1. For each pair of elements, use the Euclidean algorithm in the ring R to calculate a greatest common divisor $d = \gcd(a, b)$ and also to find $x, y \in R$ such that d = ax + by.

(a) a = x⁴ + x and b = x³ + x in F₂[x].
(b) a = 11 + 24i and b = 13 - i in Z[i].
(c) a = x³ - x and b = x² - 3x + 2 in ℝ[x].
(d) a = 9 - 5i and b = 3 + 2i in Z[i].

- 2. For each given a, p, and R, determine whether \overline{a} is a unit or a zero divisor in the ring of residue classes R/pR. If it is a unit find \overline{a}^{-1} , and if it is a zero divisor find a nonzero element \overline{b} with $\overline{a} \cdot \overline{b} = \overline{0}$.
 - (a) $a = 2 i, p = 5 + 5i, R = \mathbb{Z}[i].$ (b) $a = x + 3, p = x^2 - 2, R = \mathbb{R}[x].$ (c) $a = 3 + 4i, p = 7 - 8i, R = \mathbb{Z}[i].$ (d) $a = x^2 + x, p = x^4 + 1, R = \mathbb{F}_2[x].$ (e) $a = x^2 + x, p = x^3 + 3x + 1, R = \mathbb{F}_5[x].$

3. Determine / calculate / find the following:

(a) All elements $a + b\sqrt{-2}$ with $N(a + b\sqrt{-2}) = 9$ in $\mathbb{Z}[\sqrt{-2}]$.

- (b) The quotient and remainder when 19 + 3i is divided by 4 + i in $\mathbb{Z}[i]$.
- (c) The quotient and remainder when x^5 is divided by $x^3 + x$ in $\mathbb{R}[x]$.
- (d) The solution to $(1+i)x \equiv 3 \pmod{8+i}$ in $\mathbb{Z}[i]$.
- (e) All z with $z \equiv 2 i \pmod{3 + i}$ and $z \equiv 3 \pmod{4 + 5i}$ in $\mathbb{Z}[i]$.
- (f) All p with $p \equiv x \pmod{x^2}$ and $p \equiv 10 \pmod{x-2}$ in $\mathbb{R}[x]$.
- (g) The number of residue classes in $\mathbb{F}_7[x]$ modulo $x^3 + 5x + 2$.
- (h) All of the units and zero divisors in $\mathbb{F}_3[x]$ modulo $x^2 + 2x$.
- (i) All of the units and zero divisors in $\mathbb{F}_5[x]$ modulo x^2 .
- (j) The irreducible factorizations of $x^2 x + 4$ in $\mathbb{F}_2[x]$, $\mathbb{F}_3[x]$, and $\mathbb{F}_5[x]$.
- (k) The number of monic irreducible polynomials in $\mathbb{F}_2[x]$ of degree 7.
- (l) The number of monic irreducible polynomials in $\mathbb{F}_7[x]$ of degree 4.
- (m) The number of monic irreducible polynomials in $\mathbb{F}_2[x]$ of degree 10.
- (n) Determine whether there exists a primitive root modulo (each of) 34, 35, 36, and 37.
- (o) Find a primitive root modulo 3^{2024} and the total number of primitive roots modulo 3^{2024} .
- (p) Find a primitive root modulo $2 \cdot 3^{2024}$ and the total number of primitive roots modulo $2 \cdot 3^{2024}$.
- (q) Find the number of residue classes in $\mathbb{Z}[i]$ modulo 7 5i.
- (r) Find a fundamental region and list of residue class representatives for $\mathbb{Z}[i]$ modulo 2-i.
- (s) Find the prime factorization of 5 + 5i in $\mathbb{Z}[i]$.
- (t) Find the prime factorization of 11 + 12i in $\mathbb{Z}[i]$.
- (u) Find the prime factorization of 999 in $\mathbb{Z}[i]$.

- 4. Let $R = \mathbb{F}_2[x]$ and $p = x^3 + x^2 + x + 1$.
 - (a) List the 8 residue classes in R/pR.
 - (b) Express $\overline{x^2} + \overline{x^2 + 1}$, $\overline{x^2} \cdot \overline{x^2 + 1}$, and $\overline{x^2 + 1}^2$ as $\overline{ax^2 + bx + c}$ for some $a, b, c \in \mathbb{F}_2$.
 - (c) Identify all of the units and zero divisors in R/pR.
 - (d) Verify Euler's theorem for the unit $\overline{x^2 + x + 1}$ in R/pR.
 - (e) Solve the congruence $x^2 \cdot q(x) \equiv x+1 \pmod{x^3+x^2+x+1}$ in $\mathbb{F}_2[x]$.

5. Briefly justify the following statements:

- (a) It is possible to factor a large integer that is the product of two primes that are very close together, very quickly.
- (b) It is possible to establish that arbitrary 500-digit integers are prime, or composite, very quickly.
- (c) There is no known procedure for factoring arbitrary 500-digit integers very quickly with current computing technology.
- (d) It is feasible to find the factorization of a 30-digit integer very quickly with modern computing technology.

6. Prove the following:

- (a) Show that the element $7 + 4\sqrt{3}$ is a unit in $\mathbb{Z}[\sqrt{3}]$ and find its multiplicative inverse.
- (b) Show that the element $(1+\sqrt{5})^{2023}$ is not a unit, but $(2+\sqrt{5})^{2023}$ is a unit in $\mathbb{Z}[\sqrt{5}]$.
- (c) Show that the element 4 + 5i is irreducible and prime in $\mathbb{Z}[i]$.
- (d) Show that the element $2 + \sqrt{-7}$ is irreducible in $\mathbb{Z}[\sqrt{-7}]$.
- (e) Show that the element $1 + \sqrt{-7}$ is irreducible in $\mathbb{Z}[\sqrt{-7}]$. [Hint: Show that there are no elements of norm 2 or 4.]
- (f) Show that the element $1 + \sqrt{-7}$ is not prime in $\mathbb{Z}[\sqrt{-7}]$.
- (g) Show that $x^2 + x + 1$ is irreducible and prime in $\mathbb{F}_2[x]$.
- (h) Verify Euler's Theorem for the residue class of $x^2 + 1$ in $\mathbb{F}_2[x]$ modulo x^3 .
- (i) Verify Fermat's Little Theorem for the residue class of i in $\mathbb{Z}[i]$ modulo 3 + 2i.
- (j) Show that $\mathbb{F}_5[x]$ modulo $x^3 + x + 1$ is a field.
- (k) Show that $\mathbb{F}_5[x]$ modulo $x^4 + x + 1$ is not a field.
- (l) Show that $\mathbb{R}[x]$ modulo $x^2 + 2x + 8$ is a field.
- (m) Construct, with proof, a field with exactly 125 elements.
- (n) Verify Euler's theorem for the residue class of $1 + i \mod 4 + i$ in $\mathbb{Z}[i]$.