced quadratic irrational.

◦ Proof: First suppose α has a purely periodic expansion. Then α = [a0, a1, . . . , akn, α] for every
positive integer k. Since by (4) the remainders are eventually all reduced, this means α must be
reduced.

◦ Conversely, suppose α is reduced. By (5) we know that the continued fraction expansion is eventually
periodic, say with αk+n = αk for some k and n.

◦ We �rst show that αk+n−1 = αk−1, so suppose α is reduced and αk+n = αk. Then both αk+n and

αk are reduced by (2). By de�nition we have αk+n =
1

αk+n−1 − ak+n−1
and αn =

1

αn−1 − an−1
, so

conjugating and inverting yields − 1

αn+k
= ak+n−1 − αk+n−1 and − 1

αn
= an−1 − αn−1.

◦ Since both αk+n−1 and αn−1 are between −1 and 0, we see ak+n−1 = b− 1

αn+k
c = b− 1

αn
c = an−1,

as claimed.

◦ By iterating this fact (equivalently, by a trivial induction), this implies αj+n = αj for all j ≥ 0.

◦ Then we see immediately that α has a periodic continued fraction expansion, as aj+n = bαj+nc =
bαjc = aj for all j ≥ 0.

• Example: Find the continued fraction expansion of (3 +
√
13)/4.

◦ Notice here that α = (3 +
√
13)/4 > 1 has −1/α = −4/(3 −

√
13) = 3 +

√
13 > 1, so α is reduced. Per

(6) above, its continued fraction expansion will be purely periodic.

◦ With α = (3 +
√
13)/4, we �nd, successively,

n 0 1 2 3 4 5

αn (3 +
√
13)/4 (1 +

√
13)/3 (2 +

√
13)/3 (1 +

√
13)/4 3 +

√
13 (3 +

√
13)/4

an 1 1 1 1 6

αn − an (−1 +
√
13)/4 (−2 +

√
13)/3 (−1 +

√
13)/3 (−3 +

√
13)/4 −3 +

√
13

and we can see at this point each term will repeat. Therefore, the continued fraction expansion is

[1, 1, 1, 1, 6] , which is indeed periodic.

6.2.4 Rational Approximation Via Continued Fractions

• One of our main goals in discussing continued fractions was to use them to give rational approximations. Here
are some results in this direction:

• Proposition (Rational Approximation and Continued Fractions): Suppose α is any irrational real number and
p/q is any rational number. Then the following hold:

1. If pn/qn is the nth continued fraction convergent to α, and

∣∣∣∣α− p

q

∣∣∣∣ < ∣∣∣∣α− pn
qn

∣∣∣∣, then q > qn. In fact, if

|qα− p| < |qnα− pn|, then q ≥ qn+1.

◦ Observe that the �rst statement says that the best rational approximation to α, among all terms in
the Farey sequence of level qn, is the convergent pn/qn.

◦ Proof: Consider the Farey sequence of level qn: since |pn−1qn − pnqn−1| = 1, we see that
pn−1
qn−1

and

pn
qn

are consecutive in this sequence.

19



◦ Hence, there is no rational number with denominator less than qn that lies between them.

◦ For the second statement, suppose that q < qn+1. By basic linear algebra, there exist integers x
and y such that p = xpn + ypn+1 and q = xqn + yqn+1. (They are integers because the determinant
pnqn+1 − pn+1qn of the associated coe�cient matrix is ±1 by our results on the convergents of the
continued fraction.)

◦ Notice that since q < qn+1, the second equation requires that one of x, y be positive and the other

is negative. Since α− pn
qn

and α− pn+1

qn+1
also have opposite signs, we conclude that x

(
α− pn

qn

)
and

y

(
α− pn+1

qn+1

)
have the same sign.

◦ Then we can write

|qα− p| = |(xqn + yqn+1)α− (xpn + ypn+1)|
= |x(qnα− pn) + y(qn+1α− pn+1)|
= |x| · |qnα− pn|+ |y| · |qn+1α− pn+1|
≥ |qnα− pn|

which establishes the contrapositive of the desired result.

2. There are in�nitely many distinct rational numbers
p

q
such that

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

◦ Remark: The constant 2 is not sharp. In fact, it is a theorem of Hurwitz that the 2 can be replaced
with

√
5, but with no larger constant.

◦ Proof: As usual let
pn
qn

be the nth continued fraction convergent to α.

◦ We claim that at least one of
pn
qn

and
pn+1

qn+1
satis�es the desired inequality, so suppose that neither

does.

◦ Then since α lies between
pn
qn

and
pn+1

qn+1
, we have

∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣2 =

(∣∣∣∣pnqn − α
∣∣∣∣+ ∣∣∣∣pn+1

qn+1
− α

∣∣∣∣)2

> 4

∣∣∣∣pnqn − α
∣∣∣∣ · ∣∣∣∣pn+1

qn+1
− α

∣∣∣∣
≥ 4 · 1

2q2n
· 1

2q2n+1

=
1

q2nq
2
n+1

.

where in the middle step we used the inequality (x+ y)2 ≥ 4xy (which is equivalent to (x− y)2 ≥ 0,
and equality cannot hold in our case because α is irrational).

◦ Taking the square root gives

∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ > 1

qnqn+1
, but this is false since these quantities are equal.

3. If
p

q
is a rational number such that

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
, then in fact

p

q
is a continued fraction convergent to

α.

◦ Proof: Suppose by way of contradiction that p/q is not a convergent and that

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

◦ Let n be such that qn ≤ q < qn+1 .

◦ By (1), it must be the case that |qnα− pn| < |qα− p| = q

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q
.

◦ Thus, we conclude that

∣∣∣∣α− pn
qn

∣∣∣∣ < 1

2qqn
.

◦ Now we get
1

qqn
≤
∣∣∣∣pnq − pqnqqn

∣∣∣∣ = ∣∣∣∣pq − pn
qn

∣∣∣∣ ≤ ∣∣∣∣pq − α
∣∣∣∣+ ∣∣∣∣α− pn

qn

∣∣∣∣ < 1

2qqn
+

1

2q2n
.

◦ But this implies q < qn, which is a contradiction.
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• We will remark at this point that the continued fraction expansion provides a good way to detect approxima-
tions of rational numbers using a decimal expansion: simply compute the continued fraction of the decimal,
and then round o� appropriately.

• Example: Find a rational number of small denominator with decimal expansion 0.4614379084967 . . . .

◦ We compute the continued fraction expansion of α = 0.4614379084967, which is easy to do with a
calculator or computer.

◦ We obtain the exact expression α = [0, 2, 5, 1, 57, 1, 53354674, 4, 1, 1, 6, 4].

◦ We truncate just before the huge term in the middle to get a guess of α = [0, 2, 5, 1, 57, 1] =
353

765
. Indeed,

we can calculate that
353

765
≈ 0.461437908496732.

◦ From our results above, we can see that any rational number that is a closer approximation will have

denominator roughly on order of the next convergent [0, 2, 5, 1, 57, 1, 53354674] =
18834200269

40816326362
, so the

rational number we found is clearly the simplest.

◦ It is interesting to note that the period of the decimal expansion of
353

765
is 16, so in fact we have identi�ed

the rational number before the expansion started repeating!

• We can also use these results, along with some of our facts about the Farey sequences to �nd the best rational
approximation to a given real number α having a denominator below a given �xed bound N .

◦ Our starting point is to calculate the last two convergents pn−1/qn−1 and pn/qn whose denominators are
less than N .

◦ Since the convergents alternate being above and below α, this means α lies between these two convergents.
Furthermore, from the relation |pnqn−1 − pn−1qn| = 1 and our results on the Farey sequences, we see
that pn−1/qn−1 and pn/qn are consecutive terms in the Farey sequence of level qn.

◦ We can then generate all of the terms between these of level ≤ N by taking mediants, and from this
short list we can identify the best approximation of α.

• Example: Find the rational number with denominator less than 100 that is closest to
√
7.

◦ Earlier, we computed the continued fraction expansion
√
7 = [2, 1, 1, 1, 4].

◦ The �rst few convergents are then 2, 3, 5/2, 8/3, 37/14, 45/17, 82/31, 127/48, 590/223.

◦ The last two convergents with denominator less than 100 are 82/31 and 127/48. The only term between
them in the Farey sequence of level 99 is their mediant, 209/79.

