
E. Dummit's Math 3527 ∼ Number Theory 1, Spring 2024 ∼ Midterm 1 Review Answers

1. Use the extended Euclidean algorithm to calculate the gcd and write it as a linear combination:

(a) gcd 4 = 4 · 12− 1 · 44
(b) gcd 6 = −168 · 20223 + 1681 · 2022
(c) gcd 19 = 17 · 12445− 38 · 5567,
(d) gcd 1 = −55 · 233 + 89 · 144.

2. In general a is a unit modulo m if and only if a is relatively prime to m. In this case use Euclid to write the gcd 1 as a
linear combination 1 = xa+ ym: then xa ≡ 1 (mod m) so x = a−1.

(a) No, 10 and 25 not relatively prime.

(b) Yes, by Euclid, inverse is 16.

(c) Yes, by Euclid, inverse is 23.

(d) No, 30 and 42 not relatively prime.

(e) Yes, by Euclid, inverse is 19.

(f) No, 32 and 42 not relatively prime.

3. Note that the order of any element modulo m divides ϕ(m). We can then evaluate aϕ(m)/p for primes p dividing ϕ(m)
to �nd the order. Also, if a has order n, then ak has order n/ gcd(n, k).

(a) Note 212 ≡ 1, but 26 ≡ −1, 24 ≡ 3 so 2 has order 12. Also 33 ≡ 1 and 31 ≡ 3 so 3 has order 3.

(b) Note 24 ≡ −1 so 28 ≡ 1 so 2 has order 8. Then 4 = 22 has order 8/ gcd(2, 8) = 4 while 8 = 23 has order
8/ gcd(3, 8) = 8.

(c) Note 24 ≡ 1 but 22 ≡ 4 so 2 has order 4. Then 4 = 22 has order 2, while 8 = 23 has order 4.

(d) Note 34 ≡ 1 but 32 ≡ 9 so 3 has order 4. Also 52 ≡ 9 so 54 ≡ 1 so 5 also has order 4. But 15 ≡ −1 has order 2.

(e) Use successive squaring: note 52 ≡ 3 so 54 ≡ 9 and thus 55 ≡ 1, so 5 has order 5.

(f) Note 22 ≡ 4, 24 ≡ 16, 28 ≡ −19, 216 ≡ −24, so 25 ≡ 32, 210 ≡ −1, and 220 ≡ 1. Thus, 2 has order 20. Then 4 = 22

has order 10, 8 = 23 has order 20, 16 = 24 has order 5, and 32 = 25 has order 4.

4. Here are answers with brief comments about the approach:

(a) By Euclid, gcd 8, lcm 256 · 520/8.
(b) By Euclid, gcd 3, lcm 921 · 177/3.
(c) The gcd has the min power in each exponent while the lcm has the max: gcd 233254, lcm 2433547 · 11.
(d) We have 4 + 6 = 10 = 2, 4− 6 = −2 = 6, 4 · 6 = 24 = 0.

(e) By Euclid, we get 4
−1 ≡ 18, 5

−1 ≡ 57, 6
−1 ≡ 12.

(f) Units are {1, 3, 5, 9, 11, 13}, zero divisors are {2, 4, 6, 7, 8, 10, 12}.
(g) Cancel 5 to get n ≡ 24 (mod 38).

(h) Cancel 2 to get 3n ≡ 5 (mod 50), then multiply by 3−1 ≡ 17 to get n ≡ 35 (mod 50).

(i) Plug in n = 3 + 20a to n ≡ 4 (mod 19) to get n ≡ 23 (mod 380).

(j) Plug in n = 7 + 14a to n ≡ 2 (mod 9) to get n ≡ 119 (mod 126).

(k) Since 11 is prime, we have 10! ≡ −1 (mod 11) by Wilson's theorem.

(l) Since 47 is prime, we have 247 ≡ 2 (mod 47) by Fermat's little theorem.

(m) Since ϕ(25) = 20, we have 620 ≡ 1 (mod 25) by Euler's theorem.

(n) ϕ(121) = ϕ(112) = (112 − 11) = 110 and ϕ(55710) = (55 − 54)(710 − 79).

(o) 3 or 5, since they are the only elements with order 6 modulo 7.

(p) If x = 0.125 then 990x = 1000x− 10x = 125.25− 1.25 = 124, so x = 124/990.

(q) 10 has order 2 mod 11, so 7/11 has period 2.



5. Here are brief responses:

(a) The Caesar shift is insecure: it can be broken very easily by hand as it has only 26 possible decodings.

(b) Finding the four decodings of a single Rabin ciphertext c allows rapid factorization of the modulus: if the decodings
are ±m and ±w then gcd(m + w,N) will be a prime factor of N . If Eve is able to obtain the four decodings of
some c, she can factor N : for this reason Rabin encryption is not suitable for modern use.

