
E. Dummit's Math 4527 ∼ Number Theory 2, Spring 2024 ∼ Homework 7, due Fri Mar 1st.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Find the prime ideal factorizations of each ideal in the given quadratic integer ring:

(a) The ideals (2), (3), (5), and (7) in O√−5 = Z[
√
−5].

(b) The ideals (2), (3), (5), and (7) in O√6 = Z[
√
6].

(c) The ideals (2), (3), (5), and (7) in O√−11 = Z[ 1+
√
−11
2 ].

2. Solve the following problems related to factorization:

(a) Find prime factorizations of 12 + 31i, 183− 12i, 75− 11i, and 28− 4i in Z[i].
(b) Find representations of the primes 2909 and 8161 as the sum of two squares of integers.

(c) Find prime factorizations for 70 + 60
√
−2, 49− 46

√
−2, and 193 in Z[

√
−2].

(d) Find prime factorizations for 70 + 60
√
−3, 48 + 46

√
−3, and 193 in O√−3.

(e) Determine whether the integers 117, 263, and 950 can be written in the form a2 + b2 for integers a, b.

(f) Determine whether the integers 117, 263, and 950 can be written in the form a2 + 2b2 for integers a, b.

(g) Determine whether the integers 117, 263, and 950 can be written in the form a2 + 3b2 for integers a, b.

Part II: Solve the following problems. Justify all answers with rigorous, clear arguments.

3. Let R = Z[
√
−14], and let I3 = (3, 1+

√
−14), I ′3 = (3, 1−

√
−14), I5 = (5, 1+

√
−14), and I ′5 = (5, 1−

√
−14).

(a) Show that the elements 3, 5, and 1±
√
−14 are nonassociate irreducible elements of R, and that 15 has

two inequivalent factorizations into irreducible elements in R. Deduce that R is not a UFD or a PID.

(b) Show that I3 and I ′3 are both prime ideals of R and that I3I
′
3 is the principal ideal (3). [Hint: Show that

R/I3 and R/I ′3 both have 3 residue classes and then invoke problem 3 of homework 6.]

(c) Show that I5 and I ′5 are both prime ideals of R and that I5I
′
5 is the principal ideal (5).

(d) Show that I3I5 = (1 +
√
−14) and I ′3I

′
5 = (1−

√
−14). Conclude that the two factorizations of 15 from

part (a) yield the same factorization of the ideal (15) as a product of prime ideals.

(e) Repeat (a)-(d) with the factorization 14 = 2 · 7 =
√
−14 · (−

√
−14) by showing that I2 = (2,

√
−14) and

I7 = (7,
√
−14) are both prime, that I22 = (2), I2I7 = (

√
−14), I27 = (7), and that (14) = I22I

2
7 .

4. Let D be a squarefree integer not equal to 1. The discriminant of the quadratic integer ring O√D is de�ned
to be the discriminant of the minimal polynomial m(x) of the generator of O√D. Recall that for a quadratic

polynomial ax2 + bx+ c, the discriminant is b2 − 4ac.

(a) Find the discriminant of O√D in terms of D (note that there will be two cases, depending on whether
D ≡ 1 (mod 4) or not).

(b) Show that the integer prime p is rami�ed in O√D (i.e., its prime ideal factorization has a repeated factor)
if and only if p divides the discriminant of O√D. [Hint: When does a quadratic have a repeated root?]

(c) Identify the rami�ed primes in O√D for D = −1, −2, 5, 6, −10, and 21, and give their prime ideal
factorizations.
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5. Recall that you proved on homework 9 that Z[
√
2] is a Euclidean domain, hence also a PID and a UFD. Recall

also that the Legendre symbol
(

2
p

)
= (−1)(p2−1)/8, so that 2 is a quadratic residue modulo an odd prime p

precisely when p ≡ 1 or 7 (mod 8).

(a) Show that every nonzero element in Z[
√
2] is associate to one having positive norm.

(b) Prove that the prime elements in Z[
√
2], up to associates, are as follows:

i. The element 2 +
√
2, of norm 2.

ii. The primes p congruent to 3 or 5 modulo 8, of norm p2.

iii. The two conjugate factors a+ b
√
2 and a− b

√
2 where p = a2 − 2b2 is a prime congruent to 1 or 7

modulo 8, of norm p.

(c) Find the irreducible factorizations of 10 +
√
2 and of 345 + 15

√
2 in Z[

√
2].

(d) Let n be a positive integer, and write n = 2kpn1
1 · · · p

nk

k qm1
1 · · · qmd

d , where p1, · · · , pk are distinct primes
congruent to 1 or 7 modulo 8 and q1, · · · , qd are distinct primes congruent to 3 or 5 modulo 8. Prove
that n can be written in the form a2− 2b2 for some integers a and b if and only if all of the mi are even.

6. [Challenge] The goal of this problem is to formulate the notions of gcd and lcm for ideals. Let R be an integral
domain and A,B be ideals of R. We say an ideal K is a common divisor of A and B when K|A and K|B,
and K is a greatest common divisor when any other common divisor of A,B also divides K. We say an ideal
E is a common multiple of A and B when A|E and B|E, and E is a least common multiple when any other
common multiple of A,B is also divisible by E.

(a) If R is a PID, show that (d) is a greatest common divisor of (a) and (b) if and only if d is a gcd of a and
b. Deduce that the greatest common divisor of ideals I and J is the sum I + J .

(b) If R is a PID, show that (l) is a least common multiple of (a) and (b) if and only if l is an lcm of a and
b. Deduce that the least common multiple of ideals I and J is the intersection I ∩ J .

The goal now is to show that the formulas gcd(I, J) = I + J and lcm(I, J) = I ∩ J also hold in quadratic
integer rings. So let R = O√D be a quadratic integer ring and I and J be ideals of R.

(c) Show that an ideal K is a common divisor of I and J if and only if K contains both I and J . Deduce
that gcd(I, J) = I + J .

(d) Show that an ideal K is a common multiple of I and J if and only if K is contained in both I and J .
Deduce that lcm(I, J) = I ∩ J .

(e) Suppose I and J have prime ideal factorizations I = P i1
1 · · ·P

ik
k and J = P j1

1 · · ·P
jk
k for distinct prime

ideals P1, . . . Pk. Show that I + J = P
min(i1,j1)
1 · · ·Pmin(ik,jk)

k and I ∩ J = P
max(i1,j1)
1 · · ·Pmax(ik,jk)

k .
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