
E. Dummit's Math 3527 ∼ Number Theory 1, Spring 2023 ∼ Additional Final Exam Review Answers

1. For more detailed solutions to problems like these, see the homework assignments and lecture notes.

(a) By Euclid, gcd(688, 164) = 4 and −5 · 688 + 21 · 164 = 4.

(b) By Fermat, 729 ≡ 7 and by Wilson 28! ≡ −1 (mod 29), so 729 · 28! ≡ −7 mod 29, meaning the remainder
is 22.

(c) ϕ(121) = ϕ(112) = (112 − 11) = 110 and ϕ(5375) = (53 − 52)(75 − 74).

(d) If x = 0.149 then 990x = 1000x− 10x = 149.49− 1.49 = 148, so x = 148/990.

(e) Units are {1, 5, 7, 11}, zero divisors are {2, 3, 4, 6, 8, 9, 10}.
(f) By Euclid, 39 · 5− 2 · 97 = 1 so 5−1 ≡ 39, and 14 · 7− 1 · 97 = 1 so 7−1 ≡ 14.

(g) Note ϕ(22) = 10 so orders divide 10. Testing 35 ≡ 34 · 31 ≡ (−7)(3) ≡ 1 shows 3 has order 5. Likewise
testing 72 ≡ 5 and 75 ≡ 74 · 71 ≡ 3 · 7 ≡ −1 shows 7 has order 10.

(h) Plug in n = 7 + 14a to n ≡ 2 (mod 9) to get n ≡ 119 (mod 126).

(i) Testing squares above 851 yields 302 − 851 = 49 = 72, so 851 = (30− 7)(30 + 7) = 23 · 37.
(j) By Euclid, gcd = x+ 1 and 1(x3 + 1) + (2x)(x2 + 1) = 1.

(k) By Euclid, gcd = −4− i and (1)(11 + 24i) + (−1− 2i)(13− i) = −4− i.

(l) By Euclid, 1(x3 + 5)− (x2 − 3x+ 9)(x+ 3) = −22 so (x+ 3)−1 = −(x2 − 3x+ 9)/22.

(m) Inverse of 1 + i is −4 + 3i so solution is n ≡ 3(−4 + 3i) (mod 8 + i).

(n) Units are 1, 2 x+ 1, 2x+ 2; zero divisors are x, x+ 2, 2x, 2x+ 1.

(o) For m = 1, 2, 4, pd, 2pd it is ϕ(ϕ(m)), otherwise it is 0: 17 has 4, 18 has 2, 19 has 6, 20 has 0, 21 has 0.

(p) For 7 + 2i it is N(7 + 2i) = 53 and for F5[x] mod x4 + 2 it is 54 = 625.

(q) x2 + x+ 1 is (x− 1)2 in F3[x], irreducible in F5[x], and (x− 2)(x− 4) in F7[x].

(r) (55 − 5)/3 = 40 of degree 3, (54 − 52)/4 = 150 of degree 4, (55 − 5)/5 = 624 of degree 5.

(s) By factoring the norms, we see 51 = 3(4 + i)(4− i) and −3 + 11i = (1 + i)(1 + 2i)(3 + 2i).

(t) By Fermat's theorem, 104 = 102 + 22 and 666 = 212 + 152 can, 224 and 420 cannot.

(u) Since N(1+ i) = 2, N(3) = 32, N(2± i) = 5, take (1+ i)3(2+ i)2 = 21− 3i yielding 450 = 212 +32, and
also (1 + i)3(2 + i)(2− i) = 15 + 15i yielding 450 = 152 + 152.

(v) For leg 29 need k(s + t)(s − t) = 29 yielding k = 1, s + t = 29, s − t = 1 so (k, s, t) = (1, 15, 14) giving
29-420-421. For hypotenuse 29 need k(s2 + t2) = 29 so (k, s, t) = (1, 5, 2) giving 20-21-29.

(w) Compute

(
13

2027

)
=

(
2027

13

)
=

(
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)
= 1 and

(
26
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)
=

(
2

2027
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)
= (−1)(1) = −1 since(

2

p

)
= −1 for p ≡ 3, 5 mod 8. So 13 is a QR but 26 is not.

(x) Compute

(
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)
=
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2
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)2 (
7
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)
= 1 · −
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7

)
= −

(
1
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)
= −1 and
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= −

(
71

15

)
= −
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)
=(
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11

)
=

(
4

11

)
= 1 using reciprocity for Jacobi symbols. So 15 is a QR but 28 is not.

