- 1. Determine / calculate / find the following:
 - (a) Integers x, y with $688x + 164y = \gcd(688, 164)$.
 - (b) The remainder when $7^{29} \cdot 28!$ is divided by 29.
 - (c) The values of $\varphi(121)$ and $\varphi(5^37^5)$.
 - (d) The value $0.1\overline{49}$ as a rational number.
 - (e) All units and zero divisors modulo 12.
 - (f) Multiplicative inverses of 5 and 7 modulo 97.
 - (g) The orders of 3 and 7 modulo 22.
 - (h) All n with $n \equiv 2 \pmod{9}$ and $n \equiv 7 \pmod{14}$.
 - (i) A Fermat factorization of 851, noting $\sqrt{851} \approx 29.17$.
 - (j) Polynomials p, q with $(x^3 + 1)p + (x^2 + 2)q = \gcd(x^3 + 1, x^2 + 1)$ in $\mathbb{F}_3[x]$.
 - (k) Gaussian integers p, q with $(11 + 24i)p + (13 i)q = \gcd(11 + 24i, 13 i)$ in $\mathbb{Z}[i]$.
 - (1) The multiplicative inverse of x + 3 modulo $x^3 + 5$ in $\mathbb{R}[x]$.
 - (m) The solution to $(1+i)x \equiv 3 \pmod{8+i}$ in $\mathbb{Z}[i]$.
 - (n) All units and zero divisors in $\mathbb{F}_3[x]$ modulo $x^2 + 2x$.
 - (o) The number of primitive roots modulo 17, 18, 19, 20, and 21.
 - (p) The number of residue classes in $\mathbb{Z}[i] \mod 7 + 2i$ and $\mathbb{F}_5[x] \mod x^4 + 2$.
 - (q) The irreducible factorizations of $x^2 + x + 1$ in $\mathbb{F}_3[x]$, $\mathbb{F}_5[x]$, and $\mathbb{F}_7[x]$.
 - (r) The number of monic irreducible polynomials in $\mathbb{F}_5[x]$ of degrees 3, 4, 5.
 - (s) Gaussian prime factorizations of 51 and -3 + 11i in $\mathbb{Z}[i]$.
 - (t) Which of 104, 224, 420, and 666 are the sum of two squares.
 - (u) Two ways of writing $450 = 2 \cdot 3^2 \cdot 5^2$ as the sum of two squares.
 - (v) Two Pythagorean right triangles with a side length 29.
 - (w) Whether 13 and 26 are quadratic residues modulo the prime 2027.
 - (x) Whether 28 and 15 are quadratic residues modulo the prime 71.
 - (y) The values of the Legendre symbols $\left(\frac{103}{307}\right)$ and $\left(\frac{141}{307}\right)$. (z) The values of the Jacobi symbols $\left(\frac{47}{245}\right)$ and $\left(\frac{177}{245}\right)$.
- 2. Give brief responses justifying the following statements:
 - (a) Rabin encryption is provably equivalent to factorization, but is not suitable for modern use.
 - (b) A zero-knowledge protocol can be used to establish knowledge of secret information without revealing useful information about it.
 - (c) It is possible to establish that large integers are prime, or composite, very quickly.
 - (d) A polynomial may have a nontrivial factorization even if has no roots.
 - (e) Given that 11291867 is prime, we can quickly determine whether the congruence $x^2 \equiv 3 \pmod{11291867}$ has a solution, even without a computer.
 - (f) There is a faster way to solve the congruence $x^2 \equiv 3 \pmod{11291867}$ than simply checking each possible residue class modulo 11291867 to see if it is a solution.

(g) Because $\left(\frac{31}{6601}\right) = -1$ but $31^{(6601-1)/2} \equiv +1 \pmod{6601}$, that means 6601 must be composite.

3. Solve the following:

- (a) Prove that $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 \frac{1}{2^n}$ for every positive integer n.
- (b) A sequence is defined by the recurrence relation $c_n = 4c_{n-1} 4c_{n-2}$ for $n \ge 2$, where $c_0 = 6$ and $c_1 = 8$. Prove that $c_n = (6 2n)2^n$ for all integers $n \ge 0$.
- (c) Show that 5 is a primitive root modulo 18.
- (d) Show that 3 has order 12 modulo 73.
- (e) Show that $a^4 \equiv 0$ or 1 (mod 5) for every integer a. Deduce that 2024 is not the sum of three fourth powers.
- (f) Prove that 101 is the smallest prime divisor of 99! 1.
- (g) Show that $\mathbb{F}_5[x]$ modulo $x^3 + 4x + 2$ is a field.
- (h) Show that $\mathbb{F}_7[x]$ modulo $x^3 + 4x + 2$ is not a field.
- (i) Prove that there are no elements of norm 2 or -2 in $\mathbb{Z}[\sqrt{26}]$. [Hint: Consider $a^2 26b^2 = \pm 2 \mod 13$.]
- (j) Prove that $2 + \sqrt{26}$ is irreducible but not prime in $\mathbb{Z}[\sqrt{26}]$. [Hint: Use (i) for irreducibility.]
- (k) Verify Euler's Theorem for the residue class of x + 2 in $\mathbb{F}_3[x]$ modulo $x^2 + x$.
- (l) Show that x is a primitive root in $\mathbb{F}_2[x]$ modulo $x^3 + x + 1$.
- (m) Prove that there exists a solution to $x^2 \equiv 11 \pmod{97}$. Note 97 is prime.
- (n) Prove that there exists a solution to $x^2 + 6x \equiv 14 \pmod{101}$. Note 101 is prime.
- (o) If p > 3 is a prime, prove that 3 is a quadratic residue modulo p if and only if $p \equiv 1, 11 \pmod{12}$.
- (p) If p > 3 is a prime, prove that -3 is a quadratic residue modulo p if and only if $p \equiv 1 \pmod{3}$.
- (q) Characterize the primes dividing an integer of the form $n^2 + 4n 1$, for n an integer.
- (r) Characterize the primes dividing an integer of the form $n^2 + 6n + 11$, for n an integer.