◦ We can then compute that
√
7−82/31 ≈ 5.9·10−4,

√
7−127/48 ≈ −8.2·10−5, and

√
7−209/79 ≈ 1.8·10−4.

Thus, the best approximation is 127/48 .

• In many situations the best approximation of α will be one of its continued fraction convergents, but this need
not always be the case:

• Example: Find the rational number with denominator less than 10 that is closest to
√
7.

◦ From above, the last two convergents with denominator less than 10 are 5/2 and 8/3. The terms between
them in the Farey sequence of level 9 are 18/7, 13/5, and 21/8.

◦ We can then compute that
√
7− 5/2 ≈ 0.1458,

√
7− 18/7 ≈ 0.0743,

√
7− 13/5 ≈ 0.0458,

√
7− 21/8 ≈

0.0208, and
√
7− 8/3 ≈ −0.0209.

◦ Thus, the best approximation (by a quite small margin!) is 21/8 , which, we remark, is not a continued

fraction convergent to
√
7.
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6.2.5 Irrationality and Transcendence

• We can also use some of these properties of rational approximation we have developed to prove the irrationality
of various quantities, and by suitably extending these results, we can even prove transcendence in some cases.

• One easy observation is that the continued fraction expansion of a real number α terminates in a �nite number
of steps if and only if α is rational.

◦ Thus, taking the contrapositive shows that the continued fraction of α is in�nite if and only if α is
irrational. We could therefore establish irrationality by computing the continued fraction expansion of a
given real number.

◦ However, as a practical matter, this is not so easy to do. The easiest in�nite continued fractions to
compute are the periodic expansions, and as we proved, these are the expansions of quadratic irrationals.
However, these are quite easy to prove irrational, since their irrationality is ultimately equivalent to the
irrationality of

√
D where D is a squarefree integer not equal to 1.

◦ If we �ip our approach around, we can say, for example, that the real number with continued fraction
expansion [1, 2, 3, 4, 5, 6, . . . ] is irrational. However, we have no simple way of giving a closed-form formula
for this real number. (As it happens, this number can be written in terms of values of a modi�ed Bessel
function, though this is not so easy to prove.)

• Our second method is to use another of our earlier results: as we showed, if α is irrational, then there are
in�nitely many distinct rational numbers p/q such that |α− p/q| < 1/q2.

◦ Our main idea is that the converse of this statement holds as well:

• Proposition (Irrationality and Approximation): A real number α is irrational if and only if there exist in�nitely
many distinct rational numbers p/q such that |α− p/q| < 1/q2.

◦ Proof: We established the forward direction earlier, so now suppose α = a/b is a �xed rational number.

◦ Then |α− p/q| = |aq − bp| /(bq). If q ≤ b then there are only �nitely many possible p/q with |α− p/q| <
1/q2 since there are only �nitely many possible denominators q and �nitely many p that work for any
given q.

◦ If q > b then we would have |aq − bp| /(bq) < 1/q2 so that |aq − bp| < b/q < 1. But since |aq − bp| is an
integer, it would then have to be zero, in which case p/q would equal a/b.

◦ Putting these two cases together shows that if α is rational, then there are only �nitely many distinct
rational numbers p/q such that |α− p/q| < 1/q2, as claimed.

• In principle, we could try to use this result to establish the irrationality of an arbitrary irrational number.
However, this can be quite cumbersome in practice.

◦ The numbers for which it will be e�ective are those that we can write as an in�nite sum of rational
numbers whose terms decrease rapidly in size: we can then obtain the desired rational approximations
by taking partial sums of the series.

◦ As long as the tail of the series is very small (i.e., less than 1/q2) relative to the denominator q of each
partial sum, we will be able to conclude that the sum of the series is irrational.

• Example: Show that α =
∑∞
k=0 10

−3k is irrational.

◦ Let pn/qn =
∑n
k=0 10

−3k be the nth partial sum of the series. We observe that qn = 103
k

since each of

the other terms has a denominator dividing 103
k

.

◦ Furthermore, it is easy to see (e.g., from the decimal expansion of α) that the size of the tail
∑∞
k=n+1 10

−3k

is at most 2 · 10−3k+1

.

◦ Then we have an easy bound |α− pn/qn| < 2 · 10−3k+1

< (10−3
k

)2 = 1/q2n. Since all of the partial sums
of this series are distinct, we obtain in�nitely many such pn/qn, and therefore by our result above, α is
irrational.
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• As �rst observed by Liouville, we can extend this criterion to exclude algebraic numbers that are roots of
higher-degree polynomials by increasing the exponent of q in the bound on the right-hand side.

◦ We say that a number α ∈ C is algebraic if α is the root of some nonzero polynomial p(x) with rational
coe�cients.

◦ If we consider all of the possible polynomials in Q[x] of which α is a root, by the well-ordering principle
we can see that there is some polynomial of minimal degree d of which α is a root.

◦ We refer to this degree d as the algebraic degree of α over Q. There is a unique monic polynomial of this
degree d of which α is a root; this polynomial is called the minimal polynomial of α over Q.
◦ Example: Quadratic irrationals have algebraic degree 2 over Q, since they are roots of quadratic poly-
nomials but not any polynomial of lower degree.

◦ Example: The number 4
√
2 has minimal polynomial x4−2 over Q (although this is not completely trivial

to prove) and thus has algebraic degree 4.

◦ We will remark that the minimal polynomial is always irreducible (if it had a factorization, whichever
factor had α as a root would have smaller degree) and cannot have any repeated roots (if it did, then m
and its derivative m′ would have a factor x− α in common).

◦ Suppose α is algebraic. We may clear denominators in its minimal polynomial to see that α is the root of
some polynomial cdx

d+cd−1x
d−1+· · ·+c0 where the ci are integers: this means cdα

d+cd−1α
d−1+· · ·+c0 =

0.

◦ If we then set β = cdα, by rescaling we can see that β is a root of the polynomial xd + cd−1cdx
d−1 +

· · ·+ c0c
d−1
d , which is monic and has integer coe�cients.

◦ Thus, up to an integer factor, any algebraic number is the root of a monic polynomial with integer
coe�cients.

• With these preliminaries �nished, we can now give Liouville's result:

• Theorem (Liouville's Approximation Theorem): Suppose α is algebraic of degree n > 1 over Q and that
its minimal polynomial m(x) has integer coe�cients. Then there exists a positive real number A such that
|α− p/q| ≥ A/qn for any rational number p/q.

◦ The idea of the proof is to use the mean value theorem to bound the di�erence between m(α) and m(p/q)
and the fact that we can express m(p/q) as 1/qn times an integer.

◦ Proof: Suppose α is algebraic of degree n > 1 over Q and that its minimal polynomial m(x) has integer
coe�cients and factors as m(x) = (x − α)(x − β1)(x − β2) · · · (x − βn−1) over C. Note that the βi are
distinct from α because m(x) cannot have repeated roots.

◦ Now de�neM be the maximum value of |m′(x)| on the interval [α−1, α+1], and setA = min(1, 1/M, |α− βi|)
over all of the roots βi. We claim this value of A satis�es the given inequality.

◦ To show this, suppose otherwise, so that p/q is rational and has |α− p/q| < A/qn. Then because A ≤ 1,
we have p/q ∈ (α− 1, α+ 1).

◦ Also, because A ≤ |α− βi|, we see that p/q cannot equal any of the βi, and that there is no root of m(x)
between α and p/q.

◦ If we write m(x) = xd + cd−1x
d−1 + · · · + c0, then m(p/q) = (p/q)d + cd−1(p/q)

d−1 + · · · + c0 =
(1/qd) · [pd + cd−1p

d−1q + · · ·+ c0q
d].

◦ Thus we have |m(p/q)| ≥ 1/qd ·
∣∣pd + cd−1p

d−1q + · · ·+ c0q
d
∣∣ ≥ 1/qd because the term inside the absolute

values is an integer and it cannot be zero since m(p/q) 6= 0.

◦ Now, by the mean value theorem, there exists x0 in the interval with endpoints p/q and α such that
m(α)−m(p/q) = m′(x0) ·(α−p/q). Taking absolute values yields |m(α)−m(p/q)| = |m′(x0)| · |α− p/q|.

◦ By assumption we have A ≤ 1/M and |m′(x0)| ≤M , and also m(α) = 0 and |m(p/q)| ≥ 1/qd. Plugging

all of these in immediately yields the desired inequality |α− p/q| = |m(p/q)|
|m′(x0)|

≥ A

qd
, as claimed.