(y) We compute

(
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)
= −

(
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)
= −

(
−2
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)
= 1 since

(
−2
p

)
= −1 for p ≡ 5, 7 mod 8, and
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=
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= 1.

(z) We compute
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=
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=
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)
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for p ≡ 1, 7 mod 8, and
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2. Additional details can be found in the lecture notes.

(a) Finding the four decodings of a single Rabin ciphertext c does allow rapid factorization of the modulus:
if the decodings are ±m and ±w then gcd(m+w,N) will be one of the prime factors of N . If Eve is able
to obtain the four decodings of any single ciphertext, she can factor N : for this reason Rabin encryption
is not suitable for modern use.

(b) Using a zero-knowledge protocol like the Rabin protocol described in class, where Peggy proves to an
arbitrarily high probability that she knows the square root of a particular value s2 modulo N = pq, will
allow Peggy to convince Victor that she knows the secret s without revealing any information that makes
s easily calculable.

(c) Using primality/compositeness tests like Miller-Rabin and Solovay-Strassen allow for rapid and accurate
testing of primality even for very large integers.

(d) If a polynomial's irreducible factorization has no linear terms then it will have no roots, but the factor-
ization could still be nontrivial. For example, q(x) = x4 + 3x2 + 2 = (x2 + 1)(x2 + 2) in R[x] has no real
roots, but still factors nontrivially.

(e) We can use quadratic reciprocity to calculate the Legendre symbol
(

3
11291867

)
= −

(
11291867

3

)
= −

(
2
3

)
=

+1, so in fact there is a solution.

(f) We can use Berlekamp's root-�nding algorithm to solve q(x) ≡ 0 (mod p) much more quickly than using a
brute-force search: by computing gcd(x(p−1)/2− 1, q(x−a)) using successive squaring and the Euclidean
algorithm, if q has a root then each value of a we try has at least a 50% chance of yielding a partial
factorization. This procedure is very e�cient even for large p.

(g) This is an application of the Solovay-Strassen test: if
( a

m

)
6≡ a(m−1)/2 (mod m) then m must be

composite.

3. Many problems of similar types were covered on the homework.

(a) Induct on n with base case n = 1. Inductive step: If 1 + 1
2 + 1

4 + · · · + 1
2n = 2 − 1

2n , then 1 + 1
2 + 1

4 +
· · ·+ 1

2n + 1
2n+1 = 2− 1

2n + 1
2n+1 = 2− 1

2n+1 as required.

(b) Induct on n with base cases n = 0, 1. Inductive step: if cn = (6−2n)2n and cn−1 = (6−2(n−1))2n−1 =
(4−n)2n then cn+1 = 4(6−2n)2n−4(4−n)2n = (24−8n−16+4n)2n = (6−2(n+1))2n+1 as required.

(c) Note ϕ(18) = 6. Then 56 ≡ 1 (mod 18) by Euler, but 52 ≡ 7 and 53 ≡ −1 (mod 18), so order does not
divide 2 or 3, hence must be 6.

(d) Note 34 ≡ 81 ≡ 8 so 38 ≡ 82 ≡ 64 ≡ −9. Then 312 ≡ 3834 ≡ 8 · (−9) ≡ 1 (mod 73) so the order divides
12. But 34 ≡ 8 and 36 ≡ 3432 ≡ 8 · 9 ≡ −1: hence the order does not divide 6 or 4, so it must be 12.

(e) By Euler, a4 ≡ 1 (mod 5) for every unit, and 04 ≡ 0 (mod 5). Then the sum of three fourth powers is 0,
1, 2, or 3 mod 5, hence cannot be 2024 since 2024 is 4 mod 5.

(f) If p ≤ 100 is prime then p|99! so p does not divide 99! − 1. By Wilson's theorem, 99! ≡ 100!/100 ≡
100/100 ≡ 1 (mod 101), so 101 does divide 99!− 1.

(g) For q(x) = x3 + 4x + 2 modulo 5, we have q(0) = 2, q(1) = 2, q(2) = 3, q(3) = 1, q(4) = 2 so q has no
roots in F5. Since q has degree 3 this means it is irreducible in F5[x], meaning F5[x] modulo q is a �eld.

(h) For q(x) = x3 + 4x + 2 modulo 7, we have q(1) = 0 mod 7 so q has a root x = 1. This means q is
reducible modulo 7 so F7[x] modulo q is not a �eld. In fact, q(x) = (x− 1)2(x− 5) mod 7.

