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5 Bilinear and Quadratic Forms

In this chapter, we will discuss bilinear and quadratic forms. Bilinear forms are simply linear transformations that
are linear in more than one variable, and they will allow us to extend our study of linear phenomena. They are
closely related to quadratic forms, which are (classically speaking) homogeneous quadratic polynomials in multiple
variables. Despite the fact that quadratic forms are not linear, we can, perhaps surprisingly, still use many of the
tools of linear algebra to study them. We will discuss the basic properties of bilinear and quadratic forms and in
particular highlighting the notions of positive de�niteness and positive semide�niteness, along with some of their
applications in linear algebra, calculus, and geometry. We �nish with a discussion of singular value decomposition
and pseudoinverses, which tie together many of the threads we have discussed.

5.1 Bilinear Forms

• We begin by discussing basic properties of bilinear forms on an arbitrary vector space.

5.1.1 De�nition, Associated Matrices, Basic Properties

• Let V be a vector space over the �eld F .

• De�nition: A function Φ : V × V → F is a bilinear form on V if it is linear in each variable when the
other variable is �xed. Explicitly, this means Φ(v1 + αv2, y) = Φ(v1,w) + αΦ(v2,w) and Φ(v,w1 + αw2) =
Φ(v,w1) + αΦ(v,w2) for arbitrary vi,wi ∈ V and α ∈ F .

◦ It is easy to see that the set of all bilinear forms on V forms a vector space under componentwise addition
and scalar multiplication.
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◦ Example: An inner product on a real vector space is a bilinear form, but an inner product on a complex
vector space is not, since it is conjugate-linear in the second component rather than (actually) linear.

◦ Example: If V = F [x] and a, b ∈ F , then Φ(p, q) = p(a)q(b) is a bilinear form on V .

◦ Example: If V = C[a, b] is the space of continuous functions on [a, b], then Φ(f, g) =
´ b
a
f(x)g(x) dx is a

bilinear form on V .

• A large class of examples of bilinear forms arise as follows: if V = Fn, then for any matrix A ∈ Mn×n(F ),
the map ΦA(v,w) = vTAw is a bilinear form on V .

◦ Example: The matrixA =

[
1 2
3 4

]
yields the bilinear form ΦA

([
x1
y1

]
,

[
x2
y2

])
= [x1 y1]

[
1 2
3 4

] [
x2
y2

]
=

x1x2 + 2x1y2 + 3x2y1 + 4y1y2 .

• Indeed, if V is �nite-dimensional, then by choosing a basis of V we can see that every bilinear form arises in
the manner described above:

• De�nition: If V is a �nite-dimensional vector space, β = {β1, . . . , βn} is a basis of V , and Φ is a bilinear form
on V , the associated matrix of Φ with respect to β is the matrix [Φ]β ∈ Mn×n(F ) whose (i, j)-entry is the
value Φ(βi, βj).

◦ This is the natural analogue of the matrix associated to a linear transformation, for bilinear forms.

◦ We will remark that we could give a more general formulation of an associated matrix with respect to
two di�erent bases β in the �rst coordinate and γ in the second coordinate, but we will not need this
general formulation at any point.

• Example: For the bilinear form Φ((a, b), (c, d)) = 2ac + 4ad − bc on F 2, �nd [Φ]β for the standard basis
β = {(1, 0), (0, 1)}.

◦ We simply calculate the four values Φ(βi, βj) for i, j ∈ {1, 2}, where β1 = (1, 0) and β2 = (0, 1).

◦ This yields Φ(β1, β1) = 2, Φ(β1, β2) = 4, Φ(β2, β1) = −1, and Φ(β2, β2) = 0.

◦ Thus, the associated matrix is [Φ]β =

[
2 4
−1 0

]
.

• Example: For the bilinear form Φ((a, b), (c, d)) = 2ac + 4ad − bc on F 2, �nd [Φ]γ for the basis γ =
{(2, 1), (−1, 4)}.

◦ We simply calculate the four values Φ(γi, γj) for i, j ∈ {1, 2}, where γ1 = (2, 1) and γ2 = (−1, 4).

◦ This yields Φ(γ1, γ1) = 14, Φ(γ1, γ2) = 29, Φ(γ2, γ1) = −16, and Φ(γ2, γ2) = −10.

◦ Thus, the associated matrix is [Φ]γ =

[
14 29
−16 −10

]
.

• Example: For the bilinear form Φ(p, q) =
´ 1
0
p(x)q(x) dx on P2(R), �nd [Φ]β for the basis β = {1, x, x2}.

◦ We simply calculate the nine values Φ(βi, βj) for i, j ∈ {1, 2, 3}, where β1 = 1, β2 = x, β3 = x2.

◦ For example, Φ(β1, β3) =
´ 1
0

1 · x2 dx =
1

3
and Φ(β3, β2) =

´ 1
0
x2 · x dx =

1

4
.

◦ The resulting associated matrix is [Φ]β =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 .

• Like with the matrices associated with linear transformations, we can describe how the matrices associated
to bilinear forms relate to coordinate vectors, how they transform under a change of basis, and how to use
them to translate back and forth between bilinear forms and matrices:
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• Proposition (Associated Matrices): Suppose that V is a �nite-dimensional vector space, β = {β1, . . . , βn} is a
basis of V , and Φ is a bilinear form on V . Then the following hold:

1. If v and w are any vectors in V , then Φ(v,w) = [v]Tβ [Φ]β [w]β .

◦ Proof: If v = βi and w = βj then the result follows immediately from the de�nition of matrix
multiplication and the matrix [Φ]β . The result for arbitrary v and w then follows by linearity.

2. The association Φ 7→ [Φ]β of a bilinear form with its matrix representation yields an isomorphism of the
space B(V ) of bilinear forms on V with Mn×n(F ). In particular, dimF B(V ) = n2.

◦ Proof: The inverse map is de�ned as follows: given a matrix A ∈ Mn×n(F ), de�ne a bilinear form
ΦA via ΦA(v,w) = [v]TβA[w]β .

◦ It is easy to verify that this map is a well-de�ned linear transformation and that it is inverse to the
map given above. The dimension calculation is immediate.

3. If ΦT is the reverse form of Φ de�ned via ΦT (v,w) = Φ(w,v), then [ΦT ]β = [Φ]Tβ .

◦ Proof: By de�nition we have ΦT (v,w) = [w]Tβ [Φ]β [v]β . Since the matrix product on the right is a

scalar, it is equal to its transpose, which is [v]Tβ [Φ]Tβ [w]β .

◦ This means [ΦT ]β and [Φ]Tβ agree, as bilinear forms, on all pairs of vectors [v]β and [w]β in Fn, so
they are equal.

4. If γ is another basis of V and Q = [I]γβ is the change-of-basis matrix from β to γ, then [Φ]γ = QT [Φ]βQ.

◦ Proof: By de�nition, [v]γ = Q[v]β . Hence [v]TβQ
T [Φ]βQ[w]β = [v]Tγ [Φ]β [w]γ .

◦ This means that QT [Φ]βQ and [Φ]γ agree, as bilinear forms, on all pairs of vectors [v]β and [w]β in
Fn, so they are equal.

• The last result of the proposition above tells us how bilinear forms behave under change of basis: rather than
the more familiar conjugation relation B = QAQ−1, we instead have a slightly di�erent relation B = QTAQ.

• We record one other property of bilinear forms that we will need to make use of later:

• De�nition: If Φ is a bilinear form on V and there exists a nonzero vector x ∈ V such that Φ(x,v) = 0 for all
v ∈ V , we say Φ is degenerate. Otherwise, if there is no such x, we say Φ is nondegenerate.

5.1.2 Symmetric Bilinear Forms and Diagonalization

• In the same way that we classi�ed the linear operators on a vector space that can be diagonalized, we would
also like to classify the diagonalizable bilinear forms.

• De�nition: If V is �nite-dimensional, a bilinear form Φ on V is diagonalizable if there exists a basis β of V
such that [Φ]β is a diagonal matrix.

◦ The matrix formulation of this question is as follows: we say that matrices B and C are congruent if
there exists an invertible matrix Q such that C = QTBQ.

◦ Then the matrices B and C are congruent if and only if they represent the same bilinear form in di�erent
bases (the translation being B = [Φ]β and C = [Φ]γ , with Q = [I]γβ being the corresponding change-of-
basis matrix).

◦ Warning: Although we use the same word, diagonalizability for bilinear forms is not the same as diagonal-
izability for linear transformations! Make sure to keep straight the di�erence between the corresponding
matrix versions: two matrices are similar when we can write B = Q−1AQ, whereas they are congruent
when we can write B = QTAQ.

• It turns out that when char(F ) 6= 2, there is an easy criterion for diagonalizability.

• De�nition: A bilinear form Φ on V is symmetric if Φ(v,w) = Φ(w,v) for all v,w ∈ V .

◦ Notice that Φ is symmetric if and only if it equals its reverse form ΦT .
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◦ By taking associated matrices, we see immediately that if V is �nite-dimensional with basis β, then Φ
is a symmetric bilinear form if and only if [Φ]β is equal to its transpose, which is to say, when it is a
symmetric matrix.

◦ Now observe that if Φ is diagonalizable, then [Φ]β is a diagonal matrix hence symmetric, and thus Φ
must be symmetric.