• Using Liouville's theorem, we can give explicit constructions of transcendental numbers similar to the one
given earlier.
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◦ The idea is that if α is an irrational real number such that there exists a constant c > 0 and a sequence
of rational numbers pn/qn such that |α− pn/qn| < c/qnn , then α is transcendental.

◦ The point is that this sequence of rational numbers contradicts the assertion that α is algebraic of degree
n for every n, by the theorem above, and so α must be transcendental.

◦ We can construct such an α and corresponding rational approximations pn/qn by taking α to be an
in�nite series whose terms drop in size very quickly: instead of the example above yielding irrationality,
now we want the tail after the nth partial sum pn/qn to be on the order of 1/qnn rather than 1/q2n.

• Example: Show that α =
∑∞
k=0 10

−k! is transcendental.

◦ Let pn/qn =
∑n
k=0 10

−k! be the nth partial sum of the series. We observe that qn = 10k! since each of
the other terms has a denominator dividing 10−k!.

◦ Furthermore, it is easy to see (e.g., from the decimal expansion of α) that the size of the tail
∑∞
k=n+1 10

−k!

is at most 2 · 10−(n+1)!.

◦ Then we have an easy bound |α− pn/qn| < 2 · 10−(n+1)! = 2(10−n!)n+1 = 2/qn+1
n < 1/qnn . Since all of

the partial sums of this series are distinct, we obtain in�nitely many such pn/qn, and therefore by our
result above, α is transcendental.

6.3 Pell's Equation

• Equations of the form x2 −Dy2 = r, for D a positive squarefree integer and r an arbitrary integer, are often
referred to under the general heading of Pell's equation, named after the English mathematician Pell.

◦ However, this name is a misattribution by Euler, and it is quite possible that Pell never actually studied
these equations. Equations of this type have been studied throughout history, with notable early con-
tributions made by the Indian scholars Brahmaguptra, Bhaskara II, and Narayana. Certain instances of
Pell's equation (most notably D = 2) were also studied by the ancient Greeks, including Diophantus.

◦ What we would like to be able to do is �nd a recipe for generating solutions to Pell's equation in the
situations that they do exist, and to understand more about the structures of these solutions. The general
approach we will follow is similar to the treatment developed by Lagrange in the mid-1700s.

6.3.1 Motivation and Small Examples

• Let us start by exploring the case D = 2 for various small r: thus, we are seeking integer solutions to the
Diophantine equation x2 − 2y2 = r for small values of r.

◦ We can do a search by plugging in small nonnegative values of x and y from 0 to 20 and looking for pairs
where x2 − 2y2 is close to zero. Collecting them via the value of r yields the following solutions:

r 1 2 3 4 5 6 7

(x, y) (1, 0),(3, 2),(17, 12) (2, 1),(10, 7) none (2, 0),(6, 4) none none (3, 1),(5, 3),(13, 9)

r −1 −2 −3 −4 −5 −6 −7
(x, y) (1, 1),(7, 5) (0, 1),(4, 3) none (2, 2),(14, 10) none none (1, 2),(5, 4),(11, 8)

◦ We can see that for some values of r (namely, r = ±3) there seem to be no solutions, while for other
small values of r there are solutions.

◦ By working mod 8, we can show that there are no solutions to x2−2y2 = r when r is congruent to 3 or 5
modulo 8 (which includes the cases r = ±3 and ±5 above). Explicitly, this follows because x2 ∈ {0, 1, 4}
mod 8 and −2y2 ∈ {0, 6} mod 8, and so x2 − 2y2 ∈ {0, 1, 2, 4, 6, 7} mod 8, meaning that it cannot be
congruent to 3 or 5 mod 8.

◦ By working mod 3, we can also show that there are no solutions to x2 − 2y2 = r when r is congruent
to 3 or 6 modulo 9 (which includes the cases r = ±3 and ±6 above). Explicitly, this follows because
x2 − 2y2 ≡ x2 + y2 mod 3, and this can equal zero mod 3 only when (x, y) ≡ (0, 0) mod 3, but in such
cases x2 − 2y2 = r is divisible by 9, and thus cannot be 3 or 6 modulo 9.
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◦ Another pattern we can observe from the examples above is that x2 − 2y2 = r seems to have a solution
if and only if x2 − 2y2 = −r does, and that some of the solutions seem to be related.

◦ If we look for a relationship between the pairs (1, 1), (7, 5) from r = −1 and (3, 2), (17, 12) from r = +1,
along with corresponding pairs for the other r, it is not hard to spot that if (a, b) is a solution with
a2 − 2b2 = −r, then (a+ 2b, a+ b) seems to be a solution with a2 − 2b2 = r.

◦ Indeed, this is true: if a2 − 2b2 = −r, then (a+ 2b)2 − 2(a+ b)2 = −(a2 − 2b2) = r.

◦ We can see quite easily that if we start with any solution to x2−2y2 = r other than the �trivial� solutions
(±1, 0) to x2 − 2y2 = 1, we can generate new solutions to x2 − 2y2 = ±r by applying this rule mapping
(a, b) 7→ (a+ 2b, a+ b).

◦ For example, starting with (1, 0) we obtain (1, 0) 7→ (1, 1) 7→ (3, 2) 7→ (7, 5) 7→ (17, 12) 7→ (41, 29) 7→
(99, 70) 7→ (239, 169) 7→ · · · . The odd terms in the sequence are solutions to x2− 2y2 = 1 while the even
terms are solutions to x2 − 2y2 = −1.

◦ If we iterate the rule twice, mapping (a, b) 7→ (a+ 2b, a+ b) 7→ (3a+ 4b, 2a+ 3b), we obtain a recipe for
generating new solutions to x2 − 2y2 = r from old solutions.

• Let's also examine the case D = 3 for small r: now we are seeking integer solutions to x2 − 3y2 = r.

◦ We can do a search by plugging in small nonnegative values of x and y from 0 to 40 and looking for pairs
where x2 − 2y2 is close to zero. Collecting them via the value of r yields the following solutions:

r 1 2 3 4 5 6 7

(x, y) (1, 0),(2, 1),(7, 4),(26, 15) none none (2, 0),(4, 2),(14, 8) none (3, 1),(9, 5),(33, 19) none

r −1 −2 −3 −4 −5 −6 −7
(x, y) none (1, 1),(5, 3),(19, 11) (0, 1),(3, 2),(12, 7) none none none none

◦ By working mod 3, we can see that there are no solutions to x2 − 3y2 = r when r is congruent to 2
modulo 3 (which includes the cases r = −7,−4,−1, 2, 5 above). This follows because r ≡ x2 (mod 3),
which has no solution when r ≡ 2 (mod 3) since 2 is not a quadratic residue.

◦ We can use these results to see that there are also no solutions in some other cases: for example, if r ≡ 3
mod 9 then if we had a solution to x2−3y2 = r then x would be divisible by 3. If x = 3a then cancelling
the factor of 3 yields 3a2 − y2 = (r/3) so that y2 − 3a2 = −(r/3) ≡ 2 mod 3, but as we just showed
above, there is no solution to this Diophantine equation.

◦ Also here, quite unlike in the case with D = 2, it seems that if there is a solution to x2 − 3y2 = r then
there is no solution to x2 − 3y2 = −r.
◦ If we search for a recipe (like in the case with D = 2) to generate new solutions to x2− 3y2 = 1 from old
ones, we can eventually stumble upon the map (a, b) 7→ (2a+ 3b, a+ 2b), which maps (1, 0) 7→ (2, 1) 7→
(7, 4) 7→ (26, 15) 7→ (97, 56) 7→ (362, 209) 7→ · · · .

• We can explain many of the patterns witnessed above by using properties of the ring Z[
√
D] = {a + b

√
D :

a, b ∈ Z} and the associated norm map N(a+ b
√
D) = a2 −Db2.

◦ The key observation is to notice that solving the equation x2 −Dy2 = r is equivalent to solving N(x+
y
√
D) = r.

◦ Because the norm map is multiplicative, if α = x + y
√
D and β = z + w

√
D where we have N(α) = r

and N(β) = s, then the element αβ = (x + y
√
D)(z + w

√
D) = (xz +Dyw) + (xw + yz)

√
D ∈ Z[

√
D]

will have norm rs.