(i) Since N(a+ b
√
26) = a2− 26b2 it su�ces to decide whether a2− 26b2 = ±2 has any solutions. Reducing

both sides mod 13 yields a2 ≡ ±2 (mod 13), but since

(
2

13

)
=

(
−2
13

)
= −1 since 13 ≡ 5 (mod 8), there

are no solutions to this congruence. Therefore there are no elements of norm 2 or −2.
(j) If we had a factorization 2 +

√
26 = bc then N(b)N(c) = N(bc) = N(2 +

√
26) = −22. But N(b), N(c)

cannot equal ±2 by (g), so the only possible values would have one of N(b), N(c) equal to ±1 hence b
or c would be a unit. Thus 2 +

√
26 is irreducible. But (2 +

√
26)|(−2) · (11) since −22 = N(2 +

√
26) =

(2+
√
26)(2−

√
26), but 2+

√
26 does not divide −2 or 11 since its norm −22 does not divide N(−2) = 4

or N(11) = 121. Thus 2 +
√
26 is not prime.



(k) It is not hard to list all the units to see that there are 4: 1, 2, x + 2, and 2x + 1. Then x+ 2
2 ≡

x2 + 4x+ 4 ≡ 1 so x+ 2
4 ≡ 1 as well.

(l) Since x3 + x+ 1 has no roots in F2 and has degree 3, it is irreducible. Then F2[x] modulo x3 + x+ 1 is
a �eld with 8 elements hence 7 units. By Euler's theorem every element's order divides 7, so since the
order of x is not 1, it must be 7, so it is a primitive root.

(m) Compute

(
11

97

)
=

(
97

11

)
=

(
−2
11

)
= +1 since 11 ≡ 3 mod 8. Since 97 is prime, the Legendre symbol

being +1 means 11 is a quadratic residue.

(n) Completing the square by adding 9 gives (x+3)2 ≡ 23 (mod 101). (Alternatively, the quadratic formula

says to compute
√
23.) We have

(
23

101

)
=

(
101

23

)
=

(
9

23

)
= +1 so 23 is a quadratic residue modulo

101 hence there is a solution to (x+ 3)2 ≡ 23 (mod 101).

(o) We want to compute

(
3

p

)
. If p ≡ 1 (mod 4), then

(
3

p

)
=

(p
3

)
= +1 only when p ≡ 1 (mod 3)

which together say p ≡ 1 (mod 12). Likewise, if p ≡ 3 (mod 4), then

(
3

p

)
= −

(p
3

)
= +1 only when

p ≡ 2 (mod 3), which together say p ≡ 11 (mod 12). If p ≡ 5, 7 (mod 12) then the calculations show(
3

p

)
= −1.

(p) We want to compute

(
−3
p

)
. If p ≡ 1 (mod 4), then

(
−3
p

)
=

(
−1
p

)(
3

p

)
= +1 ·

(p
3

)
= +1 only when

p ≡ 1 (mod 3). Likewise, if p ≡ 3 (mod 4), then

(
−3
p

)
=

(
−1
p

)(
3

p

)
= −1 · −

(p
3

)
=

(p
3

)
= +1 only

when p ≡ 1 (mod 3). So in either case,

(
−3
p

)
= +1 only when p ≡ 1 (mod 3).

(q) Completing the square gives n2+4n−1 = (n+2)2−5, so we want primes p such that there is a solution
to (n + 2)2 ≡ 5 (mod p), which is equivalent to solving x2 ≡ 5 (mod p). Clearly there is a solution for

p = 2, 5. For other p we compute

(
5

p

)
=

(p
5

)
which is +1 for p ≡ 1, 4 (mod 5) and −1 for p ≡ 2, 3

(mod 5). So p divides some n2 + 4n− 1 i� p = 2, 5 or p ≡ 1, 4 (mod 5).

(r) Completing the square gives n2 + 6n + 11 = (n + 3)2 + 2, so we want primes p such that there is a
solution to (n + 3)2 ≡ −2 (mod p), which is equivalent to solving x2 ≡ −2 (mod p). Clearly there is a

solution for p = 2. For other p we know

(
−2
p

)
= +1 precisely when p ≡ 1, 3 (mod 8). So p divides some

n2 + 6n+ 11 i� p = 2 or p ≡ 1, 3 (mod 8).


