- 1. Note that depending on your calculations, you may end up with an associate of the listed answer, which would also be correct.
 - (a) GCD is $x^2 + x$, with linear combination $1 \cdot (x^4 + x) + x \cdot (x^3 + x) = x^2 + x$.
 - (b) GCD is 4 + i, with linear combination $-1 \cdot (11 + 24i) + (1 + 2i)(13 i) = 4 + i$.
 - (c) GCD is x-1, with linear combination $\frac{1}{6}(x^3-x) \frac{1}{6}(x+3)(x^2-3x+2) = x-1$.
 - (d) GCD is 1, with linear combination (1-2i)(9-5i) + (4+5i)(3+2i) = 1.
- 2. Note that \overline{a} is a unit precisely when a, p are relatively prime (and we can compute the inverse x of a using the Euclidean algorithm to find x, y with xa + yp = 1 yielding $xa \equiv 1 \mod p$, while \overline{a} is a zero divisor when a, p are not relatively prime (in which case $b = p/\gcd(a, p)$ has $ab \equiv 0 \mod p$).
 - (a) Zero divisor since gcd is 2-i, have $(2-i)\cdot(1+3i)=0$ mod p.
 - (b) Unit since gcd is 1, have $\frac{1}{7}(-x+3)(x+3) + \frac{1}{7}(x^2-2) = 1$ so inverse is $\frac{1}{7}(-x+3)$.
 - (c) Unit since gcd is 1, have (1+4i)(3+4i) + 2(7-8i) = 1 so inverse is 1+4i.
 - (d) Zero divisor since gcd is x+1, have $(x^2+x)\cdot(x^3+x^2+x+1)=0$ mod p.
 - (e) Unit since gcd is 1, have $(2x^2 + 2x + 4)(x^2 + x) + (3x + 1)(x^3 + 3x + 1) = 1$ so inverse is $2x^2 + 2x + 4$.
- (a) Need $a^2 + 2b^2 = 9$ yielding ± 3 and $\pm 1 \pm 2\sqrt{-2}$. (m) Total is $\frac{1}{10}(2^{10} 2^5 2^2 + 2^1) = 99$.
 - (b) Quotient 5, remainder -1 2i.
 - (c) Quotient $x^2 1$, remainder x.
 - (d) Inverse of 1+i is -4+3i so solution is $n \equiv$ $3(-4+3i) \pmod{8+i}$.
 - (e) Solution is $z \equiv 2 + 9i \pmod{7 + 19i}$.
 - (f) Solution is $p \equiv x + 2x^2 \pmod{x^3 2x^2}$.
 - (g) The classes are represented by polynomials of degree ≤ 2 , so there are 7^3 residue classes.
 - (h) Units are $\overline{1}$, $\overline{2}$ $\overline{x+1}$, $\overline{2x+2}$; zero divisors are \overline{x} , $\overline{x+2}$, $\overline{2x}$, $\overline{2x+1}$.
 - (i) Units are $\overline{ax+b}$ where $b \neq 0$ (20 total); zero divisors are \overline{x} , $\overline{2x}$, $\overline{3x}$, $\overline{4x}$.
 - (i) Searching for roots produces factorizations x(x+1), $(x+1)^2$, and $(x+2)^2$.
 - (k) Total is $\frac{1}{7}(2^7 2) = 18$.
 - (l) Total is $\frac{1}{4}(7^4 7^2) = 588$.

- (n) There are primitive roots mod 34 and 37 but not mod 35 or mod 36.
- (o) 2 is a primitive root mod 3^2 hence mod 3^{2024} . Total number is $\varphi(\varphi(3^{2024})) = 2 \cdot 3^{2022}$.
- (p) 2 is a prim root mod 3^{2024} so $2 + 3^{2024}$ is a prim root mod $2 \cdot 3^{2024}$. Total number is $\varphi(\varphi(2\cdot 3^{2024})) = 2\cdot 3^{2022}.$
- (q) The number of residue classes is N(7-5i) =49 + 25 = 74.
- (r) By drawing the fundamental region (square with vertices $0, \beta, i\beta, (1+i)\beta = 0, 2-i, 1+2i, 3+i),$ and picking inequivalent points, we get 0, 1, 2, 1 + i. 2 + i.
- (s) 5+5i=(1+i)(2+i)(2-i), up to associates.
- (t) 11 + 12i = i(2-i)(7-2i), up to associates.
- (u) $999 = 3^3(6-i)(6+i)$, up to associates.
- (a) The residue classes are represented by polynomials of degree less than 3: $\overline{0}$, $\overline{1}$, \overline{x} , $\overline{x+1}$, $\overline{x^2}$, $\overline{x^2+1}$, $\overline{x^2+x}$, $\overline{x^2+x+1}$.
 - (b) We have $\overline{x^2} + \overline{x^2 + 1} = \overline{1}$, $\overline{x^2} \cdot \overline{x^2 + 1} = \overline{x^2 + 1}$, and $\overline{x^2 + 1}^2 = \overline{0}$.
 - (c) The units are the polynomials relatively prime to the modulus: $\overline{1}, \overline{x}, \overline{x^2}, \overline{x^2 + x + 1}$. The zero divisors are the nonzero polynomials not relatively prime to the modulus: $\overline{x+1}$, $\overline{x^2+1}$, $\overline{x^2+x}$.
 - (d) There are 4 units and indeed $\overline{x^2 + x + 1}^4 = \overline{x^2}^2 = \overline{1}$ as required.
 - (e) Multiply by the inverse of $\overline{x^2}$, which is $\overline{x^2}$ again, to see $q(x) \equiv x^2(x+1) \equiv x+1$.

