
E. Dummit's Math 3527 ∼ Number Theory I, Spring 2024 ∼ Homework 1, due Tue Jan 16th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Submit scans of your responses via Canvas.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Each item below contains a proposition and a claimed proof of the proposition. Each proof has an error of
some kind: identify the error and brie�y explain why it causes the proof to be incorrect.

(a) Proposition: If a1 = 3 and an+1 = 3an + 2 for all n ≥ 1, then an = 3n − 1 for all n.
Proof: Induct on n. The base case n = 1 is trivial. For the inductive step, suppose an = 3n − 1. Then
an+1 = 3an + 2 = 3(3n − 1) + 2 = 3n+1 − 1 as required.

(b) Proposition: If a1 = 2, and an+1 = 4an − 4an−1 for all n ≥ 1, then an = 2n for all n.
Proof: Strong induction on n. The base case n = 1 follows since a1 = 2 = 21. For the inductive step,
suppose ak = 2k for all k ≤ n. Then an+1 = 4an−4an−1 = 4 ·2n−4 ·2n−1 = 4 ·2n−2 ·2n = 2 ·2n = 2n+1

as required.

(c) Proposition: All horses are the same color.
Proof: Induct on n, the number of horses. The base case n = 1 is trivial because any 1 horse is the
same color as itself. For the inductive step, suppose that any n+ 1 horses are the same color. Ignoring
the last horse yields means that we need to show that n horses are the same color, which is true by the
induction hypothesis. Therefore the result holds by induction.

(d) Proposition: For every positive integer n, 1 + 2 + 3 + · · ·+ n = 1
2n(n+ 1).

Proof: Induct on n. The base case n = 1 follows because 1 = 1
2 (1)(2). For the inductive step, suppose

that 1+2+3+· · ·+n+(n+1) = 1
2 (n+1)(n+2). Subtracting n+1 from both sides yields 1+2+3+· · ·+n =

1
2 (n + 1)(n + 2) − (n + 1) = 1

2n(n + 1) which is true by the induction hypothesis. Therefore the result
holds by induction.

(e) Proposition: For every positive integer n,
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Proof: Induct on n. The base case n = 1 follows because
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, as claimed.

2. For each pair of integers (a, b), use the Euclidean algorithm to calculate their greatest common divisor d =
gcd(a, b) and also to �nd integers x and y such that d = ax+ by.

(a) a = 44, b = 12.

(b) a = 481, b = 24.

(c) a = 23409, b = 2023.

(d) a = 12445, b = 5567.

(e) a = 18200, b = 3505.

(f) a = 233, b = 144.
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Part II: Solve the following problems. Justify all answers with rigorous, clear explanations.

3. Prove the following basic properties of divisibility (note that some of these properties are referred to, but not
proven, in the course notes; you are expected to give the details of the proof!):

(a) If a, b are integers, show that a|b if and only if a|(−b).
(b) If a, b, c are integers such that a|b and b|c, show that a|c.
(c) If a, b,m are integers with m 6= 0, show that a|b if and only if (ma)|(mb).

(d) If a, b, c are integers such that a|b and a - c, show that a - (b+ c).

(e) If a, b, c, x, y are integers such that a|b and a|c, show that a|(xb+ yc).

(f) If a, b are integers, show that a, b and a, a + b have the same set of common divisors. Deduce that
gcd(a, b) = gcd(a, a+ b).

4. The Fibonacci-Virahanka numbers are de�ned as follows: F1 = F2 = 1 and for n ≥ 2, Fn = Fn−1 + Fn−2.
The �rst few terms of the Fibonacci-Virahanka sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ....

(a) Prove that F1 + F2 + F3 + · · ·+ Fn = Fn+2 − 1 for every positive integer n. [Hint: Use induction.]

(b) Prove that F 2
1 + F 2

2 + F 2
3 + · · ·+ F 2

n = FnFn+1 for every positive integer n.

(c) Prove that F2n+1 = F 2
n+1 + F 2

n and F2n+2 = Fn+1(Fn+2 + Fn) for all n ≥ 1. [Hint: Show both together
by induction.]

(d) Show that F3n is always even, for any positive integer n. [Hint: First show F3n+3 = 2F3n+1 + F3n.]

5. Recall that the factorial of n is de�ned as n! = n · (n− 1) · · · · · 1, so for example 4! = 4 · 3 · 2 · 1 = 24. (Note
that 0! is de�ned to be 1.)

(a) Prove that 1 · 1! + 2 · 2! + · · ·+ n · n! = (n+ 1)!− 1 for every positive integer n.

(b) Prove that n! + 1 and (n + 1)! + 1 are relatively prime for every positive integer n. [Hint: Subtract
(n+ 1)! + 1 from a multiple of n! + 1.]

(c) If n ≥ 3, prove that the integers n! + 2, n! + 3, ... , n! + n are all composite. Deduce that there are
arbitrarily large �prime gaps� (i.e., di�erences between consecutive prime numbers).
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