• When the characteristic of F is not equal to 2, the converse holds also:

• Theorem (Diagonalization of Bilinear Forms): Let V be a �nite-dimensional vector space over a �eld F of
characteristic not equal to 2. Then a bilinear form on V is diagonalizable if and only if it is symmetric.

◦ Proof: The forward direction was established above. For the reverse, we show the result by induction on
n = dimF V . The base case n = 1 is trivial, so suppose the result holds for all spaces of dimension less
than n, and let Φ be symmetric on V .

◦ If Φ is the zero form, then clearly Φ is diagonalizable. Otherwise, suppose Φ is not identically zero: we
claim there exists a vector x with Φ(x,x) 6= 0.

◦ By hypothesis, Φ is not identically zero so suppose that Φ(v,w) 6= 0. If Φ(v,v) 6= 0 or Φ(w,w) 6= 0 we
may take x = v or x = w. Otherwise, we have Φ(v + w,v + w) = Φ(v,v) + 2Φ(v,w) + Φ(w,w) =
2Φ(v,w) 6= 0 by the assumption that Φ(v,w) 6= 0 and 2 6= 0 in F (here is where we require the
characteristic not to equal 2), and so we may take x = v + w.

◦ Now consider the linear functional T : V → F given by T (v) = Φ(x,v). Since T (x) = Φ(x,x) 6= 0, we
see that im(T ) = F , so dimF ker(T ) = n− 1 by the nullity-rank theorem.

◦ Then the restriction of Φ to ker(T ) is clearly a symmetric bilinear form on ker(T ), so by induction, there
exists a basis {v1, . . . ,vn−1} of ker(T ) such that the restriction of Φ is diagonalized by this basis, which
is to say, Φ(vi,vj) = 0 for i 6= j.

◦ Now observe that since x 6∈ ker(T ), the set β = {v1, . . . ,vn−1,x} is a basis of V . Since Φ(x,vi) =
Φ(vi,x) = 0 for all i < n by de�nition of T , we conclude that β diagonalizes Φ, as required.

• We will note that the assumption that char(F ) 6= 2 in the theorem above cannot be removed.

◦ Explicitly, if F = F2 is the �eld with 2 elements and Φ is the bilinear form on F 2 with associated matrix

A =

[
0 1
1 0

]
, then Φ is symmetric but cannot be diagonalized.

◦ Explicitly, suppose Q =

[
a b
c d

]
: then QTAQ =

[
a c
b d

] [
0 1
1 0

] [
a b
c d

]
=

[
0 ad+ bc

ad+ bc 0

]
,

so the only possible diagonalization of Φ would be the zero matrix, but that is impossible because Φ is
not the zero form.

◦ In this example we can see that1 Φ(x,x) = 0 for all x ∈ F 2, which causes the inductive argument to fail.

• As an immediate corollary, we see that every symmetric matrix is congruent to a diagonal matrix in charac-
teristic 6= 2:

• Corollary: If char(F ) 6= 2, then every symmetric matrix over F is congruent to a diagonal matrix.

◦ Proof: The result follows immediately by diagonalizing the corresponding bilinear form.

• We can give an explicit procedure for writing a symmetric matrix S in the form D = QTSQ that is similar
to the algorithm for computing the inverse of a matrix.

◦ Recall that if E is an elementary row matrix (obtained by performing an elementary row operation on
the identity matrix), then EA is the matrix obtained by performing that elementary row operation on
A.

◦ Likewise, if C is an elementary column matrix, then AC is the matrix obtained by performing that
elementary column operation on A.

1This follows by noting that Φ(βi, βi) = 0 for each basis element βi. Then if v = a1β1 + · · ·+ anβn, expanding Φ(v,v) linearly and
applying symmetry shows that every term aiajΦ(βi, βj) for i 6= j has a coe�cient of 2, so Φ(v,v) = 0 for all v.
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◦ Hence if E is an elementary row matrix, then EAET is the matrix obtained by performing the elementary
row operation on A (given by E) and then the corresponding elementary column operation (given by
ET ).

◦ Since the invertible matrix Q is a product E1 · · ·Ed of elementary row matrices, we see that QTSQ =
ETd · · ·ET1 SE1 · · ·Ed is obtained from S by performing a sequence of these paired row-column operations.

◦ Our result on diagonalization above ensures that there is a sequence of these operations that will yield
a diagonal matrix.

◦ We may �nd the proper sequence of operations by performing these �paired� operations using a method
similar to row-reduction: using the (1,1)-entry, we apply row operations to clear out all the entries in
the �rst column below it. (If this entry is zero, we add an appropriate multiple of another row to the
top row to make it nonzero.)

◦ This will also clear out the column entries to the right of the (1,1)-entry, yielding a matrix whose �rst
row and column are now diagonalized. We then restrict attention to the smaller (n− 1)× (n− 1) matrix
excluding the �rst row and column, and repeat the procedure recursively until the matrix is diagonalized.

◦ Then we may obtain the matrix QT = ETd · · ·ET1 I by applying all of the elementary row operations (in
the same order) starting with the identity matrix.

• We may keep track of these operations using a �double matrix� as in the algorithm for computing the inverse
of a matrix: on the left we start with the symmetric matrix S, and on the right we start with the identity
matrix I.

◦ At each step, we select a row operation and perform it, and its corresponding column operation, on the
left matrix. We also perform the row operation (but only the row operation!) on the right matrix.

◦ When we are �nished, we will have transformed the double-matrix [S|I] into the double-matrix [D|QT ],
and we will have QTSQ = D.

• Example: For S =

[
1 3
3 −4

]
, �nd an invertible matrix Q and diagonal matrix D such that QTSQ = D.

◦ We set up the double matrix and perform row/column operations as listed (to emphasize again, we
perform the row and then the corresponding column operation on the left side, but only the row operation

on the right side): [
1 3
3 −4

∣∣∣∣ 1 0
0 1

]
R2−3R1−→
C2−3C1

[
1 0
0 −13

∣∣∣∣ 1 0
−3 1

]
◦ The matrix on the left is now diagonal.

◦ Thus, we may take D =

[
1 0
0 −13

]
with QT =

[
1 0
−3 1

]
and thus Q =

[
1 −3
0 1

]
. Indeed, one may

double-check that QTSQ = D, as claimed.

• Example: For S =

 1 2 3
2 1 0
3 0 2

, �nd an invertible matrix Q and diagonal matrix D such that QTSQ = D.

◦ We set up the double matrix and perform row/column operations as listed: 1 2 3
2 1 0
3 0 2

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 R2−2R1−→
C2−2C1

 1 0 3
0 −3 −6
3 −6 2

∣∣∣∣∣∣
1 0 0
−2 1 0
0 0 1


R3−3R1−→
C3−3C1

 1 0 0
0 −3 −6
0 −6 −7

∣∣∣∣∣∣
1 0 0
−2 1 0
−3 0 1

 R3−2R2−→
C3−2C2

 1 0 0
0 −3 0
0 0 5

∣∣∣∣∣∣
1 0 0
−2 1 0
1 −2 1


◦ The matrix on the left is now diagonal.

◦ Thus, we may take D =

 1 0 0
0 −3 0
0 0 5

 with QT =

 1 0 0
−2 1 0
1 −2 1

 and thus Q =

 1 −2 1
0 1 −2
0 0 1

.
Indeed, one may double-check that QTSQ = D, as claimed.
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5.2 Quadratic Forms

• In the proof that symmetric bilinear forms are diagonalizable, the existence of a vector x ∈ V such that
Φ(x,x) 6= 0 played a central role. We now examine this non-linear function Φ(x,x) more closely.

5.2.1 De�nition and Basic Properties

• De�nition: If Φ is a symmetric bilinear form on V , the function Q : V → F given by Q(v) = Φ(v,v) is called
the quadratic form associated to Φ.

◦ Example: If Φ is the symmetric bilinear form with matrix A =

[
1 3
3 4

]
over F 2, then the corresponding

quadratic form has Q(

[
x
y

]
) = x2 +6xy+4y2. (The fact that this is a homogeneous2 quadratic function

of the entries of the input vector is the reason for the name �quadratic form�.)

◦ Example: If Φ is an inner product 〈·, ·〉 on a real vector space, then the associated quadratic form is

Q(v) = ||v||2, the square of the norm of v.

• Clearly, Q is uniquely determined by Φ. When char(F ) 6= 2, the reverse holds as well.

◦ Explicitly, since Q(v + w) = Φ(v + w,v + w) = Q(v) + 2Φ(v,w) + Q(w), we can write Φ(v,w) =
1

2
[Q(v + w)−Q(v)−Q(w)], and so we may recover Φ from Q.

◦ Also, observe that for any scalar α ∈ F , we have Q(αv) = Φ(αv, αv) = α2Φ(v,v) = α2Q(v).

◦ This last two relations provide us a way to de�ne a quadratic form without explicit reference to the
underlying symmetric bilinear form.

• De�nition: If V is a vector space, a quadratic form is a function Q : V → F such that Q(αv) = α2Q(v) for
all α ∈ F , and the function Q(v + w)−Q(v)−Q(w) is a bilinear form in v and w.

◦ By setting α = 0 we see Q(0) = 0, and by setting α = −1 we see Q(−v) = Q(v).

◦ Like with bilinear forms, the set of all quadratic forms on V forms a vector space.

• Example (again): Show that the function Q[(x, y)] = x2 + 6xy + 4y2 is a quadratic form on F 2.

