E. Dummit’s Math 3527 ~ Number Theory 1, Spring 2023 ~ Additional Final Exam Review Answers

1. For more detailed solutions to problems like these, see the homework assignments and lecture notes.

(a) By Euclid, ged(688,164) = 4 and —5 - 688 + 21 - 164 = 4.

(b) By Fermat, 7% = 7 and by Wilson 28! = —1 (mod 29), so 7% - 28! = —7 mod 29, meaning the remainder
is 22.

)

) If x = 0.149 then 990z = 1000z — 10z = 149.49 — 1.49 = 148, so = = 148/990.
e) Units are {1,5,7,11}, zero divisors are {2,3,4,6,8,9,10}.

) By Euclid, 39-5-2-97=1s05'=39, and 14-7—1-97=1s0 77! = 14.

)

Note ¢(22) = 10 so orders divide 10. Testing 3° = 3* - 3! = (—7)(3) = 1 shows 3 has order 5. Likewise
testing 72 =5 and 7° =7 - 7' = 3.7 = —1 shows 7 has order 10.

(h) Plugin n =7+ 14a to n = 2 (mod 9) to get n = 119 (mod 126).
(i) Testing squares above 851 yields 302 — 851 = 49 = 72, so 851 = (30 — 7)(30 + 7) = 23 - 37.
(j) By Euclid, ged =z + 1 and 1(2® + 1) + (2z)(2? + 1) = 1.
(k) By Euclid, ged = —4 — 4 and (1)(11 +24¢) + (—1 — 24)(13 — i) = —4 — 1.
(1) By Euclid, 1(z® +5) — (2> =32+ 9)(z +3) = =22 s0 (x + 3) ' = —(2? — 3z + 9)/22.
(m) Inverse of 1+ 4 is —4 + 3¢ so solution is n = 3(—4 + 3i) (mod 8 + 7).
(n) Units are 1, 2 x + 1, 2z + 2; zero divisors are T, x + 2, 2z, 2z + 1.
(0) For m = 1,2,4,p%,2p? it is ¢(p(m)), otherwise it is 0: 17 has 4, 18 has 2, 19 has 6, 20 has 0, 21 has 0.
(p) For 7+ 2i it is N(7 + 2i) = 53 and for F5[z] mod z* + 2 it is 5% = 625.
(q) 22 +2+1is (x — 1) in F3[z], irreducible in F5[x], and (z — 2)(z — 4) in Fr[z].
(r) (5° —5)/3 = 40 of degree 3, (5* — 52)/4 = 150 of degree 4, (5° — 5)/5 = 624 of degree 5.
(s) By factoring the norms, we see 51 = 3(4+4)(4 —4) and —3 + 115 = (1 +4)(1 + 2¢)(3 + 2i).
(t) By Fermat’s theorem, 104 = 10% + 22 and 666 = 212 + 152 can, 224 and 420 cannot.
(u) Since N(1+1i) =2, N(3) =32, N(2+1i) =5, take (1 +14)3(2+14)? = 21 — 3i yielding 450 = 21% + 32, and

also (1+414)3(2+4)(2 — i) = 15 + 15¢ yielding 450 = 15% + 152,
(v) For leg 29 need k(s +t)(s—t) =29 yielding k =1, s+t =29, s —t = 1so (k,s,t) = (1,15,14) giving
29-420-421. For hypotenuse 29 need k(s? + t?) = 29 so (k, s,t) = (1,5,2) giving 20-21-29.

o comme (52) = (227) = (22) = vand (522 = (12) (32) = 00 = -1 e

<2) = —1for p=3,5 mod 8. So 13 is a QR but 26 is not.
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(11 =\17) = 1 using reciprocity for Jacobi symbols. So 15 is a QR but 28 is not.
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2. Additional details can be found in the lecture notes.

(a)

()
(d)

()
(f)

Finding the four decodings of a single Rabin ciphertext ¢ does allow rapid factorization of the modulus:
if the decodings are +m and +w then ged(m + w, N) will be one of the prime factors of N. If Eve is able
to obtain the four decodings of any single ciphertext, she can factor N: for this reason Rabin encryption
is not suitable for modern use.

Using a zero-knowledge protocol like the Rabin protocol described in class, where Peggy proves to an
arbitrarily high probability that she knows the square root of a particular value s> modulo N = pq, will
allow Peggy to convince Victor that she knows the secret s without revealing any information that makes
s easily calculable.

Using primality /compositeness tests like Miller-Rabin and Solovay-Strassen allow for rapid and accurate
testing of primality even for very large integers.

If a polynomial’s irreducible factorization has no linear terms then it will have no roots, but the factor-
ization could still be nontrivial. For example, ¢(z) = z* + 32% + 2 = (2% + 1)(2% + 2) in R[z] has no real
roots, but still factors nontrivially.

We can use quadratic reciprocity to calculate the Legendre symbol (
+1, so in fact there is a solution.
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We can use Berlekamp’s root-finding algorithm to solve ¢(z) = 0 (mod p) much more quickly than using a
brute-force search: by computing gcd(x(pfl)/ 2 —1,q(z — a)) using successive squaring and the Euclidean
algorithm, if ¢ has a root then each value of a we try has at least a 50% chance of yielding a partial
factorization. This procedure is very efficient even for large p.

This is an application of the Solovay-Strassen test: if (ﬁ) # a™=D/2 (mod m) then m must be
m

composite.

3. Many problems of similar types were covered on the homework.

(a)

(h)
(i)

Induct on n with base case n = 1. Inductive step: If 1+ 4+ 1 + ...+ L =2— L then 1+ 1+ 1+
ct sk 4 g =2 — o + 5 = 2 — et as required.