◦ This is the idea underlying the �recipes� identi�ed in the examples above for generating new solution
to Pell equations from other solutions: in the particular situation where N(β) = ±1, we can see that
N(αβk) = (−1)kr, and so multiplying the element α by β, β2, β3, ... will yield more solutions to
x2 −Dy2 = ±r.
◦ Indeed, we can generate such a sequence whenever we can identify the elements in Z[

√
D] of norm

±1, which are precisely the units of Z[
√
D]. (Recall the reason for this: we have N(α) = αα where

α = x − y
√
D is the conjugate of α, so if N(α) = ±1 then α/N(α) is a multiplicative inverse of α in

Z[
√
D], and conversely if αβ = 1 then taking norms gives N(α)N(β) = N(αβ) = N(1) = 1 so that

N(α) = ±1.)
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◦ For example, in Z[
√
2] we have N(1 +

√
2) = (1 +

√
2)(1 −

√
2) = −1. Therefore, if a + b

√
2 has

norm r, then (a + b
√
2)(1 +

√
2) = (a + 2b) + (a + b)

√
2 will have norm −r. This is precisely the map

(a, b) 7→ (a+ 2b, a+ b) we identi�ed above.

◦ Likewise, in Z[
√
3] we have N(2 +

√
3) = (2 +

√
3)(2 −

√
3) = 1. Therefore, if a + b

√
3 has norm r,

then (a + b
√
3)(2 +

√
3) = (2a + 3b) + (a + 2b)

√
2 will also have norm r. This is precisely the map

(a, b) 7→ (2a+ 3b, a+ 2b) we identi�ed above.

• All of this discussion suggests that should start by looking for the solutions of x2 − Dy2 = ±1, which is
equivalent to determining the units in Z[

√
D].

◦ Based on our (admittedly small) searches above for solutions of x2 − Dy2 = ±1, it would appear that
the units all have the form ±αn where α is the �smallest� solution to x2 −Dy2 = ±1 in the sense that
α = x+ y

√
D with x, y > 0 and where x is minimal.

◦ This discussion suggests the following useful de�nition:

• De�nition: For a �xed positive squarefreeD, a fundamental solution (x1, y1) to Pell's equation is a pair (x1, y1)
of positive integers such that x21−Dy21 = ±1 and x1 + y1

√
D is minimal among all solutions to x2−Dy2 = 1.

The fundamental unit of Z[
√
D] is u = x1 + y1

√
D.

◦ Note that this fundamental solution and the fundamental unit are well de�ned: there will be a unique
minimal positive value for x1 + y1

√
D over all pairs (x1, y1) satisfying x

2
1 −Dy21 = ±1.

◦ Examples: By searching for solutions to x2 −Dy2 = ±1 we can generate fundamental units for various
small squarefree D:

D 2 3 5 6 7 10 11 13 14

Fund. Unit 1 +
√
2 2 +

√
3 2 +

√
5 5 + 2

√
6 8 + 3

√
7 3 +

√
10 10 + 3

√
11 18 + 5

√
13 15 + 4

√
14

Norm −1 1 −1 1 1 −1 1 −1 1

• One of the other key ideas for solving Pell's equation is the observation that if x2 −Dy2 is small and x, y are
positive, then x/y is a good approximation to

√
D.

◦ To illustrate, suppose we have a solution of x2 −Dy2 = 1.

◦ Dividing by y2 yields (x/y)2 − D = 1/y2, and now solving for x/y gives x/y =
√
D + 1/y2 =

√
D ·√

1 + 1/(Dy2) ≈
√
D · (1 + 1/(2Dy2)) =

√
D + 1/(2y2

√
D) using the linearization

√
1 + z ≈ 1 + z/2.

◦ In fact, the linearization is an overestimate since (1+ z/2)2 = 1+ z+ z2/4 > 1+ z. Thus, we obtain the

inequality

∣∣∣∣xy −√D
∣∣∣∣ < 1

2y2
√
D
.

◦ The point here is that x/y is a good approximation to
√
D. In fact, it is extremely good: from our

results on continued fractions and rational approximation, we know that if α is irrational and
p

q
has the

property that

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
, then in fact

p

q
is a continued fraction convergent to α.

◦ Here, since
√
D > 1, we see immediately that any solution to x2 − Dy2 = 1 must arise as a continued

fraction convergent to
√
D.

◦ Indeed, we can observe this numerically in the case D = 2: we have
√
2 = [1, 2] = [1, 2, 2, 2, . . . ] with

convergents 1/1, 3/2, 7/5, 17/12, 41/29, 99/70, ... , which (as ordered pairs) have x2 − 2y2 respectively
equal to −1, 1, −1, 1, −1, 1, ...: they are precisely the solutions to x2 − 2y2 = ±1 we identi�ed earlier.
The period of the continued fraction expansion here is equal to 1 and the fundamental unit corresponds
to the convergent [1].

◦ For D = 3 we have
√
3 = [1, 1, 2] = [1, 1, 2, 1, 2, . . . ] with convergents 1/1, 2/1, 5/3, 7/4, 19/11, 26/15,

71/41, ... , which (as ordered pairs) have x2− 3y2 respectively equal to −2, 1, −2, 1, −2, 1, .... Here, we
can see that we do not obtain any solutions to x2 − 3y2 = −1 (since in fact there are none as we proved
earlier) but we do obtain solutions to x2 − 3y2 = −2 and x2 − 3y2 = 1. The period of the continued
fraction expansion here is equal to 2, while the fundamental unit corresponds to the convergent [1, 2].
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◦ For D = 7 we have
√
7 = [2, 1, 1, 1, 4] = [2, 1, 1, 1, 4, 1, 1, 1, 4, . . . ] with convergents 2/1, 3/1, 5/2, 8/3,

37/14, 45/17, 82/31, 127/48, 590/223, ... , which (as ordered pairs) have x2 − 7y2 respectively equal
to −3, 2, −3, 1, −3, 2, −3, 1, −3, .... Here again we obtain no solutions to x2 − 3y2 = −1 but we do
obtain solutions to x2 − 3y2 = −3, x2 − 3y2 = 2, and x2 − 3y2 = 1. The period of the continued fraction
expansion here is equal to 4, while the fundamental unit corresponds to the convergent [2, 1, 1, 1].

◦ For D = 13 we have
√
13 = [3, 1, 1, 1, 6] = [3, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, . . . ] with convergents 3/1, 4/1, 7/2,

11/3, 18/5, 119/33, 137/38, 256/71, 393/109, 649/180, ... , which (as ordered pairs) have x2 − 13y2

respectively equal to −4, 3, −3, 4, −1, 4, −3, 3, −4, 1, .... Here we obtain solutions to x2 − 13y2 = r
for r = −4,−3,−1, 1, 3, 4. The period of the continued fraction expansion here is equal to 4, while the
fundamental unit corresponds to the convergent [3, 1, 1, 1, 1].

◦ It appears that the fundamental unit is obtained after one period of the continued fraction expansion,
regardless of whether it has norm 1 or −1, and the continued fraction expansion of

√
D also always seems

to be of the form [a0, a1, . . . , an, 2a0]

6.3.2 Proofs of Main Results

• Let us now prove all of these various observations we have made in the examples:

• Theorem (Pell's Equation): Let D be a positive squarefree integer. Then the following hold:

1. Let r be an integer with r2 + |r| < D. If x and y are positive integers with x2 −Dy2 = r, then
x

y
is a

continued fraction convergent to
√
D.

◦ Proof: Suppose r is an integer with r2+ |r| < D and x and y are positive integers with x2−Dy2 = r.

◦ We want to show that

∣∣∣∣xy −√D
∣∣∣∣ < 1

2y2
, which by our previous results will show that

x

y
is a continued

fraction convergent to
√
D.

◦ The assumptions imply r/y2 +D is at most |r|2 and also that
√
D ≤ |r|.

◦ Then

∣∣∣∣xy −√D
∣∣∣∣ =

∣∣x2 −Dy2∣∣
|y|2

∣∣∣x/y +√D∣∣∣ = |r|

y2
∣∣∣√r/y2 +D +

√
D
∣∣∣ ≤ |r|

y2
∣∣∣∣√|r|2 + |r|∣∣∣∣ =

1

2y2
, as desired.

2. The equation x2 −Dy2 = 1 always has a nontrivial solution in integers (x, y).

◦ Proof: If
p

q
is a continued fraction convergent to

√
D, then

p

q
is within 1/q2 ≤ 1 of

√
D, so∣∣∣∣pq −√D

∣∣∣∣ < 1

q2
and

∣∣∣∣pq +
√
D

∣∣∣∣ < 1 + 2
√
D.