◦ First observe that Q[α(x, y)] = (αx)2 + 6(αx)(αy) + 4(αy)2 = α2(x2 + 6xy + 4y2) = α2Q(x, y).

◦ We also see that Q[(x1, y1) + (x2, y2)]−Q[(x1, y1)]−Q[(x2, y2)] = 2x1x2 + 6x1y2 + 6x2y1 + 8y1y2. It is
straightforward to verify that this is a bilinear form by checking the linearity explicitly.

◦ Alternatively (at least when char(F ) 6= 2) we can write down the associated bilinear form Φ((a, b), (c, d)) =
1

2
[Q[(a+ c, b+ d)]−Q[(a, c)]−Q[(b, d)]] = ac+ 3ad+ 3bc+ 4bd, and this is the bilinear form associated

to the matrix

[
1 3
3 4

]
, as indeed we saw earlier.

• Example: If V = C[a, b], show that the function Q(f) =
´ b
a
f(x)2 dx is a quadratic form on V .

◦ First, we have Q(αf) =
´ b
a

[αf(x)]2 dx = α2
´ b
a
f(x)2 dx = α2Q(f).

◦ Also, we have Q(f+g)−Q(f)−Q(g) =
´ b
a

[f(x)+g(x)]2 dx−
´ b
a
f(x)2 dx−

´ b
a
g(x)2 dx =

´ b
a

2f(x)g(x) dx,
and this is indeed a bilinear form in f and g.

• If char(F ) 6= 2, then the function
1

2
[Q(v + w)−Q(v)−Q(w)] is the bilinear form associated to Q. It is not

hard to see that we obtain a correspondence between quadratic forms and bilinear forms in this case, since
we may recover a bilinear form from each quadratic form and a quadratic form from each bilinear form.

2A polynomial in several variables is called homogeneous if all of the terms have the same total degree. For example, x3 +3xy2−2y3

and 2xyz are both homogeneous of degree 3, while x4z+ 2w2y3 − p5 is homogeneous of degree 5. But x2 + y and x3y+ y4 − x2 are not
homogeneous because they both have terms of di�erent degrees.
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◦ In particular, any homogeneous quadratic function on Fn (i.e., any polynomial function all of whose
terms have total degree 2) is a quadratic form on Fn: for variables x1, . . . , xn, such a function has the
general form

∑
1≤i≤j≤n ai,jxixj .

3

◦ Then we can see that the associated matrix A for the corresponding bilinear form has entries ai,j =

aj,i =

{
ai,i for i = j

ai,j/2 for i 6= j
; this of course requires char(F ) 6= 2 in order to be able to divide by 2.

◦ Example: The function Q(x1, x2) = 7x21 − 4x1x2 + 3x22 is a quadratic form on F 2. The matrix for the

associated symmetric bilinear form is

[
7 −2
−2 3

]
.

◦ Example: The function Q(x1, x2, x3) = x21 + 2x1x3 − 3x2x3 + 4x23 is a quadratic form on F 3. When

char(F ) 6= 2, the matrix for the associated symmetric bilinear form is

 1 0 1
0 0 − 3

2
1 − 3

2 4

.
◦ Example: The function Q(x1, . . . , xn) = x21 + 2x22 + 3x23 + · · · + nx2n is a quadratic form on Fn. Its
associated matrix is the diagonal matrix with entries 1, 2, . . . , n.

5.2.2 Quadratic Forms Over Rn: Diagonalization of Quadratic Varieties

• In the event that V is a �nite-dimensional vector space over F = R, quadratic forms are particularly pleasant.
By choosing a basis we may assume that V = Rn for concreteness.

◦ Then, per the real spectral theorem, any real symmetric matrix is orthogonally diagonalizable, meaning
that if S is any real symmetric matrix, then there exists an orthogonal matrix Q (with QT = Q−1) such
that QSQ−1 = D is diagonal.

◦ But since QT = Q−1, if we take R = QT then this condition is the same as saying RTSR = D is diagonal.
This is precisely the condition we require in order to diagonalize a symmetric bilinear form.

◦ Hence: we may diagonalize a symmetric bilinear form over R by computing the (regular) diagonaliza-
tion of the corresponding matrix: this is quite e�cient as it only requires �nding the eigenvalues and
eigenvectors.

◦ The corresponding diagonalization represents �completing the square� in the quadratic form via a change
of variables that is orthogonal (i.e., arises from an orthonormal basis), which corresponds geometrically
to a rotation of the standard coordinate axes, possibly also with a re�ection.

• Example: Find the matrix associated to the quadratic form Q(x, y) = 4x2 − 4xy + 7y2, and also �nd an
orthonormal basis of R2 that diagonalizes Q.

◦ We can read o� the associated matrix from the coe�cients as A =

[
4 −2
−2 7

]
.

◦ To diagonalize Q, we diagonalize A by �nding the eigenvalues and eigenvectors of A.

◦ The characteristic polynomial is p(t) = (t−4)(t−7)−4 = t2−11t+24 = (t−3)(t−8), so the eigenvalues
are λ = 3, 8.

◦ We can compute eigenvectors (2, 1) and (−1, 2) for λ = 3, 8 respectively, so upon normalizing these

eigenvectors, we see that we can take γ =
{

1√
5
(2, 1), 1√

5
(−1, 2)

}
◦ Explicitly, with Q =

1√
5

[
2 −1
1 2

]
, we have [Φ]γ = QT [Φ]βQ =

[
3 0
0 8

]
.

◦ In terms of the quadratic form, this says for x′ = 1√
5
(2x+ y) and y′ = 1√

5
(−x+ 2y), we have Q(x, y) =

4x2 − 4xy + 7y2 = 3(x′)2 + 8(y′)2. Note that by changing basis in this manner, we have eliminated the
cross-term −4xy in the original quadratic form Q.

3It can also be veri�ed directly from the de�nition that this is a quadratic form via some mild calculations; this also shows the
statement is true even when char(F ) = 2.
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• Example: Find an orthonormal change of basis that diagonalizes the quadratic form Q(x, y, z) = 5x2 + 4xy+
6y2 + 4yz + 7z2 over R3.

◦ We simply diagonalize the matrix for the corresponding bilinear form, which is A =

 5 2 0
2 6 2
0 2 7

 . The
characteristic polynomial is p(t) = det(tI3 − A) = t3 − 18t2 + 99t − 162 = (t − 3)(t − 6)(t − 9), so the
eigenvalues are λ = 3, 6, 9.

◦ Computing a basis for each eigenspace yields eigenvectors (2,−2, 1), (−2,−1, 2), and (1, 2, 2) for λ =
3, 6, 9 respectively.

◦ Hence, after normalizing, we may take Q =
1

3

 2 −2 1
−2 −1 2
1 2 2

, so that QT = Q−1 and QAQ−1 = 3 0 0
0 6 0
0 0 9

 = D.

◦ Therefore the desired change of basis is x′ =
1

3
(2x− 2y+ z), y′ =

1

3
(−2x− y+ 2z), z′ =

1

3
(x+ 2y+ 2z),

and with this change of basis it is not hard to verify that, indeed, Q(x, y, z) = 3(x′)2 + 6(y′)2 + 9(z′)2.

• One application of the existence of such a diagonalization is to classify the shapes of quadratic varieties in
Rn: these are (hyper)surfaces having the general equation Q(x1, . . . , xn) + L(x1, . . . , xn) + C = 0 where Q
is a quadratic form, L is a linear form, and C is a constant. In R2 quadratic varieties are curves called
conic sections, while in R3 quadratic varieties are surfaces called quadric surfaces.

◦ For conics in R2, the general equation is Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. By diagonalizing, we
may eliminate the xy term, and so the quadratic term can be put into the form Ax2 + Cy2. We then
have various cases depending on the signs of A and C.

◦ If A and C are both zero then the conic degenerates to a line. If one is zero and the other is not,
then by rescaling and swapping variables we may assume A = 1 and C = 0, in which case the equation
x2 + Dx + Ey + F = 0 yields a parabola upon solving for y when E 6= 0, and otherwise yields two (or
one, or zero) vertical lines obtained by solving x2 +Dx+ F = 0.

◦ If both A,C are nonzero, then we may complete the squares to eliminate the linear terms and then
rescale so that F = −1. The resulting equation then has the form A′x2 + C ′y2 = 1. If A′, C ′ have the
same sign, then the curve is an ellipse, while if A′, C ′ have the opposite sign, the curve is a hyperbola.

◦ For quadric surfaces in R3 we may likewise eliminate cross-terms by diagonalizing, which yields a reduced
equation Ax2 +By2 + Cz2 +Dx+ Ey + Fz +G = 0.

◦ We can then perform a similar analysis (based on how many of A,B,C are zero and the relative signs of
the nonzero coe�cients and the linear terms) to obtain all of the possible quadric surfaces in R3.

◦ In addition to the �degenerate� surfaces (e.g., a point, a plane, two planes), after rescaling the variables,
one obtains 9 di�erent quadric surfaces: the ellipsoid (e.g., x2 + y2 + z2 = 1), the elliptic, parabolic,
and hyperbolic cylinders (e.g., x2 + y2 = 1, y = x2, and x2 − y2 = 1), the hyperboloid of one sheet
(e.g., z2 − x2 − y2 = 1), the elliptical cone (e.g., z2 = x2 + y2), the hyperboloid of two sheets (e.g.,
x2 + y2 − z2 = 1), the elliptic paraboloid (e.g., z = x2 + y2), and the hyperbolic paraboloid (e.g.,
z = x2 − y2).
◦ Seven of the quadric surfaces are plotted in Figure 1 (the parabolic and hyperbolic cylinders are omitted).