Induct on n with base cases n = 0, 1. Inductive step: if ¢,, = (6 —2n)2" and ¢,_1 = (6 —2(n—1))2""! =
(4—n)2" then ¢, 411 = 4(6 —2n)2" —4(4—n)2" = (24 —8n — 16 +4n)2" = (6 —2(n+1))2""! as required.
Note ¢(18) = 6. Then 55 =1 (mod 18) by Euler, but 5 = 7 and 5> = —1 (mod 18), so order does not
divide 2 or 3, hence must be 6.

Note 3* =81 =850 3% =82 =64 = —9. Then 3!?2 =383* =8.(—9) =1 (mod 73) so the order divides
12. But 3* = 8 and 3% = 3932 = 8.9 = —1: hence the order does not divide 6 or 4, so it must be 12.
By Euler, a* =1 (mod 5) for every unit, and 0* = 0 (mod 5). Then the sum of three fourth powers is 0,
1, 2, or 3 mod 5, hence cannot be 2024 since 2024 is 4 mod 5.

If p < 100 is prime then p|99! so p does not divide 99! — 1. By Wilson’s theorem, 99! = 100!/100 =
100/100 = 1 (mod 101), so 101 does divide 99! — 1.

For q(x) = 2% + 42 + 2 modulo 5, we have ¢(0) = 2, q(1) = 2, ¢(2) = 3, ¢(3) = 1, ¢(4) = 2 so ¢ has no
roots in 5. Since ¢ has degree 3 this means it is irreducible in F5[z], meaning F5[x] modulo ¢ is a field.

For q(x) = 2 + 4z + 2 modulo 7, we have ¢(1) = 0 mod 7 so ¢ has a root x = 1. This means q is
reducible modulo 7 so F7[z] modulo ¢ is not a field. In fact, ¢(z) = (z — 1)*(z — 5) mod 7.

Since N(a+bv/26) = a? — 26b? it suffices to decide whether a® — 26b? = 42 has any solutions. Reducing
2 -2

both sides mod 13 yields a® = 42 (mod 13), but since (13) = (13> = —1 since 13 =5 (mod 8), there
are no solutions to this congruence. Therefore there are no elements of norm 2 or —2.

If we had a factorization 2 + /26 = bc then N(b)N(c) = N(bc) = N(2 + v/26) = —22. But N(b), N(c)
cannot equal +2 by (g), so the only possible values would have one of N(b), N(c) equal to 1 hence b
or ¢ would be a unit. Thus 2 + /26 is irreducible. But (2 4+ /26)|(—2) - (11) since —22 = N(2 +/26) =
(24 v/26)(2 —1/26), but 2++/26 does not divide —2 or 11 since its norm —22 does not divide N(—2) = 4
or N(11) = 121. Thus 2 + +/26 is not prime.



(k) It is not hard to list all the units to see that there are 4: 1, 2,  + 2, and 2z + 1. Then z + 2’ =
2 tdr+4d=1s0z+2 =1 as well.
(1) Since 2% + z + 1 has no roots in Fo and has degree 3, it is irreducible. Then Fy[x] modulo 23 + x + 1 is

a field with 8 elements hence 7 units. By Euler’s theorem every element’s order divides 7, so since the
order of x is not 1, it must be 7, so it is a primitive root.

11 -2
(m) Compute <97> = (?I) = <11> = +1 since 11 = 3 mod 8. Since 97 is prime, the Legendre symbol
being +1 means 11 is a quadratic residue.

(n) Completing the square by adding 9 gives (z + 3)?
23 101
says to compute v/23.) We have ( ) = (

23 (mod 101). (Alternatively, the quadratic formula

9
(2) = +1 so 23 is a quadratic residue modulo

Q,v |||

101
101 hence there is a solution to (z + 3)? = 2 101).
(o) We want to compute (3> If p =1 (mod 4), then ( > =) = 41 only when p = 1 (mod 3)
p
which together say p = 1 (mod 12). Likewise, if p = 3 (mod 4), then (3> = - (g) = +1 only when
b

p = 2 (mod 3), which together say p = 11 (mod 12). If p = 5,7 (mod 12) then the calculations show

ORe
(p) We want to compute (j) If p =1 (mod 4), then <_;)) = (_p1> ( ) (

p=1 (mod 3). Likewise, if p = 3 (mod 4), then (‘p?’) - <_1> (3) - (%’) ( ) +1 only

p p
-3
when p =1 (mod 3). So in either case, (p) = +1 only when p =1 (mod 3).

w3

) +1 only when

(q) Completing the square gives n?+4n—1 = (n+2)? — 5, so we want primes p such that there is a solution
to (n+2)2 =5 (mod p), which is equivalent to solving 22> = 5 (mod p). Clearly there is a solution for
)
p = 2,5. For other p we compute () = (g) which is +1 for p = 1,4 (mod 5) and —1 for p = 2,3
p
(mod 5). So p divides some n? 4+ 4n — 1 iff p = 2,5 or p = 1,4 (mod 5).

(r) Completing the square gives n? + 6n + 11 = (n + 3)? + 2, so we want primes p such that there is a
solution to (n + 3)?2 = —2 (mod p), which is equivalent to solvmg 2?2 = —2 (mod p). Clearly there is a

-2

solution for p = 2. For other p we know () = +1 precisely when p = 1,3 (mod 8). So p divides some
p

n?+6n+11iff p=2or p=1,3 (mod 8).




