E. Dummit’s Math 4527 ~ Number Theory 2, Spring 2024 ~ Homework 3, due Fri Feb 2nd.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justifications are required for these problems. Answers will be graded on correctness.

1. For each value of D, use the super magic box to (i) find the continued fraction expansion for v/D, (ii) find the
fundamental unit in the ring Z[v/D], (iii) determine whether the Pell’s equation 2 — Dy? = —1 has a solution
and if so find the smallest one, and (iv) find the smallest two solutions to the Pell’s equation z? — Dy? = 1:

(a) D=19.
(b) D =22
(c) D =130
(d) D=61

2. Use the super magic box to factor each of the following integers:

(a) 437.
(b) 8137.
(c) 15403.

Part II: Solve the following problems. Justify all answers with rigorous, clear arguments.

3. In class, we showed how to compute solutions to Pell’s equation 22 — Dy? = £1 by taking powers of the
fundamental solution v = 1 + y1v/D and then extracting coefficients of the resulting power. The goal of this
problem is to give various formulas and recurrences for these coefficients. So suppose v = 1 4+ y1V/D is the
fundamental solution to 22 — Dy? = +1 and let x, + y,vVD = (z1 + y1vV/D)".

(a) Show that z,,41 = 12, + Dy1yn and yp41 = Y10 + T1Yn.
(b) Show that both sequences {z,, },>1 and {y, }n>1 satisfy the two-term recurrence relation ¢, o = At,41+
Bt,, where A = 221 and B = —(2? — Dy?).
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(¢) If @ =z, — y1V/D is the conjugate of u, show that z,, — y,v/D = @". Deduce that x, = —y and

. [Hint: The conjugation map respects multiplication, just like complex conjugation does.]
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Remark: The reason that {z,},>1 and {y,}n>1 satisfy the kind of two-term linear recurrences given in
(b) is because Zn42, Tnt1, Ynt+2, and y,+1 are all linear combinations of x,, and y,, and so the sets
{Znt2,Tni1,2n} and {Yni2,Ynt1,yn} are linearly dependent as functions. Furthermore, the general
theory of linear recurrences says that the solutions to a recurrence of the form ¢,,,o = At,+1 + Bt,
are given by t, = ca™ + df"™ where o and 3 are the roots of the characteristic polynomial > — At — B
and ¢, d are some constants. Part (b) shows that the characteristic polynomial for both recurrences is
t2 — 21t + (z1 — Dy?), which factors as (t — u)(t — w): this is why in (c) the results are of the form
T, Yn = cu™ 4+ du” for some constants c, d.




4. The goal of this problem is to prove that if p is a prime congruent to 1 modulo 4, then there is always a
solution to the negative Pell equation 22 — py? = —1. As we showed, there exists a minimal solution (1, 1)
to 22 — py? = 1 where z,y are positive and minimal.

(a) Show that x; is odd, y; is even, and that ged(xzy + 1,21 — 1) = 2.

(b) Show either that x; — 1 = 2ps?, x; + 1 = 2t? or that 7; — 1 = 2s? and 21 + 1 = 2pt? for some positive
integers s,t. [Hint: Use 27 — 1 = py? and ged(zy + 1,21 — 1) = 2.]

(c) With notation as in (b), show that if z; — 1 = 2ps® and z1 + 1 = 2¢? then t*> — ps® = 1, contradicting

the minimality of (x1,y1). Conclude in fact that there is an integer solution to % — py? = —1.
5. The goal of this problem is to establish some cases in which the negative Pell equation z? — Dy? = —1 has no
solutions.

(a) Suppose that D is divisible by 4. Show that 22 — Dy? = —1 has no solutions.

(b) Suppose that p is an odd prime and that there is a solution to the congruence z2 = —1 (mod p). Prove
that p = 1 (mod 4). [Hint: Explain why z has order 4 in the multiplicative group of nonzero residues
modulo p, and then use Lagrange’s theorem or Euler’s theorem.]

(c) Suppose that D is divisible by a prime that is congruent to 3 modulo 4. Show that 22 — Dy? = —1 has
no solutions.
(d) By (a)-(c) above, if 22 — Dy? = —1 has solutions, then D is a product of primes congruent to 1 modulo

4, possibly times 2. In fact, not all such integers do have a solution to the negative Pell equation: show
specifically that 22 — 34y? = —1 and 2% — 221y? = —1 have no solutions.

6. The goal of this problem is to describe all pairs of consecutive cubes whose difference is a perfect square, such
as 8% — 73 = 13%. So suppose that (n +1)% —n3 = k%

(a) Show that 2k + (2n + 1)v/3 = (2 + +/3)? for some odd positive integer d.
(2+V3)? + (2 - V3)1 2+V3)7?-(2-v3)1-2V3

and n = for some odd positive
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integer d; conversely, show all such (k,n) are in fact integers with (n + 1)3 —n? = k2.

(b) Deduce that k =

(c) Find three examples of pairs of positive consecutive cubes whose difference is a perfect square, other
than the set given above.

7. [Challenge| It is a theorem of Hurwitz, mentioned in class, that if « is an arbitrary irrational number, then
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there exist infinitely many p/q with The goal of this problem is to prove that v/5 cannot
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be replaced by any larger constant (i.e., that Hurwitz’s theorem is sharp). So let C' > /5.
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for some positive integer n, where F;, is the nth Fibonacci number, defined by F; = F» =1
gnd Fn+n1 =F,+ F,_4 for each n > 1.
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(b) Suppose a = [ag, a1, az,...]. Show that
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(d) Deduce that if C > /5, then there are only finitely many rational numbers p/q such that
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