• All of the conics and quadric surfaces are examples of algebraic varieties, which are the solution sets of
polynomial equations in several variables.

◦ If we have a general quadratic variety Q(x1, . . . , xn) + L(x1, . . . , xn) + C = 0 over Rn, we can use a
similar procedure to the one in R2 and R3 to put it into a standard form: we diagonalize Q using an
orthonormal change of basis (which corresponds to a rotation of the coordinates axes and possibly also
a re�ection).
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Figure 1: (Top row) Ellipsoid, Circular Cylinder, Hyperboloid of One Sheet, Cone,
(Bottom row) Hyperboloid of Two Sheets, Elliptic Paraboloid, Hyperbolic Paraboloid

◦ Then we translate and rescale the variables (which corresponds to a translation and rescaling of the
coordinate axes) to eliminate the linear terms for any remaining variables that still have a quadratic
component. Finally, we can apply another orthonormal change of basis to the remaining linear terms to
condense them into a single variable.

◦ The result is then either an equation of the form Q(x1, . . . , xn) = C or an equation of the form xn =
Q(x1, . . . , xn−1) + C where Q is a diagonalized quadratic form.

• Example: Diagonalize the quadratic form Q(x, y) = 2x2 − 4xy − y2. Use the result to describe the shape of
the conic section Q(x, y) = 1 in R2.

◦ The matrix associated to the corresponding bilinear form is A =

[
2 −2
−2 −1

]
.

◦ The characteristic polynomial is p(t) = det(tI2 −A) = t3 − t+ 6 with eigenvalues λ = 3,−2.

◦ We need to diagonalize A using an orthonormal basis of eigenvectors. Since the eigenvalues are distinct,
we simply compute a basis for each eigenspace: doing so yields eigenvectors (−2, 1) and (1, 2) for λ = 3,−2
respectively.

◦ Thus, we may diagonalize A via the orthogonal matrix Q =
1√
5

[
−2 1
1 2

]
, and the resulting diagonal-

ization is Q(x, y, z) = 3(x′)2 − 2(y′)2.

◦ In particular, since the change of basis is orthonormal, in the new coordinate system the equation
Q(x, y, z) = 1 reads simply as 3(x′)2 − 2(y′)2 = 1.

◦ By rescaling again, with x′′ =
√

3x′, y′′ =
√

2y′, this is equivalent to (x′′)2 − (y′′)2 = 1, which is a

hyperbola .

• Example: Diagonalize the quadratic form Q(x, y, z) = 2x2 + 4xy − 20xz + 11y2 + 16yz + 5z2. Use the result
to describe the shape of the quadric surface Q(x, y, z) = 1 in R3.
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◦ The matrix associated to the corresponding bilinear form is A =

 2 2 −10
2 11 8
−10 8 5

.
◦ The characteristic polynomial is p(t) = det(tI3−A) = t3− 18t2− 81t+ 1458 = (t+ 9)(t− 9)(t− 18) with
eigenvalues λ = 9, 18,−9.

◦ We need to diagonalize A using an orthonormal basis of eigenvectors. Since the eigenvalues are distinct,
we simply compute a basis for each eigenspace: doing so yields eigenvectors (−2,−2, 1), (−1, 2, 2),
(2,−1, 2), for λ = 9, 18,−9 respectively.

◦ Thus, we may diagonalize A via the orthogonal matrix Q =
1

3

 −2 −1 2
−2 2 −1
1 2 2

, and the resulting

diagonalization is Q(x, y, z) = 9(x′)2 + 18(y′)2 − 9(z′)2.

◦ In particular, since the change of basis is orthonormal, in the new coordinate system the equation
Q(x, y, z) = 1 reads simply as 9(x′)2 + 18(y′)2 − 9(z′)2 = 1.

◦ By rescaling again, with x′′ = 3x′, y′′ = 3
√

2y′, z′′ = 3z′, this is equivalent to (x′′)2 + (y′′)2 − (z′′)2 = 1,

which is a hyperboloid of one sheet .

5.2.3 De�niteness of Real Quadratic Forms

• One of the main properties of a real quadratic form that characterizes its behavior is whether it takes positive
values, negative values, or both:

• De�nition: If V is a real vector space, a quadratic form Q on V is positive de�nite if Q(v) > 0 for every
nonzero vector v ∈ V , it is negative de�nite if Q(v) < 0 for every nonzero vector v ∈ V , and it is inde�nite if
Q takes both positive and negative values.

◦ Example: If V is a real inner product space, then the square of the norm function ||v||2 = 〈v,v〉 is a
positive-de�nite quadratic form on V . Indeed, it is not hard to see that the underlying bilinear form Φ
associated with Q is an inner product precisely when Q is a positive-de�nite quadratic form.

◦ Example: The quadratic form Q(x, y) = x2 + 2y2 is positive de�nite, since Q(x, y) > 0 for all (x, y) 6=
(0, 0).

◦ Example: The quadratic form Q(x, y, z) = −2x2−2xy−5y2 = −(x−y)2− (x+ 2y)2 is negative de�nite,
since the second expression shows that Q(x, y) < 0 for all (x, y) 6= (0, 0).

◦ Example: The quadratic form Q(x, y) = xy is inde�nite, since Q(1, 1) = 1 and Q(−1, 1) = −1, so Q
takes both positive and negative values.

◦ There are also useful weaker versions of these conditions: we say Q is positive semide�nite if Q(v) ≥ 0
for all v ∈ V and negative semide�nite if Q(v) ≤ 0 for all v ∈ V .
◦ Example: The quadratic form Q(x, y) = x2 is positive semide�nite, since Q(x, y) ≥ 0 for all (x, y), but
it is not positive de�nite because Q(0, 1) = 0.

◦ It is easy to see that Q is positive (semi)de�nite if and only if −Q is negative (semi)de�nite, so for
example by the above we see that Q(x, y) = −x2 is negative semide�nite.

◦ Notice that every nonzero quadratic form lies in exactly one of the following �ve classes: positive-de�nite,
positive-semide�nite but not positive-de�nite, inde�nite, negative-semide�nite but not negative de�nite,
negative de�nite.

• By diagonalizing a quadratic form, we can easily determine its de�niteness:

• Proposition (De�niteness and Eigenvalues): If Q is a quadratic form on a �nite-dimensional real vector space
V with associated matrix A, then Q is positive de�nite if and only if all eigenvalues of A are positive, Q is
positive semide�nite if and only if all eigenvalues of A are nonnegative, Q is negative de�nite if and only all
eigenvalues of A are negative, Q is negative semide�nite if and only if all eigenvalues of A are nonpositive,
and Q is inde�nite if and only if it has both a positive and a negative eigenvalue.

◦ Note that all of the eigenvalues of A are real, by the spectral theorem.
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◦ Proof: Observe that de�niteness is una�ected by changing basis, because each of the de�niteness condi-
tions Q(v) > 0, Q(v) ≥ 0, Q(v) < 0, Q(v) ≤ 0 are statements about all vectors v in the vector space
V .

◦ Therefore, we may diagonalize Q without a�ecting its de�niteness. After diagonalizing, we have an
expression of the form Q(x1, x2, . . . , xn) = a1x

2
1 + a2x

2
2 + · · ·+ anx

2
n.

◦ If any of the coe�cients are negative, then Q necessarily takes negative values (speci�cally, if ai < 0,
then Q evaluated at the ith standard unit vector will be ai).

◦ Likewise, if any of the coe�cients are positive then Q necessarily takes positive values, and if any
coe�cients are zero or have opposite signs then Q takes the value 0 at some nonzero vector.

◦ Assuming we use an orthogonal diagonalization, then since the coe�cients ai are simply the eigenvalues
of A, all of the claimed statements then follow immediately.

◦ Explicitly, if Q takes only positive values on nonzero vectors then no coe�cients ai can be zero or negative
(so they are all positive), if Q takes only nonnegative values then no coe�cients ai can be negative, and
likewise in the other two cases.

• Example: Determine the de�niteness of the quadratic form Q(x, y) = 2x2 + 4xy + 5y2 on R2.

◦ The associated matrix is

[
2 2
2 5

]
, whose characteristic polynomial is p(t) = (t − 2)(t − 5) − (2)(2) =

t2 − 7t+ 6 = (t− 6)(t− 1), so its eigenvalues are λ = 1, 6.

◦ Since both eigenvalues are positive, Q is positive de�nite .

• Example: Determine the de�niteness of the quadratic form Q(x, y) = 3x2 − 6xy − 5y2 on R2.

◦ The associated matrix is

[
3 −3
−3 −5

]
, whose characteristic polynomial is p(t) = (t−3)(t+5)−(−3)(−3) =

t2 − 2t− 24 = (t+ 6)(t− 4), so its eigenvalues are λ = −6, 4.

◦ Since one eigenvalue is positive and the other is negative, Q is inde�nite .

• Example: Determine the de�niteness of the quadratic form Q(x, y) = 3x2 − 2xy + 4xz + 3y2 − 4yz + 2z2 on
R3.