◦ Then
∣∣p2 −Dq2∣∣ = q2

∣∣∣∣pq −√D
∣∣∣∣ ∣∣∣∣pq +

√
D

∣∣∣∣ < q2 · 1
q2
· (1 + 2

√
D) = 1 + 2

√
D.

◦ Since
√
D is irrational, there are an in�nite number of convergents but only a �nite number of

possible values for p2 −Dq2, so by the pigeonhole principle there is some r such that p2 −Dq2 = r
has in�nitely many solutions.

◦ Choose such an r: then there are only �nitely many possible pairs for the reduction of (p, q) modulo
r, so again by the pigeonhole principle there exist two distinct convergents x/y and s/t such that
x2 −Dy2 = s2 −Dt2 = r, x ≡ s (mod r), and y ≡ t (mod r).

◦ Now we compute u =
x+ y

√
D

s+ t
√
D

=
xs−Dyt

r
+
−xt+ ys

r

√
D, and observe that both xs − Dyt ≡

x2 −Dy2 ≡ 0 (mod r) and −xt + ys ≡ 0 (mod r), so the quotient u is of the form a + b
√
D where

a, b ∈ Z.

◦ But now N(u) =
N(x+ y

√
D)

N(s+ t
√
D)

= 1, so u is a unit in Z[
√
D], and so

(
xs−Dyt

r
,
−xt+ ys

r

)
is a

nontrivial solution to Pell's equation.

3. The ring Z[
√
D] has a well-de�ned fundamental unit u = x1 + y1

√
D. Furthermore, if w is an arbitrary

unit in Z[
√
D], then w = ±un for some integer n (possibly negative).
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◦ Remark (for those who like group theory): This result says that the unit group structure of Z[
√
D]

is isomorphic to (Z/2Z)×Z: the Z/2Z factor represents the ± sign while the Z factor represents the
power n of the fundamental unit u.

◦ Proof: The fundamental unit is well-de�ned by (2), since we are assured of the existence of at least
one solution to x2−Dy2 = ±1. Observe (trivially) that because u = x1+y1

√
D with x1, y1 positive,

we have u > 1.

◦ If w is any arbitrary unit, then by scaling by −1 if necessary, we may assume w is positive. Then
there exists a unique integer n such that w ∈ [un, un+1) since u is a real number greater than 1 and
these intervals [un, un+1) partition the interval (0,∞).

◦ Now observe that w · u−n ∈ [1, u), and w · u−n is also a unit in Z[
√
D].

◦ If this unit x + y
√
D were not equal to 1, then (possibly after �ipping signs on one of its terms) it

would yield a positive solution (x, y) to Pell's equation x2 −Dy2 = ±1 such that x+ y
√
D < u.

◦ But this contradicts the minimality of u, so in fact we must have w ·u−n = 1, whence w = un. Since
we chose the sign of w to be positive, the units in Z[

√
D] are then of the form ±un, as claimed.

4. If u = x1 + y1
√
D is the fundamental unit in Z[

√
D], then if we de�ne xn + yn

√
D = (x1 + y1

√
D)n for

nonnegative integers n, then (xn, yn) is a solution to x2 −Dy2 = ±1, and these are all of the solutions
up to changing the signs of xn or yn.

◦ Proof: This is merely a rewriting of (3) in terms of solutions to x2 −Dy2 = ±1 rather than units in
Z[
√
D].

5. The continued fraction expansion of
√
D is periodic and of the form [a0, a1, a2, · · · , ak−1, 2a0] with a0 =

b
√
Dc.
◦ Proof: Consider instead the continued fraction expansion of α = a0+

√
D where a0 = b

√
Dc: we claim

that it is [2a0, a1, a2, . . . ak−1] for some positive integer k. The integer part is bαc = ba0 +
√
Dc =

a0 + b
√
Dc = 2a0, as claimed.

◦ It remains to see that the expansion is purely periodic. By our results on purely periodic expansions,
this is equivalent to saying that α = a0 +

√
D is reduced. Clearly α > 1, and we also have −1/α =

1√
D − a0

> 1 because 0 <
√
D − a0 < 1 by the de�nition of a0 and the fact that

√
D is irrational.

◦ Therefore, α = a0 +
√
D is reduced, so its continued fraction is periodic with even starting term as

claimed. The claims about the expansion of
√
D are then immediate.

6. Let αn be the nth remainder term and an = bαnc be the nth term in the continued fraction expansion,
so that

√
D = [a0, a1, . . . , an, αn+1], and take pn/qn = [a0, a1, . . . , an] to be the nth convergent. De�ne

the sequences An and Cn by setting A0 = 0 and C0 = 1, and for n ≥ 1 set An+1 = anCn − An and

Cn+1 = (D−A2
n+1)/Cn. Then An and Cn are integers, αn =

An +
√
D

Cn
, pnpn−1−Dqnqn−1 = (−1)nAn+1,

and p2n −Dq2n = (−1)n+1Cn+1.

◦ Proof: We show all of these simultaneously by induction on n. The base case n = 0 is trivial, since

α0 =
√
D =

0 +
√
D

1
. We now do the inductive steps for each argument.

◦ First, clearly An+1 is an integer. For Cn+1, plugging in for An+1 and expanding yields Cn+1 =
D − (anCn −An)2

Cn
= (2anAn − a2nCn) +

D −A2
n

Cn
and the fraction at the end is simply Cn−1. Thus

An+1 and Cn+1 are integers. We also obtain the formula Cn+1 = 2anAn − a2nCn + Cn−1.

◦ Second, suppose αn =
An +

√
D

Cn
. Then αn+1 =

1

αn − an
=

Cn

−An+1 +
√
D

=
An+1 +

√
D

(D −A2
n+1)/Cn

=

An+1 +
√
D

Cn+1
as claimed.

◦ For the last two statements, suppose pnpn−1−Dqnqn−1 = (−1)nAn+1 and p
2
n−Dq2n = (−1)n+1Cn+1

and recall that pn+1 = an+1pn + pn−1 and qn+1 = an+1qn + qn−1.

◦ We then have pn+1pn−Dqn+1qn = (an+1pn+ pn−1)pn−D(an+1qn+ qn−1)(qn) = an+1(p
2
n−Dq2n)+

(pnpn−1 − Dqnqn−1). The �rst term equals an+1(−1)n+1Cn+1 by the second inductive hypothesis
p2n−Dq2n = (−1)n−1Cn+1 while the second term equals (−1)nAn+1 by the �rst inductive hypothesis.
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◦ Thus, we see pn+1pn −Dqn+1qn = (−1)n+1(an+1Cn+1 −An+1) = (−1)n+1An+2 by the de�nition of
An+2.

◦ In a similar way, we also have p2n+1−Dq2n+1 = (an+1pn+ pn−1)
2−D(an+1qn+ qn−1)

2 = a2n+1(p
2
n−

Dq2n) + 2an+1(pnpn−1 − Dqnqn−1) + (p2n−1 − Dq2n−1). The �rst term is a2n+1(−1)n+1Cn+1 by the
second inductive hypothesis, the second term is 2an+1(−1)nAn+1 by the �rst inductive hypothesis,
and the third term is (−1)nCn by the second inductive hypothesis applied to n− 1.

◦ Thus, p2n+1 − Dq2n+1 = a2n+1(−1)n+1Cn+1 + 2an+1(−1)nAn+1 + (−1)nCn = (−1)n+1[a2n+1Cn+1 −
2an+1An+1−Cn], and the term in brackets is equal to −Cn+2 by the calculation noted earlier. This
means p2n −Dq2n = (−1)n+1Cn+1 as claimed.

7. If
√
D = [a0, a1, a2, . . . , ak−1, 2a0] and pk−1/qk−1 = [a0, a1, . . . , ak−1], then the fundamental unit of

Z[
√
D] is pk−1 + qk−1

√
D. Its norm is −1 when k is odd and its norm is +1 when k is even.

◦ Proof: Suppose that
√
D = [a0, a1, a2, . . . , ak−1, 2a0]. Then since the expansion is periodic, we have

a0 +
√
D = [2a0, a1, . . . , ak−1, a0 +

√
D], so we see that αk+1 =

√
D − a0.