5. Here are brief responses:

- (a) Using the Fermat factorization method allows us to factor an integer N = pq where p, q are close together by testing whether $a^2 N$ is a square for $a > \sqrt{N}$.
- (b) Using primality/compositeness tests like the Fermat test, the Lucas primality criterion, Miller-Rabin, or AKS allow for rapid and accurate testing of primality even for very large integers.
- (c) Among the various factorization algorithms discussed in class like trial division, Pollard p-1, Pollard ρ , and the sieving methods, none allows for extremely fast factorization of large integers (factoring integers more than 100 base-10 digits takes a huge amount of time and memory).
- (d) Trial division will be very slow for 40-digit integers, but Pollard ρ and the sieving methods will allow us to factors of that size quite rapidly (Pollard ρ typically takes $\sim N^{1/4}$ time to factor N, which for $N \approx 10^{40}$ gives a computation size of $\approx 10^{10}$ steps, very doable).

6. Many problems of similar types were covered on at least one homework.

- (a) Note $N(7+4\sqrt{3})=1$ so it is a unit since the norm is ± 1 . The inverse is the conjugate $7-4\sqrt{3}$.
- (b) Note $N[(1+\sqrt{5})^{2023}] = N(1+\sqrt{5})^{2023} = (-4)^{2023}$ so it is not a unit. But $N[(2+\sqrt{5})^{2023}] = N(2+\sqrt{5})^{2023} = (-1)^{2023} = -1$ so it is a unit.
- (c) Note $N(4+5i) = 4^2 + 5^2 = 41$ is a prime integer so as $\mathbb{Z}[i]$ is Euclidean, 4+5i is irreducible and prime.
- (d) Note $N(2+\sqrt{-7})=11$ is a prime integer, so $2+\sqrt{-7}$ is irreducible.
- (e) Note $N(1+\sqrt{-7})=8$ so if we had a nontrivial factorization, it would have to be the product of an element of norm 2 with an element of norm 4. But since $N(a+b\sqrt{-7})=a^2+7b^2$ there are no elements of norm 2 or 4, so there is no possible factorization.
- (f) Note that $(1+\sqrt{-7})(1-\sqrt{-7})=8=2\cdot 4$ so $1+\sqrt{-7}$ divides $2\cdot 4$ but it divides neither 2 nor 4, since $2/(1+\sqrt{-7})=(1-\sqrt{-7})/4$ and $4/(1+\sqrt{-7})=(1-\sqrt{-7})/2$. This means $1+\sqrt{-7}$ is not prime.
- (g) $x^2 + x + 1$ has no roots in \mathbb{F}_2 by a direct check, so since it has degree 2, it is irreducible hence also prime since F[x] is Euclidean.
- (h) It is not hard to list all the units to see that there are 4 of them (they are the polynomials with constant term 1). We then calculate $\overline{x^2 + 1}^4 = \overline{x^4 + 2x^2 + 1}^2 = \overline{1}^2 = \overline{1}$ so Euler's theorem holds.
- (i) There are N(3+2i)=13 residue classes and $i^{13}\equiv i\pmod{3+2i}$ as required (indeed, i^{13} just equals i).
- (j) For $p(x) = x^3 + x + 1$ we have p(0) = p(2) = p(3) = 1, p(1) = 3, p(4) = 4 mod 5, so p has no roots. Since it has degree 3 it is irreducible, so $\mathbb{F}_5[x]$ modulo $x^3 + x + 1$ is a field.
- (k) Searching yields a root x=3, so the polynomial is reducible so $\mathbb{F}_5[x]$ modulo x^4+x+1 is not a field.
- (l) Note that $x^2 + 2x + 8$ has no real roots (its roots are $-1 \pm i\sqrt{7}$). Since it has degree 2 it is irreducible, so $\mathbb{R}[x]$ modulo $x^2 + 2x + 8$ is a field.
- (m) Since $125 = 5^3$ we can use $\mathbb{F}_5[x]$ modulo an irreducible polynomial of degree 3. We actually just identified such a polynomial, namely $x^3 + x + 1$, in part (j).
- (n) There are N(4+i)=17 residue classes hence 16 units since 4+i is irreducible. Then $(1+i)^2\equiv 2i$, so $(1+i)^4\equiv (2i)^2\equiv -4\equiv i, \ (1+i)^8\equiv i^2\equiv -1, \ \text{and finally} \ (1+i)^{16}\equiv (-1)^2\equiv 1 \ \text{as required}.$