◦ The associated matrix is

 3 −1 2
−1 3 −2
2 −2 2

, whose characteristic polynomial is p(t) = t3 − 8t2 + 12t =

t(t− 2)(t− 6), so its eigenvalues are λ = 0, 2, 6.

◦ Since one eigenvalue is zero and the others are positive, Q is positive semide�nite .

• We can also view de�niteness as a property of symmetric matrices themselves by considering the de�niteness of
the associated quadratic form. In this lens, we can give another way to identify de�niteness using determinants:

• Theorem (Sylvester's Criterion): Suppose A is an n × n symmetric real matrix. For each 1 ≤ k ≤ n, de�ne
the kth principal minor Ak to be the upper-left k × k corner of A. Then A is positive de�nite if and only if
det(Ak) > 0 for all k.

◦ There is also a version for checking positive semide�niteness, but it is more complicated: one requires
det(Ak) ≥ 0 for every k × k symmetric submatrix of A, rather than just the principal minors.

◦ Also, since A is positive de�nite if and only if −A is negative de�nite, one can also use Sylvester's criterion
to identify negative de�nite matrices.

◦ We will not prove Sylvester's criterion, although it is not hard to see that the given condition is necessary,
since if A is positive de�nite we must have xTAx > 0 for all vectors x = [x1 x2 · · · xk 0 · · · 0]: this
means the matrix Ak must also be positive de�nite and therefore must have positive determinant.

• Example: Determine the de�niteness of the matrix A =

 2 −1 2
−1 4 2
2 2 5

.
11



◦ The principal minors are [2],

[
2 −1
−1 4

]
, and

 2 −1 2
−1 4 2
2 2 5

, whose determinants respectively are

2, 7, and 3.

◦ Since all of the principal minors have positive determinants, the given matrix is positive de�nite .

◦ Remark: To four decimal places, the eigenvalues are 6.8004, 4.0917, and 0.1078, so we see A is indeed
positive de�nite.

5.2.4 Quadratic Forms Over Rn: The Second Derivatives Test

• We can also use quadratic forms and an analysis of de�niteness to establish the famous �second derivatives
test� from multivariable calculus:

• Theorem (Second Derivatives Test in Rn): Suppose f is a function of n variables x1, . . . , xn that is twice-
di�erentiable and P is a critical point of f , so that fxi

(P ) = 0 for each i. Let H be the Hessian matrix, whose
(i, j)-entry is the second-order partial derivative fxixj

(P ). If all eigenvalues of H are positive then f has a
local minimum at P , if all eigenvalues of H are negative then f has a local maximum at P , if H has at least
one eigenvalue of each sign then f has a saddle point at P , and in all other cases (where H has at least one
zero eigenvalue and does not have one of each sign) the test is inconclusive.

◦ Proof (outline): By translating appropriately, assume for simplicity that P is at the origin.

◦ Then by the multivariable version of Taylor's theorem in R2, the function f(x1, . . . , xn) − f(P ) will be
closely approximated by its degree-2 Taylor polynomial T , which has the form T =

∑
1≤i≤j≤n ai,jxixi,

where ai,j =

{
fxi,xi

(P )/2 for i = j

fxi,xj
(P ) for i 6= j

.

◦ Speci�cally, Taylor's theorem says that lim
(x1,...,xn)→P

f(x1, . . . , xn)− T − f(P )

x21 + · · ·+ x2n
= 0, which we can write

more compactly as f(x1, . . . , xn)− f(P ) = T +O(x21 + · · ·+ x2n).

◦ Now observe T is a quadratic form whose associated bilinear form has matrix H/2. By using an or-
thonormal change of basis, we may diagonalize this quadratic form, and the entries on the diagonal of
the diagonalization are the eigenvalues of H/2.

◦ If x′1, . . . , x
′
n is the new coordinate system, this means f(x1, . . . , xn)−f(P ) = 1

2λ1(x′1)2+· · ·+ 1
2λn(x′n)2+

O[(x′1)2 + · · ·+ (x′n)2].

◦ If all of the λi are positive (i.e., when
1
2λ1(x′1)2 + · · ·+ 1

2λn(x′n)2 is positive de�nite) then the error term
is smaller than the remaining terms, and so we see that f(x1, . . . , xn)− f(P ) > 0 su�ciently close to P ,
meaning that P is a local minimum.

◦ Likewise, if all of the λi are negative (i.e., when
1
2λ1(x′1)2 + · · ·+ 1

2λn(x′n)2 is negative de�nite) then the
error term is smaller than the remaining terms, and so we see that f(x1, . . . , xn)− f(P ) < 0 su�ciently
close to P , meaning that P is a local maximum.

◦ If there is at least one positive eigenvalue λi and one negative eigenvalue λj (i.e., when
1
2λ1(x′1)2 + · · ·+

1
2λn(x′n)2 is inde�nite) then approaching P along the direction x′i yields values of f less than P , while
approaching P along the direction x′j yields values of f greater than P , so P is a saddle point.

◦ The other cases (i.e., when 1
2λ1(x′1)2+· · ·+ 1

2λn(x′n)2 is positive or negative semide�nite) are inconclusive:
if λ1 = 0 then as we approach P along the direction x′1, the quadratic form T is constant, and so the sign
of f(x1, . . . , xn)− f(P ) along that path will be determined by the error term. Except in the case where
the function is known to take both positive and negative values (guaranteeing a saddle point), any of the
other possible behaviors not ruled out by the existence of positive or negative eigenvalues could occur.

◦ As explicit examples, consider the functions f1 = x21 + x42 and f2 = x21 − x42: for both functions H has
a single positive eigenvalue and a zero eigenvalue, but at (0, 0) f1 has a local minimum while f2 has a
saddle point. Likewise, for g1 = x41 + x42, g2 = x41 − x42, and g3 = −x41 − x42, we see that for all three
functions H has both eigenvalues equal to zero, but at (0, 0) g1 has a local minimum, g2 has a saddle
point, and g3 has a local maximum.

12



• Example: Classify the critical point at (0, 0) for the function f(x, y) = 2x2 + xy + 4y2.

◦ We compute the Hessian matrix: we have fxx = 4, fxy = fyx = 1, and fyy = 8, so evaluating these at

(0, 0) yields H =

[
4 1
1 8

]
.

◦ The characteristic polynomial of H is p(t) = det(tI2 −H) = t2 − 12t+ 31, whose roots are λ = 6±
√

5.

◦ Since the eigenvalues are both positive, the critical point is a local minimum .

• Example: Classify the critical point at (0, 0) for the function f(x, y) = x2 + 3xy − 6y2 + x5y3.

◦ We compute the Hessian matrix: we have fxx = 2+20x3y3, fxy = fyx = 3+15x4y2, and fyy = −6+6x5y,

so evaluating these at (0, 0) yields H =

[
2 3
3 −6

]
.

◦ The characteristic polynomial of H is p(t) = det(tI2 −H) = t2 − 4t− 21 = (t− 7)(t+ 3).

◦ Since the eigenvalues are −7 and 3, there is an eigenvalue of each sign, so the critical point is a

saddle point .

• Example: Classify the critical point at (0, 0, 0) for the function f(x, y, z) = 3x2 + 2xy − xz + y2 − yz + z2.

◦ We compute the Hessian matrix: we have fxx = 6, fxy = fyx = 2, fxz = fzx = −1, fyy = 2, fyz = fzy =

−1, and fzz = 2, so H =

 6 2 −1
2 2 −1
−1 −1 2

.
◦ The characteristic polynomial of H is p(t) = det(tI2 −H) = t3 − 10t2 + 22t− 12 = (t− 2)(t2 − 8t+ 6),
whose roots are λ = 2, 4±

√
10.

◦ Since the eigenvalues are all positive, the critical point is a local minimum .

5.2.5 Quadratic Forms Over Rn: Sylvester's Law of Inertia

• We now discuss another fundamental result (which was, in fact, somewhat implicit in our earlier discussion
of conics) regarding the possible diagonal entries for the diagonalization of a real quadratic form.

◦ By making di�erent choices for the matrix P (e.g., by rescaling it or selecting di�erent row operations),
we may obtain di�erent diagonalizations of a given real quadratic form.

◦ For example, with the quadratic form Q(x, y) = x2 + 2y2, which is already diagonal, if we change basis
to x′ = x/2, y′ = y/3, then we obtain Q(x, y) = 4(x′)2 + 18(y′)2.

◦ Indeed, it is clear that given any diagonalization, if we scale the ith row of the diagonalizing matrix by
the scalar α, then the coe�cient of the ith variable will be scaled by α2.

◦ Hence, by rescaling, we may change any positive coe�cient to an arbitrary positive value and any negative
coe�cient to an arbitrary negative value.

◦ It turns out that this is essentially the only possible change we may make to the diagonalization over R.

• Theorem (Sylvester's Law of Inertia): Suppose V is a �nite-dimensional real vector space and Q is a quadratic
form on V . Then the numbers of positive diagonal entries, zero diagonal entries, and negative diagonal entries
in any diagonalization of Q is independent of the choice of diagonalization.

◦ The idea of this result is that we may decompose V as a direct sum of three spaces: one on which Q acts
as a positive-de�nite quadratic form (corresponding to the positive diagonal entries), one on which Q
acts as the zero map (corresponding to the zero entries), and one on which Q acts as a negative-de�nite
quadratic form (corresponding to the negative diagonal entries).

