
E. Dummit's Math 4527 ∼ Number Theory 2, Spring 2024 ∼ Homework 12, due Fri Apr 12th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Identify all pages containing each problem
when submitting the assignment.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Find the number of Dirichlet characters (a) modulo 5, and (b) modulo 8, and compute their values explicitly.

Part II: Solve the following problems. Justify all answers with rigorous, clear arguments.

2. The Carmichael Λ-function Λ(n) is de�ned to be ln(p) if n = pk is a prime power and 0 otherwise. It is
frequently used in proofs of the prime number theorem.

(a) Show that
∑
d|n Λ(d) = lnn.

(b) Show that the Dirichlet series for Λ is DΛ(s) = −ζ ′(s)/ζ(s) for Re(s) > 1.

(c) Show that DΛ(s) =
∑
p prime

ln p

ps − 1
for Re(s) > 1. [Hint: Use (b) and logarithmic di�erentiation.]

3. If S is a set of positive integers, its natural density is de�ned to be the value δ(S) = limN→∞
#[S ∩ {1, 2, 3, . . . , N}]

N
,

if the limit exists.

(a) Show that the natural density of the set of even integers is equal to 1/2.

(b) Show that the natural density of the set of perfect squares is equal to 0.

(c) Show that the natural density of any �nite set of positive integers is equal to 0.

(d) Show that the natural density of the set of integers with leading digit 1 (in base 10) is unde�ned. [Hint:
Show that the ratio is at least 50% at N = 2 · 10d and at most 20% at N = 10d+1, for any d.]

Remark: Note that this problem's version of natural density is not exactly the one we use in class, since the
one used in class was only for sets of primes, relative to the set of all primes. (This problem is posed for
all integers since it is easier to use this notion of natural density.)

4. LetG be a �nite abelian group with dual group Ĝ, and recall the inner products 〈f1, f2〉G = 1
|G|

∑
g∈G f1(g)f2(g)

on functions f : G→ C and 〈f̂1, f̂2〉Ĝ = 1
|G|

∑
χ∈Ĝ f̂1(χ)f̂2(χ) on functions f̂ : Ĝ→ C. Also recall the Fourier

transform of a function f : G→ C is the function f̂ : Ĝ→ C with f̂(χ) = 〈f, χ〉G = 1
|G|

∑
g∈G f(g)χ(g), and

recall the Fourier inversion formula f(g) =
∑
χ∈Ĝ f̂(χ)χ(g) for each g ∈ G.

(a) Prove Plancherel's theorem: 1
|G| 〈f1, f2〉G = 〈f̂1, f̂2〉Ĝ for any functions f1, f2 : G → C. [Hint: Write

f̂1(χ) as a sum over g ∈ G and f̂2(χ) as a sum over h ∈ G, then use the fact that
∑
χ∈Ĝ χ(g)χ(h) is

either |G| or 0 according to whether g = h or not.]

(b) Deduce Parseval's theorem: 1
|G|

∑
g∈G |f(g)|2 =

∑
χ∈Ĝ |f̂(χ)|2.

5. Two primes that di�er by 2 are called twin primes. It is conjectured that there are in�nitely many twin
primes, although interestingly, while the sum

∑
p prime

1
p diverges, the sum

∑
p,p+2 prime

1
p + 1

p+2 converges

(the value of this series is known as Brun's constant, and is approximately 1.90216). Prove that there are
in�nitely many primes p that are not twin primes. [Hint: Apply Dirichlet.]
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6. The goal of this problem is to evaluate some Dirichlet L-series at 1.

(a) Let χ4 be the nontrivial Dirichlet character mod 4. Show L(1, χ4) =

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+ · · ·.

(b) Let F (x) =

∞∑
n=0

(−1)nx2n+1

2n+ 1
for |x| < 1. Show that F ′(x) =

∞∑
n=0

(−1)nx2n =
1

1 + x2
and deduce that

L(1, χ4) = F (1) =
´ 1

0

1

1 + x2
dx = π/4. [Hint: Since the series for F converges absolutely, it can be

di�erentiated term by term.]

(c) Let χ3 be the nontrivial Dirichlet character modulo 3. Show that L(1, χ3) =

∞∑
n=0

1

(3n+ 1)(3n+ 2)
.

(d) Let G(x) =

∞∑
n=0

x3n+2

(3n+ 1)(3n+ 2)
for |x| < 1. Show that G(1) =

ˆ 1

0

ˆ y

0

1

1− x3
dx dy and use this to

compute the value of L(1, χ3). [Hint: Note that G′′(x) = (1− x3)−1 for |x| < 1. For the integral, change
the order of integration.]

7. [Challenge] Let p be a prime and let χ be the Legendre symbol modulo p. The goal of this problem is to

evaluate L(1, χ) =
∑∞
k=1

χ(k)

k
explicitly, thus generalizing the calculations in problem 7, and then to use

this evaluation to prove a formula for the class number in terms of the number of quadratic residues and
nonresidues on the interval [1, (p − 1)/2] when p ≡ 3 (mod 4). Recall the Gauss sum g(χ) =

∑p−1
n=1 χ(n)ζn

where ζ = e2πi/p is a primitive pth root of unity, and the general Gauss sum gk(χ) =
∑p−1
n=1 χ(n)ζkn.

(a) Show that − log(1− ζn) =
∑∞
k=1

1
k ζ

nk. (Note that this series only converges conditionally.)

(b) Let S =
∑p−1
n=1 χ(n) · [− log(1 − ζn)]. Prove that S = g(χ)L(1, χ). [Hint: Use (a), switch summation

order, and use the Gauss sum identity gk(χ) = χ(k)−1g(χ).]

(c) De�ne P =

∏
n∈NR(1− ζn)∏
n∈QR(1− ζn)

where NR is the set of quadratic nonresidues modulo p and QR is the set

of quadratic residues modulo p. Show that P = exp(g(χ)L(1, χ)).

(d) Find the value of L(1, χ) for the Legendre symbol modulo 3. [Hint: The result of (c) is easier to calculate
with, unless you like complex logarithms.]

(e) Show that if p ≡ 3 (mod 4), so that χ(−1) = −1, then S = − iπp
∑p−1
n=1 χ(n) · n where S is as de�ned in

(b). [Hint: In (b), interchange n with −n and add the two sums together.]

(f) Show that when p ≡ 3 (mod 4) and p > 3 we have h(−p) = − 1
p

∑p−1
n=1 χ(n) · n. [Hint: Use the Gauss

sum evaluation g(χ) = i
√
p and the analytic class number formula.]

(g) Show that when p ≡ 3 (mod 4) and p > 3 we have h(−p) = 1
2−χ(2)

∑(p−1)/2
n=1 χ(n). [Hint: Decompose∑p−1

n=1 χ(n) ·n into two ranges in two di�erent ways: one into even and odd, and another into [1, (p−1)/2]
and p− [1, (p− 1)/2].]

(h) Deduce that when p ≡ 3 (mod 4), the class number of O√−p is equal to 1
2−χ(2) times the number of

quadratic residues in [1, (p − 1)/2] minus the number of quadratic nonresidues on that interval, so in
particular there are always more quadratic residues than quadratic nonresidues. Also deduce in particular
that this class number is always odd.

(i) Find the class numbers of O√−7, O√−11, O√−19, and O√−31. [If you're still here at this point, for
convenience χ(2) = 1 when p ≡ 7 (mod 8) and χ(2) = −1 when p ≡ 3 (mod 8).]
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