◦ By the second part of (6), this means
Ak +

√
D

Ck
= −a0 +

√
D, and so since

√
D is irrational the

only way this can occur is when Ck = 1. Then by the last part of (6), this means p2k−1 −Dq2k−1 =

(−1)kCk = (−1)k. Thus, pk−1 + qk−1
√
D is a unit in Z[

√
D].

◦ Conversely, suppose that pn + qn
√
D is a unit in Z[

√
D] so that p2n −Dq2n = ±1.

◦ By (1), pn/qn is a convergent to
√
D. Then by (6), we have p2n − Dq2n = (−1)n+1Cn+1 and so we

must have Cn+1 = 1 and (−1)n+1 equal to the norm of pn + qn
√
D.

◦ But if Cn+1 = 1, since all remainders are between 0 and 1, we must have αn+1 =
√
D−b

√
Dc = α0.

By periodicity, the only way this can occur is if n+ 1 is a multiple of k.

◦ The fundamental unit corresponds to the smallest possible value of n, which (per the calculation
above) is n = k − 1.

◦ Thus, the fundamental unit of Z[
√
D] is indeed pk−1+ qk−1

√
D as claimed, and its norm is −1 when

k is odd and its norm is +1 when k is even, also from the calculation above.

• Example: Find the fundamental unit of Z[
√
2] and identify all the units of Z[

√
2].

◦ As we computed earlier, the fundamental unit of Z[
√
2] is u = 1 +

√
2. Thus, the units of Z[

√
2] are the

elements ±(1 +
√
2)n for n ∈ Z.

◦ For example, taking the �fth power yields the element 41 + 29
√
2, and we can indeed compute that

412 − 2 · 292 = −1.

• Example: Find the fundamental unit in Z[
√
7].

◦ Earlier, we computed the expansion as
√
7 = [2, 1, 1, 1, 4]. This has the desired form with k = 4, so we

conclude there is no solution to x2 − 7y2 = −1.

◦ Then the desired convergent is C4 = [2, 1, 1, 1] =
8

3
, and we can indeed verify that 82 − 7 · 32 = 1. We

conclude that the fundamental unit of Z[
√
7] is 8 + 3

√
7 .

• Example: Find the fundamental unit in Z[
√
13].

◦ We compute the continued fraction expansion of
√
13 = [3, 1, 1, 1, 1, 6]. This has the desired form with

k = 5, so we conclude there is a solution to x2 − 13y2 = −1.

◦ Then the desired convergent is C5 = [3, 1, 1, 1, 1] =
18

5
, and we can indeed verify that 182− 13 · 52 = −1.

We conclude that the fundamental unit of Z[
√
13] is 18 + 5

√
13 .

◦ If we want a solution to Pell's equation x2 − 13y2 = 1 instead, we simply square the fundamental unit:
(18 + 5

√
13)2 = 649 + 180

√
3: then the minimal nontrivial solution is given by (649, 180).
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6.3.3 The Super Magic Box

• We can calculate the sequences {An} and {Cn} described in (6) above in our theorem, and thereby �nd the
fundamental unit as described in (7), using a computational procedure that is sometimes referred to as the
�super magic box�. It works as follows:

◦ The rows in the table are the sequences An, Cn, an, pn, qn, and p
2
n −Dq2n.

◦ We compute the sequences an, An, Cn via the recurrences6An+1 = anCn−An, Cn+1 = (D−A2
n+1)/Cn,

and an+1 = b(An+1 + a0)/Cn+1c with initial conditions A0 = 0, C0 = 1, and a0 = b
√
Dc. Once we reach

a term with Ck = 1 we stop, since we will have �nished computing the full continued fraction expansion
in the previous step.

◦ We can then evaluate the convergents pn/qn using the recurrence relations pn = anpn−1 + pn−2 and
qn = anqn−1 + qn−2 with initial conditions p−1 = 1, p0 = a0, q−1 = 0, q0 = 1.

• Example: Find the fundamental unit in Z[
√
14] using the super magic box.

◦ Here is the result of doing the super magic box calculation:
n −1 0 1 2 3 4

An = an−1Cn−1 −An−1 0 3 2 2 3

Cn = (D −A2
n)/Cn−1 1 5 2 5 1

an = b(An + a0)/Cnc 3 1 2 1 6
pn = anpn−1 + pn−2 1 3 4 11 15 101
qn = anqn−1 + qn−2 0 1 1 3 4 27

p2n − 14q2n −5 2 −5 1 −5

◦ From this calculation we can see in fact that
√
14 = [3, 1, 2, 1, 6] and that the fundamental unit in Z[

√
14]

is 15 + 4
√
14 with norm 1.

◦ In the bottom row of the table, we have also calculated the value of p2n − 14q2n explicitly in the bottom
row: we can in particular see that p2n − 14q2n = (−1)n+1Cn+1, as we proved was the case in (7).

• Example: Find the smallest nontrivial solution to the Pell equation x2 − 29y2 = 1.

◦ Here is the result of doing the super magic box calculation for D = 29:
n −1 0 1 2 3 4 5

An = an−1Cn−1 −An−1 0 5 3 2 3 5

Cn = (D −A2
n)/Cn−1 1 4 5 5 4 1

an = b(An + a0)/Cnc 5 2 1 1 2 10
pn = anpn−1 + pn−2 1 5 11 16 27 70
qn = anqn−1 + qn−2 0 1 2 3 5 13

p2n − 29q2n −4 5 −5 −4 −1

◦ From this calculation we can see that the fundamental unit of Z[
√
29] is 70 + 13

√
29 having norm −1.

◦ Thus, the smallest nontrivial solution to the Pell equation x2−29y2 = 1 corresponds to the square of the

fundamental unit, which is (70+13
√
29)2 = 9801+1820

√
29, yielding the solution (x, y) = (9801, 1820) .

◦ We will remark here that the super magic box calculation is quite short and easy to do by hand, quite
unlike a brute-force search for solutions to x2 − 29y2 = 1!

• As it turns out, we can use the ideas from the super magic box algorithm to give an integer factorization
algorithm, as �rst proposed by Lehmer and Powers in 1931. So suppose that D is some large composite
integer.

◦ The idea, as with other factorization algorithms such as the quadratic sieve, is to �nd a solution to the
congruence x2 ≡ y2 (mod D) where x 6≡ ±y (mod D).

6Note that by de�nition we actually have an = bαnc = b(An +
√
D)/Cnc; however, because An and Cn are integers, we may replace√

D with its greatest integer a0 = b
√
Dc without a�ecting the �oor calculation used to �nd an. The advantage to the recurrence we

gave is that we do not need to estimate
√
D at any point beyond �nding its greatest integer.
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◦ In such a case, (x + y)(x − y) is divisible by D. But the gcd of x + y and D cannot be 1 (since then
necessarily D would divide x−y), and it also cannot be D (since then necessarily D would divide x+y):
this means 1 < gcd(x+ y,D) < D, and so gcd(x+ y,D) is a nontrivial common divisor of n. Note that
we can rapidly calculate this gcd via the Euclidean algorithm.

◦ If we use the super magic box algorithm to compute the sequences An, Cn, an, as above, for the continued
fraction expansion of

√
D, then we know that p2n − Dq2n = (−1)n+1Cn+1, and so modulo D we see

p2n ≡ (−1)n+1Cn+1 (mod D).

◦ In particular, if we are able to �nd a convergent such that n is odd and Cn+1 is a perfect square, we will
obtain a congruence of the form p2n ≡ k2 (mod D), which will allow us to �nd a factorization as long as
it turns out that pn 6≡ ±k (mod D).

• Example: Use the super magic box to �nd a factorization of D = 1271.

◦ Here is the result of doing the super magic box calculation for D = 1271:
n −1 0 1 2 3 4 5 · · ·

An = an−1Cn−1 −An−1 0 35 11 14 29 31 · · ·
Cn = (D −A2

n)/Cn−1 1 46 25 43 10 31 · · ·
an = b(An + a0)/Cnc 35 1 1 1 6 2 · · ·
pn = anpn−1 + pn−2 1 35 36 71 107 713 1533 · · ·
qn = anqn−1 + qn−2 0 1 1 2 3 20 43 · · ·

p2n − 1271q2n −46 25 −43 10 −31 31 · · ·

◦ Here, we see that C2 = 25 is a perfect square. Therefore, p21 = 362 will be congruent to Cn modulo D,
so we see 362 ≡ 52 (mod 1271).

◦ We can easily see gcd(36 + 5, 1271) = 41, and so we obtain the factorization 1271 = 41 · 31.