◦ Since this decomposition of V depends only on Q, these three spaces (and thus their dimensions) are
independent of the choice of diagonalizing basis, and so the number of positive, zero, and negative
diagonal entries in any diagonalization is necessarily �xed.
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◦ Proof: Since we are over a �eld of characteristic not 2, we may equivalently work with the symmetric
bilinear form Φ associated to Q.

◦ Let V0 be the subspace of V given by V0 = {v0 ∈ V : Φ(v0,v) = 0 for all v ∈ V }: then Φ acts as the
zero map on V0. Now write V = V0 ⊕ V1: we claim that Φ is nondegenerate on V1.

◦ To see this, suppose y ∈ V1 has Φ(y,v1) = 0 for all v1 ∈ V : then for any w ∈ V we may write
w = v0 + v1 for some v0 ∈ V0 and v1 ∈ V1, in which case Φ(y,w) = Φ(y,v0) + Φ(y,v1) = 0. But this
would imply y ∈ V0 whence y = 0 since V0 ∩ V1 = {0}.
◦ Now we will show that if Φ is nondegenerate on V1, then V1 decomposes as a direct sum V1 = V+ ⊕ V−,
where Φ is positive-de�nite on V+ and negative-de�nite on V−.

◦ Let V+ be the maximal subspace of V1 on which Φ is positive-de�nite (since the condition is de�ned
only on individual vectors, this subspace is well-de�ned), and de�ne V− = {w ∈ V : Φ(v+,w) =
0 for all v+ ∈ V+}. Then by an application of Gram-Schmidt4 (via Φ, rather than an inner product), we
see that V1 = V+ ⊕ V−.
◦ It remains to show that Φ is negative-de�nite on V−, so let z ∈ V− be nonzero. Then by assumption, Φ
is not positive-de�nite on V+ ⊕ 〈z〉, so there exists some nonzero v = v+ + αz with v+ ∈ V+ and α ∈ R
such that Φ(v,v) ≤ 0.

◦ We cannot have α = 0 since then positive-de�niteness would imply v+ = 0. Since Φ(v,v) = Φ(v+,v+)+

2αΦ(v+, z) + α2Φ(z, z) = Φ(v+,v+) + α2Φ(z, z), we have Φ(z, z) =
1

α2
[Φ(v,v)− Φ(v+,v+)].

◦ Then both terms are less than or equal to zero, and both cannot be zero. Hence Φ(z, z) < 0 for all
nonzero z ∈ V− and so Φ is negative-de�nite on V−.

◦ The desired result then follows from the direct sum decomposition V = V0 ⊕ V+ ⊕ V−: if we select any
diagonalization, then the restriction to the subspace generated by the basis vectors with diagonal entries
0, positive, negative (respectively) is trivial, positive-de�nite, negative-de�nite (respectively), and thus
the number of diagonal elements is at least dim(V0), dim(V+), dim(V−) (respectively). But since the
total number of diagonal elements is dim(V ) = dim(V0) + dim(V+) + dim(V−), we must have equality
everywhere.

◦ Hence the numbers of positive diagonal entries, zero diagonal entries, and negative diagonal entries in
any diagonalization of Q is independent of the choice of diagonalization, as claimed.

• We will also mention that there is some classical terminology associated with this result: the index of a
quadratic form is the number of positive diagonal entries (in any diagonalization) and the signature is the
di�erence between the number of positive and negative diagonal entries.

◦ Equivalently, by our discussion of the spectral theorem, the index is equal to the number of positive
eigenvalues of the matrix associated to the symmetric bilinear form, while the signature is the di�erence
between the number of positive eigenvalues and the number of negative eigenvalues.

◦ Remark: Some authors instead refer to the triple (dimV+,dimV−,dimV0), or some appropriate permu-
tation, as the signature of the quadratic form. These three values themselves are called the invariants
of the form, and the value of any two of them (along with the dimension of the ambient space V ) is
su�cient to �nd the value of the other one.

◦ For nondegenerate forms, where there are no 0 entries (so dimV0 = 0), the dimension of the space along
with the value of dimV+ − dimV− is su�cient to recover the two values.

◦ Example: The quadratic form Q(x, y, z) = x2 − y2 − z2 on R3 has index 1 and signature −1.

◦ Example: The quadratic form Q(x, y, z) = x2 − z2 on R3 has index 1 and signature 0.

◦ Example: The quadratic form Q(x, y, z) = 5x2 + 4xy+ 6y2 + 4yz + 7z2 on R3 has index 3 and signature
3, since we computed its diagonalization to have diagonal entries 3, 6, 9.

• Example: Find the index and signature of the quadratic form Q(x, y, z) = −x2 − 8xy+ 4xz− y2 + 4yz + 2z2.

4The argument here is the same as for showing that dim(W ) + dim(W⊥) = dim(V ) for an inner product. The Gram-Schmidt
algorithm does not use the positive-de�niteness of the inner product (it requires only linearity and symmetry), so the same argument
also works for any bilinear form.
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◦ The matrix associated to the corresponding bilinear form is A =

 −1 −4 2
−4 −1 2
2 2 2

.
◦ The characteristic polynomial is p(t) = det(tI3 −A) = t3 − 27t+ 54 = (t− 3)2(t+ 6).

◦ Thus, since the eigenvalues are λ = 3, 3,−6, we see that the diagonalization will have two positive
diagonal entries and one negative diagonal entry.

◦ This means that the index is 2 and the signature is 1 .

• As a corollary of Sylvester's law of inertia, we can read o� the shape of a conic section or quadric surface (in
all nondegenerate cases, and also in many degenerate cases) simply by examining the signs of the eigenvalues
of the underlying quadratic form.

• Example: Determine the shape of the quadric surface 13x2 − 4xy + 10y2 − 8xz + 4yz + 13z2 = 1.

◦ If Q(x, y, z) is the quadratic form above, the bilinear form has associated matrix A =

 13 −2 −4
−2 10 2
−4 2 13

.
◦ The characteristic polynomial is p(t) = det(tI3 −A) = t3 − 144t2 + 6480t− 93312 = (t− 36)2(t− 72).

◦ This means, upon diagonalizing Q(x, y, z), we will obtain the equation 36(x′)2 + 36(y′)2 + 72(z′)2 = 1.

This is the equation of an ellipsoid .

◦ Note that the only information we needed here was the fact that all three eigenvalues were positive to
make this observation: the quadric surfaces Q(x, y, z) = 1 that are ellipsoids are precisely those for which
Q(x, y, z) is a positive-de�nite quadratic form.

• We will close our discussion by observing that the study of quadratic forms touches on nearly every branch of
mathematics: we have already examined some of its ties to linear algebra (in the guise of bilinear forms and
diagonalization), analysis (in the classi�cation of critical points), and geometry (in the analysis of quadratic
varieties and the action of matrices on quadratic forms).

◦ We will not discuss it much here, since the requisite tools do not really belong to linear algebra, but the
study of quadratic forms over Q turns out to be intimately tied with many topics in number theory.

◦ A very classical problem in elementary number theory is to characterize, in as much detail as possible, the
integers represented by a particular quadratic form. For example, asking which integers can be written
as the sum of two squares is equivalent to asking which integers are represented by the quadratic form
Q(x, y) = x2 + y2.

◦ This family of problems, while seemingly quite simple, is actually intimately related to a number of very
deep results in modern number theory, and (historically speaking) was a major motivating force in the
development of a branch of algebraic number theory known as class �eld theory.

5.3 Singular Values and Singular Value Decomposition

• Diagonalization is a very useful tool, but it su�ers from two main drawbacks: �rst, not all linear transfor-
mations T : V → V are diagonalizable, and second, we cannot diagonalize general linear transformations
T : V →W when V and W are di�erent.

◦ The Jordan canonical form allows us to give a �near diagonalization� for non-diagonalizable linear trans-
formations T : V → V . However, it still cannot be used to classify general transformations T : V →W .

• We will now discuss a decomposition that is in some sense a modi�ed diagonalization, called singular value decomposition,
that extends naturally to transformations T : V →W when V and W are di�erent.
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5.3.1 Singular Values and Singular Value Decomposition

• The main idea of singular value decomposition is as follows: if we have a linear transformation T : V → W
where V and W are �nite-dimensional inner product spaces, then we may construct orthonormal bases β of V
and γ of W such that the associated matrix A = [T ]γβ has its only nonzero entries in the �diagonal� positions
ai,i.

◦ This procedure combines the ideas of diagonalization, in that we obtain a representation of T by an
essentially diagonal matrix (up to not being square), and the QR factorization, in that we perform
orthonormal changes of basis to simplify the form of the transformation.

◦ The main idea is to note that if T : V → W is linear, then T ∗T : V → V is Hermitian, since (T ∗T )∗ =
T ∗T ∗∗ = T ∗T again.

◦ Moreover, the quadratic form QT∗T (v) = 〈T ∗Tv,v〉 = 〈Tv, Tv〉 = ||Tv||2 on V is positive semide�nite

since ||Tv||2 ≥ 0 for all v. Thus, from our characterization of the de�niteness of quadratic forms, we see
that all of the eigenvalues of T ∗T are nonnegative.