(c) RSA is believed di�cult to break on a general message. Finding a general decryption exponent is essentially
equivalent in most cases to calculating ϕ(N) which as shown on the homework is equivalent to factoring N .

(d) Using a zero-knowledge protocol like the Rabin protocol described in class, where Peggy proves to an arbitrarily
high probability that she knows the square root of a particular value s2 modulo N = pq, will allow Peggy to
convince Victor that she knows the secret s without revealing any information that makes s easily calculable.

(e) Using primality/compositeness tests like the Fermat test, the Lucas primality criterion, or Miller-Rabin, allow for
rapid and accurate testing of primality even for very large integers.

(f) Among the various factorization algorithms discussed in class like trial division, Pollard p − 1, Pollard ρ, and the
sieving methods, none allows for extremely fast factorization of large integers (factoring integers more than 100
base-10 digits takes a huge amount of time and memory).

6. Here are brief outlines of each proof:

(a) Induct on n. Base case n = 1 has F1 + F3 = 3 = F4. Inductive step: if F1 + · · · + F2n+1 = F2n+2 then
F1 + · · ·+ F2n+1 + F2n+3 = [F1 + · · ·+ F2n+1] + F2n+3 = F2n+2 + F2n+3 = F2n+4.

(b) Induct on n. Base case n = 1 clear. Inductive step: If 1+ 1
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(c) Note p|a · a, so since p is prime then p|a or p|a. Since the two conclusion statements are the same, we have p|a.
(d) If p is prime and p|k2 and p|(k + 1)2 then by (b) we have p|k and p|(k + 1) so that p|(k + 1)− k = 1, impossible.

(e) Suppose xy = 0. Then (ux)y = u(xy) = u0 = 0, and also ux 6= 0 since if ux = 0 then x = u−1(ux) = 0,
contradiction. So ux is a zero divisor.

(f) Note ϕ(18) = 6. Then 56 ≡ 1 (mod 18) by Euler, but 52 ≡ 7 and 53 ≡ −1 (mod 18), so order does not divide 2 or
3, hence must be 6.

(g) Induct on n. Base case n = 1. Inductive step: if bn = 2n + n then bn+1 = 2(2n + n)− n+ 1 = 2n+1 + (n+ 1).
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(i) Note 4239 ≡ 4 (mod 239) by Fermat, so 4240 ≡ 4 · 4 ≡ 16 (mod 239). Likewise, since ϕ(55) = 40, 440 ≡ 1 (mod 55)
by Euler, so 2240 ≡ (240)6 ≡ 16 ≡ 1 (mod 55).

(j) By Euler, a4 ≡ 1 (mod 5) for every unit, and 04 ≡ 0 (mod 5). Then the sum of three fourth powers is 0, 1, 2, or 3
mod 5, hence cannot be 2024 since 2024 is 4 mod 5.

(k) Note that a3 ≡ a (mod 3) by Fermat, and also a2 ≡ a (mod 2) so a3 ≡ a2 ≡ a (mod 2) also by Fermat. So a3 − a
is divisible by both 2 and 3 hence by 6.

(l) Induct on n with base cases n = 1 and n = 2. Inductive step: if dn = 2n and dn−1 = 2n−1 then dn+1 =
2n + 2(2n−1) = 2n + 2n = 2n+1 as required.

(m) If a = b then gcd(a, a) = a = lcm(a, a). Conversely if gcd(a, b) = lcm(a, b) then every prime must appear to the
same power in the prime factorizations of a and b (since otherwise the higher power would be the power in the lcm
and the lower power would be the power in the gcd), hence a = b.

(n) Note 31 ≡ 3, 32 ≡ 9, 34 ≡ 81 ≡ 20, 38 ≡ 400 ≡ 34. So 310 ≡ 38 · 32 ≡ 34 · 9 ≡ 1 so the order divides 10. But
35 ≡ 34 · 3 ≡ 60 and 32 ≡ 9, so the order does not divide 2 or 5, so it is 10.

(o) If p ≤ 100 is prime then p|99! so p does not divide 99! − 1. By Wilson's theorem, 99! ≡ 100!/100 ≡ 100/100 ≡ 1
(mod 101), so 101 does divide 99!− 1.

(p) Note gcd(n, n+ p) = gcd(n, p) by gcd properties. Then gcd(n, p) divides p so is either 1 or p, and it is equal to p if
and only if p|n (by de�nition of gcd).

(q) Induct on n. Base cases n = 1 and n = 2 have c1 = 2F1 and c2 = 2F2 . Inductive step: if cn = 2Fn and cn−1 = 2Fn−1

then cn+1 = cncn−1 = 2Fn2Fn−1 = 2Fn+Fn−1 = 2Fn+1 .

(r) Let p be prime. If p divides a, b then p2 divides a2, b2. Conversely if p divides a2, b2 then p divides a, b by (b).