• Of course, this procedure requires some amount of luck to �nd a factorization quickly, since there is no
guarantee that we will �nd a term with (−1)n+1Cn+1 equal to a perfect square early on in the calculation.

◦ We can improve the method by combining it with the ideas from Dixon's method and the quadratic sieve
algorithm.

◦ All we actually require are two terms whose squares are congruent modulo D. Since |Cn+1| <
√
D, this

means if we compute 2
√
D terms of the continued fraction expansion, we will be guaranteed to �nd two

values of (−1)n+1Cn+1 that are congruent modulo D, and thus we will obtain two convergents whose
numerators satisfy p2m ≡ p2n (mod D).

◦ Of course, it could happen that the numerators of these terms have pm ≡ ±pn (mod D), in which case
we will need to search for other tuples until we �nd a pair such that pm 6≡ ±pn (mod D).

◦ However, if we combine these ideas with those of the quadratic sieve, we can improve the speed of the
sieving method: the improvement comes from the fact that the continued fraction convergents all have
|pn|2 quite small modulo D (speci�cally, it is always less than

√
D), and so they are comparatively much

easier to factor than arbitrarily-chosen squares modulo D.

◦ One may show that, suitably optimized, the resulting sieving algorithm will �nd a factorization of D in

approximately e
√
2 lnn ln lnn time.

6.4 An Assortment of Other Diophantine Equations

• In this section we discuss a number of other unrelated Diophantine equations.

◦ Our goal here is to illustrate some of the very wide variety of other elementary techniques that can be
used to solve Diophantine equations.
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6.4.1 Assorted Diophantine Equations

• Proposition: The Diophantine equation
1

x
+

1

y
=

1

2021
has exactly 5 solutions (x, y) with 0 < x < y:

(x, y) = (2022, 4086462), (2064, 97008), (2068, 88924), (3870, 4230), and (4042, 4042).

◦ The idea of this proof is to rearrange the equation and factor.

◦ Proof: Note that x, y ≥ 2022. Clearing denominators yields 2021y+2021x = xy, which we can rearrange
and factor as (x− 2021)(y − 2021) = 20212.

◦ We can see that 20212 = 432 · 472 has 9 possible factorizations as the product of two positive integers.

◦ These factorizations yield �ve possible pairs (x − 2021, y − 2021) = (1, 20212), (43, 94987), (47, 86903),
(432, 472), (2021, 2021), and these give the �ve solutions listed above.

• Proposition: There are no solutions to the Diophantine equation x2 + y2 + z2 = 4a(8b+ 7).

◦ The idea of this proof is to use modular arithmetic.

◦ Proof: We prove the result by induction on a.

◦ For the base case a = 0, consider the equation modulo 8.

◦ Each square is either 0, 1, or 4 mod 8, so it is not possible to obtain a sum of 7 mod 8 by adding three
of them.

◦ Now suppose there are no solutions for a ≤ k, and take a = k + 1.

◦ Consider the equation x2 + y2 + z2 = 4k+1(8b + 7) modulo 4. Each of the squares is 0 or 1, while the
term 4k+1(8b+ 7) is 0 mod 4, so all of the squares must be 0 mod 4.

◦ Then
(x
2

)2
+
(y
2

)2
+
(z
2

)2
= 4k(8b + 7), but this is a contradiction since by induction, this equation

has no solutions.

◦ Remark: In fact, these are the only integers that cannot be written as a sum of three squares, as �rst
proven by Legendre. (Gauss gave a formula for the number of such representations, similar to Fermat's
formula for the number of ways of writing an integer as a sum of two squares.)

• Proposition: The Diophantine equation y2 = x4 + 4x3 + x2 + 2x + 1 has the solutions (x, y) = (−4,±3),
(0,±1), (1,±3), (6,±47), and no others.

◦ The idea of this result is to attempt to complete the square of the x-terms, and then use some simple
inequalities to bound how big x and y can be.

◦ Proof: We complete the square of the x-terms and obtain x4+4x3+x2+2x+1 =

(
x2 + 2x− 3

2

)2

+8x−5

4
.

◦ Thus, we should try comparing y2 to (x2 +2x− 2)2 = x4 +4x3 − 8x+4 and (x2 + x− 1)2 = x4 +2x3 +
2x2 − 4x+ 1.

◦ We see that y2−(x2+x−2)2 = x2+10x−3 is positive outside [−10.3, 0.3], while (x2+x−1)2−y2 = x2−6x
is positive outside [0, 6].

◦ Hence, if x 6∈ [−10, 6], then we have the strict inequalities (x2 + x − 2) < y2 < (x2 + x − 1)2, which is
impossible if x and y are both integers.

◦ Thus it must be the case that x ∈ [−10, 6]. It is then a straightforward calculation (trivial to implement
by computer) to check the 17 cases to �nd the solutions as listed above.

◦ Remark: More generally, one can adapt this proof method to show that there are only �nitely many
solutions to any equation of the form y2 = x4 + ax3 + bx2 + cx+ d for �xed integers a, b, c, d, as long as
the right-hand side is not a perfect square.

• Proposition: The solutions to the Diophantine equation x2 + y2 = z3 with gcd(x, y) = 1 are of the form
(x, y, z) = (a3 − 3ab2, 3a2b− b3, a2 + b2) for relatively prime integers a, b of opposite parity.

◦ The idea of this proof is to exploit the arithmetic of the Gaussian integers Z[i].
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◦ Proof: First observe that if x, y were both odd, then z3 ≡ 2 (mod 4), but 2 is not a cube modulo 4.

◦ Since x, y are not both even since gcd(x, y) = 1, we conclude that one is even and the other is odd.

◦ Now, over Z[i], factor the equation as (x+ iy)(x− iy) = z3.

◦ We claim that x+ iy and x− iy are relatively prime: any common divisor would divide both 2x and 2y,
hence divide 2. But 1 + i (the only Gaussian prime dividing 2) does not divide x + iy, since x, y are of
opposite parity.

◦ Now, by the uniqueness of prime factorization in Z[i], we conclude that x + iy must be a unit times a
cube.

◦ But since each unit in Z[i] is actually a cube, we conclude that x+ iy = (a+ bi)3 for some a+ bi ∈ Z[i].
◦ Equating real and imaginary parts yields x = a3 − 3ab2, y = 3a2b− b3, and then z = (a+ bi)(a− bi) =
a2 + b2, as claimed.

◦ Remark: One can use a similar argument to write down the solutions to x2 + y2 = zd for any positive
integer d.

• Corollary: The only solution to the Diophantine equation y2 = x3 − 1 is (x, y) = (1, 0).

◦ Proof: Clearly, gcd(x, y) = 1. Rearranging the equation into the form 1 + y2 = x3 and applying the
previous result shows that 1 = a3 − 3ab2 for a, b ∈ Z.
◦ Factoring this gives 1 = a(a2 − 3b2). Clearly, a = ±1, and then the only solution is easily seen to be
(a, b) = (1, 0), yielding (x, y) = (1, 0).

• We do not need to restrict to considering Diophantine equations where the terms involved are polynomials in
the variables: we can also include variables in the exponents.

• Proposition: The Diophantine equation 7a − 4b = 3 has the unique solution (a, b) = (1, 1).

◦ The idea of this result is to use congruence conditions.

◦ Proof: Clearly a and b must be nonnegative, else the denominators of the rational numbers involved
could not be equal. Clearly b = 0 fails, and b = 1 gives a = 1.

◦ Now suppose b ≥ 2 and consider the equation modulo 8: we obtain 7a ≡ 3 (mod 8). However, there are
no solutions to this equation, because 7a can only be 7 or 1 modulo 8.

◦ Therefore, the only solution is (a, b) = (1, 1).

• Proposition: The Diophantine equation 3a− 2b = 1 has the two solutions (a, b) = (1, 1), (2, 3), and no others.

◦ The idea of this result is to use congruence conditions.

◦ Proof: Clearly a and b must be nonnegative, else the denominators of the rational numbers involved
could not be equal. Clearly b = 0 fails, and b = 1 gives a = 1.

◦ Now suppose b ≥ 2 and consider the equation modulo 4: we obtain 3a ≡ 1 (mod 4), meaning that a is
even, say, a = 2k.

◦ Then we have 2b = 32k − 1 = (3k + 1)(3k − 1), so 3k + 1 and 3k − 1 must both be powers of 2.