◦ Therefore, since T ∗T is a Hermitian operator with nonnegative eigenvalues, it can be orthogonally diag-
onalized with respect to an orthonormal basis β, and the diagonal entries of its diagonalization D are
σ2
1 , σ

2
2 , . . . , σ

2
n for some nonnegative real numbers σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

◦ We can then use the orthonormal basis β of V to write down an appropriate orthonormal basis γ for W
so that [T ]γβ will have its only nonzero entries in the positions ai,i.

• To make this precise, we introduce some terminology:

• De�nition: If V andW are �nite-dimensional inner product spaces and T : V →W is linear, the singular values
of T are the nonnegative real numbers σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 such that σ2

1 , σ
2
2 , . . . , σ

2
n are the eigenvalues of

T ∗T .

◦ We have previously shown that ker(T ∗T ) = ker(T ), so the rank of T ∗T equals the rank of T . Thus, if
T has rank r, the singular values σ1, . . . , σr will be positive and the remaining ones σr+1, . . . , σn will be
zero.

◦ It is a matter of convention whether to include the zero eigenvalues on the list of singular values.

◦ For a matrix A, the singular values are the eigenvalues of A∗A. If β is an orthonormal basis of V and γ
is an orthonormal basis of W , then the singular values of T are the singular values of [T ]γβ . (Note that
if we make an orthonormal change of basis in V or W , the eigenvalues of A∗A are not changed.)

• Example: Find the singular values of the matrix A =


2 2
2 2
−1 1
1 −1

.

◦ We have A∗A =

[
2 2 −1 1
2 2 1 −1

]
2 2
2 2
−1 1
1 −1

 =

[
10 6
6 10

]
with characteristic polynomial p(t) =

det(tI3 −A) = (t− 10)(t− 10)− (6)(6) = t2 − 20t+ 64 = (t− 4)(t− 16).

◦ Since the eigenvalues of A∗A are λ = 16, 4, we see that the singular values of A are 4, 2 .

• Example: Find the singular values of the matrix A =

 1− i 3i
2 + i i
2 + i 1− 2i

.

◦ We have A∗A =

[
1 + i 2− i 2− i
−3i −i 1 + 2i

] 1− i 3i
2 + i i
2 + i 1− 2i

 =

[
12 −2
−2 15

]
with characteristic polyno-

mial p(t) = det(tI2 −A) = (t− 12)(t− 15)− (−2)2 = (t− 11)(t− 16).
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◦ Since the eigenvalues of A∗A are λ = 16, 11, we see that the singular values of A are 4,
√

11 .

• Example: Find the singular values of the matrix A =

[
1 + i 3 1 i
1 + i 1 2 −i

]
.

◦ We have A∗A =


1 + i 1 + i

3 1
1 2
i −i

[ 1 + i 3 1 i
1 + i 1 2 −i

]
=


4 4− 4i 3− 3i 0

4 + 4i 10 5 2i
3 + 3i 5 5 −i

0 −2i i 2

 with charac-

teristic polynomial p(t) = det(tI4 −A) = t4 − 21t3 + 68t2 = t2(t− 4)(t− 17).

◦ Since the eigenvalues of A∗A are λ = 17, 4, 0, 0, we see that the singular values of A are
√

17, 2, 0, 0 .

• Our general result is that we can use the singular values of a matrix to write down a matrix associated to T
with respect to orthonormal bases that is particularly nice:

• Theorem (Singular Value Bases): Suppose V and W are �nite-dimensional inner product spaces and T :
V → W is a linear transformation of rank r with singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Then there exist
orthonormal bases {v1, . . . ,vn} of V and {w1, . . . ,wm} of W such that T (v1) = σ1w1, T (v2) = σ2w2, ... ,
T (vr) = σrwr, and T (vr+1) = T (vr+2) = · · · = T (vn) = 0.

◦ Proof: Recall that we proved in our discussion of least squares that T ∗T and T have the same rank, so
T ∗T also has rank r.

◦ Additionally, as noted above, T ∗T is a Hermitian operator on V , so by the spectral theorem, there exists
an orthonormal basis {v1, . . . ,vn} of V consisting of eigenvectors of T ∗T , where the basis is ordered the
associated eigenvalues are σ2

1 , σ
2
2 , . . . , σ

2
r , 0, . . . , 0.

◦ Then for i 6= j, we have 〈T (vi), T (vj)〉 = 〈vi, T ∗Tvj〉 = σ2
i 〈vi,vj〉 = 0 since vi,vj are orthogonal, so

T (vi) and T (vj) are also orthogonal.

◦ Additionally, for 1 ≤ i ≤ r we have ||T (vi)||2 = 〈T (vi), T (vi)〉 = 〈vi, T ∗Tvi〉 = σ2
i 〈vi,vi〉 = σ2

i , so since
σi > 0 we see ||T (vi)|| = σi.

◦ Therefore, if we de�ne wi = T (vi)/σi for each 1 ≤ i ≤ r, we see that {w1, . . . ,wr} is an orthonormal
set. By extending this set to an orthonormal basis {w1, . . . ,wm} of W , we obtain the required result.

• To calculate a singular value decomposition, we simply need to compute an orthonormal basis of eigenvectors
{v1, . . . ,vn} for T ∗T , and then compute their images under T and divide by the singular values (potentially
then extending to a basis of W using Gram-Schmidt) to get the basis {w1, . . . ,wm}.

◦ To compute T ∗, if we set A = [T ]δα where α and δ are arbitrary orthonormal bases for V and W
(respectively) then [T ∗]αδ is simply the adjoint matrix A∗.

• Example: Find singular value bases for the map T : P1(R)→ P2(R) with T (p) = p(0), under the inner product

〈f, g〉 =
´ 1
0
f(x)g(x) dx on both P1(R) and P2(R).

◦ First, we must compute T ∗. Using Gram-Schmidt we construct orthonormal bases α = {1,
√

3(2x− 1)}
for P1(R) and δ = {1,

√
3(2x− 1),

√
5(6x2 − 6x+ 1)} for P2(R).

◦ Then since T (1) = 1 and T (
√

3(2x− 1)) = −
√

3, we obtain [T ]δα =

 1 −
√

3
0 0
0 0

, hence because α and

δ are orthonormal bases, we have [T ∗]αδ =

[
1 0 0

−
√

3 0 0

]
.

◦ To �nd the desired singular value bases, we compute an eigenbasis for T ∗T , whose associated matrix is

[T ∗T ]αα = [T ∗]αδ [T ]δα =

[
1 0 0

−
√

3 0 0

] 1 −
√

3
0 0
0 0

 =

[
1 −

√
3

−
√

3 3

]
.
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◦ The eigenvalues are λ = 4, 0 with corresponding orthonormal eigenvectors [v1]α =
1

2

[
1

−
√

3

]
and

[v2]α =
1

2

[ √
3

1

]
, whence v1 =

1

2

[
−1 +

√
3 ·
√

3(2x− 1)
]

= 3x−2 and v2 =
1

2

[√
3 + 1 ·

√
3(2x− 1)

]
=

x
√

3.

◦ The nonzero singular value is σ1 =
√

4 = 2, so that w1 = T (v1)/σ1 = −1, and then using Gram-Schmidt
we can extend this to an orthonormal basis of W (indeed, we can just reuse the other vectors from δ
above).

◦ Thus we obtain bases {v1,v2} = {3x− 2, x
√

3} and {w1,w2,w3} = {−1,
√

3(2x− 1),
√

5(6x2 − 6x+ 1)} .

• We can recast the theorem above in terms of matrices, as follows:

• Theorem (Singular Value Decomposition): Suppose F = R or C and that A ∈ Mm×n(F ) has rank r. If
σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the nonzero singular values of A, then A can be written as a matrix product
A = UΣV ∗ where U ∈Mn×n(F ) and V ∈Mm×m(F ) are unitary and Σ ∈Mn×m(F ) is the matrix whose �rst
r diagonal entries are σ1, . . . , σr and whose remaining entries are 0.

◦ Proof: Let T : V →W be the linear transformation with T (v) = Av.

◦ By the theorem above, we have orthonormal bases β = {v1, . . . ,vn} of Fn and γ = {w1, . . . ,wm} of Fm
such that T (v1) = σ1w1, T (v2) = σ2w2, ... , T (vr) = σrwr, and T (vr+1) = T (vr+2) = · · · = T (vn) = 0.

◦ This means the associated matrix [T ]γβ is the n×m matrix Σ whose �rst r diagonal entries are σ1, . . . , σr
and whose remaining entries are 0.

◦ Now let α be the standard basis of Fn and δ be the standard basis of Fm and note that [T ]δα = A.
Furthermore, since β is orthonormal the change-of-basis matrix V = [I]αβ is unitary so [I]βα = V −1 = V ∗,

and since γ is orthonormal the change-of-basis matrix U = [I]δγ is also unitary.

◦ Then A = [T ]δα = [I]δγ [T ]γβ [I]βα = UΣV ∗, as claimed.

• Example: Find the singular values, and a singular value decomposition, of A =

[
0 6
6 5

]
.

◦ We have A∗A =

[
36 30
30 61

]
with characteristic polynomial p(t) = (t − 36)(t − 61) − (30)(30) = t2 −

97t+ 1296 = (t− 16)(t− 81), so the singular values of A are σ1 =
√

81 = 9 and σ2 =
√

16 = 4.