◦ But their di�erence is 2, and so they must be 4 and 2 respectively. Thus, the only other solution is
(a, b) = (2, 3).

◦ Remark: This result is a special case of a result called Catalan's conjecture (proven in 2002 by Mihailescu)
that 8 and 9 are the only perfect powers that are consecutive: in other words, the only solutions to
xa − yb = 1 in integers greater than 1 is (a, b, x, y) = (2, 3, 3, 2).

• Proposition: The Diophantine equation y2 = x3 + 7 has no solutions.

◦ The idea of this result is to rewrite the equation slightly, exploit congruence conditions, and then quadratic
reciprocity to obtain a contradiction.

◦ Proof: If x is even, then this equation yields y2 ≡ 3 (mod 4), which is not possible.

◦ Then x3 + 7 ≡ 0 (mod 4) meaning x ≡ 1 (mod 4).
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◦ Now we write the equation as y2 + 1 = x3 + 8 = (x+ 2)(x2 − 2x+ 4).

◦ By our results about quadratic residues, any prime divisor of y2 + 1 must be congruent to 1 modulo 4,
since y2 + 1 ≡ 0 (mod p) is equivalent to −1 being a quadratic residue modulo p.

◦ Thus, any prime divisor, and therefore any divisor prime or otherwise, of y2 + 1 = x3 + 8 must be
congruent to 1 modulo 4.

◦ But x+ 2 is a divisor of x3 + 8 congruent to 3 modulo 4, so we have a contradiction.

◦ Remark: This result is notable because there always is a solution to the equation y2 = x3 + 7 modulo p
for every prime p. (This is not trivial to prove.)

• Proposition: There are in�nitely many perfect squares that are the sum of two other consecutive perfect
squares.

◦ The idea of this result is to rearrange the equation and use properties of Pell's equation.

◦ Proof: Suppose that a2 = b2 + (b + 1)2 so that a2 = 2b2 + 2b + 1. Multiplying both sides by 2 and
completing the square on the right-hand side yields 2a2 = (2b+ 1)2 + 1, so that (2b+ 1)2 − 2a2 = −1.
◦ This is a Pell equation of the form x2 − 2y2 = −1, where x = 2b+ 1.

◦ Since the fundamental unit of Z[
√
2] is u = 1 +

√
2 which has norm −1, we know that x2 − 2y2 = −1

will have in�nitely many solutions given by odd powers of u: x+ y
√
2 = (1 +

√
2)2k+1 for k ≥ 0.

◦ Therefore, since x is always odd in such solutions, each of these in�nitely many solutions yields a di�erent
pair (a, b) with a2 = b2 + (b+ 1)2.

◦ For example, the �rst few pairs (a, b) are (a, b) = (1, 0), (5, 3), (29, 20), (169, 119), (985, 696), (5741, 4059),
and so forth.

◦ Remark: It is also possible to approach this problem using our characterization of the Pythagorean
triples, however, it is quite easy to get lost in the resulting morass of variables.

6.4.2 The Fermat Equation xn + yn = zn

• One of the most famous Diophantine equations is Fermat's equation xn + yn = zn, for a �xed integer n ≥ 3.
Clearly, there are solutions if one of the variables is equal to 0: the question is whether this equation possesses
any other solutions.

◦ It is enough to prove that there are no solutions in the cases n = 4 and n = p where p is an odd prime,
since any n > 2 is divisible by 4 or an odd prime.

• This result was famously conjectured by Fermat in 1637, who wrote (in the margin of his book, in Latin) �It
is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in general, any
power higher than the second, into two like powers. I have discovered a truly marvellous proof of this, which
this margin is too narrow to contain.�

◦ It is now believed that Fermat probably did not have a correct proof of this result.

◦ As we will discuss more in later chapters, a substantial amount of number theory and abstract algebra
was developed in the mid-19th and early-20th centuries in an attempt to establish the nonexistence of
nontrivial integer solutions to xn + yn = zn.

• One of the easier cases is the case with n = 4, which is in fact the subject of one of Fermat's very few theorems
for which he gave an actual proof:

• Theorem (Fermat): The Diophantine equation x4 + y4 = z2 has no solutions with xyz 6= 0. In particular,
there are no solutions to x4 + y4 = z4 with xyz 6= 0.

◦ This result is originally due to Fermat. We show the result using a technique equivalent to induction
often called Fermat's method of in�nite descent (indeed, it �rst appeared in the proof of this very result).

◦ The idea is to consider the smallest nontrivial solution of the equation in positive integers and use it to
construct a smaller solution: the well-ordering principle of the integers then yields a contradiction, since
we cannot have an in�nite decreasing sequence of positive integers.
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◦ Proof: Suppose the equation has nontrivial solutions and let u be the smallest positive integer such that
x4 + y4 = u2 has a solution.

◦ First note gcd(x, y) = 1; otherwise we could replace x, y, u with x/d, y/d, u/d2 to get a smaller solution.

◦ By reducing both sides modulo 4, we see that one of x, y is even and the other is odd: without loss of
generality, assume x is even.

◦ Then (x2, y2, u) is a primitive Pythagorean triple, so from our parametrization we see that x2 = 2st,
y2 = s2 − t2, and u = s2 + t2 for some integers s > t > 0 of opposite parity.

◦ Since y2 = s2 − t2, it must be the case that s is odd and t is even: otherwise, y2 = s2 − t2 would be
congruent to −1 modulo 4.

◦ If we set t = 2k, then we see that
(x
2

)2
= sk where gcd(s, k) = 1, so each of s and k is a perfect square

by the uniqueness of prime factorizations.

◦ Setting s = a2 and k = b2 yields the system y2 = s2 − t2 = a4 − 4b4, so that y2 + (2b2)2 = a4.

◦ Then (y, 2b2, t) is also a primitive Pythagorean triple, so there exist relatively prime integers m and n
such that 2b2 = 2mn, y = m2 − n2, and a2 = m2 + n2.

◦ The �rst equation gives b2 = mn, so m and n are both squares: say, m = v2 and n = w2.

◦ Then, at last, we see that a2 = v4 + w4, meaning that we have a new solution (v, w, a) to the original
equation. Clearly a ≤ a2 = s < s2+t2 = u, so this solution is smaller. We have obtained a contradiction,
so in fact there cannot exist any solutions to the original equation.

• We will later establish the n = 3 case of Fermat's equation using properties of the ring Z[ω] where ω = −1+
√
−3

2 .

◦ Speci�cally, the idea is to factor the equation x3 + y3 = z3 as (x+ y)(x+ ωy)(x+ ω2y) = z3, and then
to show that, up to small factors, the terms x + y, x + ωy, x + ω2y are relatively prime in Z[ω]. Up to
these small factors, each of these terms must therefore be a perfect cube, which we can eventually use
to derive a contradiction.

• The argument in the n = 3 case lends itself to a natural generalization, namely, factoring xn + yn = zn over
the ring Z[ζn] where ζn = e2πi/n is an nth root of unity.

◦ However, quite unfortunately, for most n, the ring Z[ζn] does not have unique factorization!
◦ So (alas!) this technique does not work in general. However, determining when this approach can succeed
was one of the original motivations for studying unique factorization in general rings.

• The cases n = 5 and n = 7 were shown in the 1800s by various mathematicians using various techniques. A
number of other cases were shown individually, and then results of Germain and others established in�nite
classes of prime n for which there are no nontrivial solutions to the equation.

• However, the lack of a solution to Fermat's equation for every n > 2 was not established until 1995, with
Andrew Wiles's celebrated proof of the Taniyama-Shimura-Weil conjecture. (Wiles announced his result in
1993, but a gap was discovered later that year. Wiles, working with Richard Taylor, closed the gap by 1994.)

◦ One of the initial steps in Wiles's proof stemmed from an observation made by Frey in 1984, which
connects the solutions to ap + bp = cp to a certain elliptic curve.

◦ Such a curve would have a number of unusual properties, and (in particular) is what is called a semistable
elliptic curve, and it would also fail to be modular.

◦ Wiles's results proved that every semistable elliptic curve is modular, which, when combined with Frey's
observations, shows that the Fermat equation cannot have a solution in nonzero integers.

◦ Over the next few chapters, we will develop some more of the background necessary to understand the
structure of this result. But we will close by noting that, as with most major mathematical advances,
the fundamental ideas put forward in Wiles's work are just as important as the end result of his proof.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2024. You may not reproduce or distribute this
material without my express permission.
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