◦ We can then �nd a basis for the 81-eigenspace of A∗A as

{[
2
3

]}
and a basis for the 16-eigenspace as{[

−3
2

]}
, so after normalizing we can take v1 =

1√
13

[
2
3

]
and v2 =

1√
13

[
−3
2

]
.

◦ We also have w1 =
1

9
Av1 =

1√
13

[
2
3

]
and w2 =

1

4
Av2 =

1√
13

[
3
−2

]
; as expected we see that

{w1,w2} is an orthonormal set (and in fact an orthonormal basis) of R2.

◦ Putting all of this together, we get U =
1√
13

[
2 3
3 −2

]
, Σ =

[
9 0
0 4

]
, and V ∗ =

1√
13

[
2 −3
3 2

]
.

• Example: Find a singular value decomposition of A =


2 2
2 2
−1 1
1 −1

.

◦ We previously found that the eigenvalues of A∗A =

[
10 6
6 10

]
are λ = 16, 4 and so the singular values

of A are σ1 = 4 and σ2 = 2.
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◦ We can then calculate a basis for the 16-eigenspace of A∗A as

{[
1
1

]}
and a basis for the 4-eigenspace

of A∗A as

{[
−1
1

]}
, so after normalizing we can take v1 =

1√
2

[
1
1

]
and v2 =

1√
2

[
−1
1

]
.

◦ We also have w1 =
1

4
Av1 =

1√
2


1
1
0
0

 and w2 =
1

2
Av2 =

1√
2


0
0
1
−1

; as expected we see that

{w1,w2} is an orthonormal set.

◦ By using Gram-Schmidt, we can extend {w1,w2} to an orthonormal basis {w1,w2,w3,w4} of R4 with

w3 =
1√
2


1
−1
0
0

 and w4 =
1√
2


0
0
1
1

.

◦ Thus, we get U =
1√
2


1 0 1 0
1 0 −1 0
0 1 0 1
0 −1 0 1

 , Σ =


4 0
0 2
0 0
0 0

 , and V ∗ =
1√
2

[
1 −1
1 1

]
.

◦ Remark: Note that the singular value decomposition is not unique here, since we could choose other
vectors w3,w4 to complete the orthonormal basis of R4.

• Example: Find a singular value decomposition of the matrix A =

[
1 + i 3 1 i
1 + i 1 2 −i

]
.

◦ We previously calculated the eigenvalues of A∗A as 17, 4, 0, and 0 so that the positive singular values
are σ1 =

√
17 and σ2 = 2.

◦ We can then calculate an orthonormal basis of eigenvectors with λ = 17, 4, 0, 0 respectively as

v1 =
1√
221


5 + 5i

11i
7i
1

, v2 =
1√
52


−1− i

3i
−4i

5

, v3 =
1

2


1 + i
−i
0
1

, v4 =
1√
34


−2 + 2i
−1
4
−3i

.
◦ We also have w1 =

1√
17
Av1 =

1√
13

[
3i
2i

]
and w2 =

1

2
Av2 =

1√
13

[
2i
−3i

]
; as expected we see that

{w1,w2} is an orthonormal set.

◦ Putting all of this together, we get U =
1√
13

[
3i 2i
2i −3i

]
, Σ =

[ √
17 0 0 0
0 2 0 0

]
, and V ∗ =


(5 + 5i)/

√
221 (−1− i)/

√
52 (1 + i)/2 (−2 + 2i)/

√
34

11i/
√

221 3i/
√

52 −i/2 −1/
√

34

7i/
√

221 −4i/
√

52 0 4/
√

34

1/
√

221 5/
√

52 1/2 −3i/
√

34

 .

◦ Remark: Note that the singular value decomposition is not unique here, since for example we could have
chosen any other orthonormal basis v3,v4 of the 0-eigenspace of A∗A.

5.3.2 Applications of Singular Value Decomposition

• The singular value basis and associated decomposition have a convenient geometric interpretation in terms of
the action of the transformation T : V →W on the �unit sphere� ||v|| = 1 in V .

◦ To illustrate, consider the linear transformation T : R2 → R2 with associated standard matrix A =[
0 6
6 5

]
from the �rst example above.
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◦ The image of the unit circle ||v|| = 1 (i.e., x2 + y2 = 1) under T is an ellipse, shown below:

◦ We can see quite clearly from the second picture that the vectors Av1 and Av2 give the principal axes
of the ellipse.

◦ This observation can be veri�ed algebraically from the facts that β = {v1,v2} and γ = {w1,w2} are

orthonormal bases of R2 and the fact that [T ]γβ is the matrix

[
9 0
0 4

]
: then the image 9aw1 + 4bw2 of

any linear combination av1 + bv2 on the unit circle (i.e., with a2 + b2 = 1) has norm 81a2 + 16b2, and
the norm is clearly maximized when b = 0 and minimized when a = 0.

◦ This means that the major axis of the ellipse is parallel to w1 and has length σ1, while the minor axis
of the ellipse is parallel to w2 and has length σ2.

◦ It is not hard to see that analogous results hold in higher dimensions, for the same reasons: in general,
the image of the unit sphere ||v|| = 1 under a linear transformation T : Rn → Rm of rank r will be an
r-dimensional ellipsoid whose principal axes are the vectors σ1w1, σ2w2, ... , σrwr.

• This geometric interpretation of singular value decomposition has many practical applications, such as per-
forming principal component analysis and doing data compression.

◦ The main idea is that for anm×nmatrixA with singular values σ1, . . . , σr and corresponding orthonormal
bases {v1, . . . ,vn} and {w1, . . . ,wm}, if we multiply out the matrix product A = UΣV ∗, we can rephrase
the singular value decomposition as giving a sum A = σ1v1w

∗
1 + σ2v2w

∗
2 + · · ·+ σrvrw

∗
r of a total of r

m× n matrices viw
∗
i each of which has rank 1.

◦ Therefore, if we want to approximate A by a matrix of rank less than r, the best approximation will
be given by deleting the terms of the sum above that have the smallest norm, which are the terms with
smallest σi.

◦ In other words5, the best approximation to A by a matrix of rank d is obtained by taking the initial
terms of the singular value sum above: σ1v1w

∗
1 + σ2v2w

∗
2 + · · ·+ σdvdw

∗
d.

◦ In the situation where we have a set of data that is high-dimensional (i.e., lies inside Fn where n is
large), this gives an explicit procedure for projecting onto a smaller-dimensional subspace that loses as
little information as possible.

• We can illustrate these ideas by calculating the singular value decomposition of a matrix representing the 2-
dimensional grid of color intensity from a black-and-white photograph (taken from the standard set of sample
data included with Mathematica).

5The formal statement is the Eckart-Young-Mirsky theorem, as follows: let A ∈Mm×n(F ) for F = R or C have rank r and singular
values σ1 ≥ σ2 ≥ · · · ≥ σr > 0, with corresponding singular value bases {v1, . . . ,vn} of Fn and {w1, . . . ,wm} of Fm. Then for any
1 ≤ d ≤ r, the best rank-d approximation to A is the sum Ad = σ1v1w∗1 + σ2v2w∗2 + · · · + σdvdw

∗
d, in the sense that if B : V → W

is any rank-d transformation, then ||Ad −A|| ≤ ||B −A|| with equality only for B = Ad, where the norm is the Frobenius norm on
Mm×n(F ).
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◦ The photograph used here is 512 pixels by 512 pixels, corresponding to a 512× 512 matrix A.

◦ We can then give compressed versions of the image by taking the initial terms of the singular value sum.

◦ Below are the image reconstructions using various numbers of singular values:

◦ The total amount of data required to store the full image is the equivalent to 5122 data points (one per
pixel). To store the decomposition with k singular values, on the other hand, requires only storing about
2k · 512 data points (each singular value matrix viw

∗
i requires just the values of the vectors vi and wi).

◦ So, for example, to store and reconstruct the compressed image using 20 singular values only requires
about 40/512 ≈ 8% of the total amount of uncompressed data in the original image.

◦ The reason this sort of procedure works is because most of the information in the image is carried by the
�rst few singular values, which are much larger than the later ones. For this image, the �rst ten singular
values are 66679, 10490, 5904, 4144, 3501, 2853, 2664, 2420, 2384, and 2188, with most of the remaining
values being smaller:

◦ Therefore, taking just the �rst few singular values will capture the vast majority of information contained
in the data set.

5.3.3 The Moore-Penrose Pseudoinverse

• To conclude our discussion, we will study the Moore-Penrose pseudoinverse of a linear transformation T :
V → W , which has pleasant applications to computing orthogonal projections and to solving systems of
linear equations.

◦ The main idea is to construct a linear transformation T † : W → V that captures as much of the spirit
of an inverse transformation as possible, even when T is not necessarily invertible or even one-to-one.

◦ A natural approach is simply to restrict attention to the �piece� of T that is invertible: clearly, T is not
invertible on ker(T ) (since it is the zero map there), so there is nothing to be gained by considering T
on ker(T ).
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◦ However, if we take any subspace V1 such that V = ker(T ) ⊕ V1 (we may �nd such a subspace simply
by extending a basis of ker(T ) to a basis of V ), then ker(T |V1) = ker(T ) ∩ V1 = {0}, so T is one-to-one
when restricted to the subspace V1.

◦ It is easy to see that im(T |V1
) = im(T ), so since T |V1

: V1 → im(T ) is one-to-one, it has an inverse
map S : im(T ) → V . We can then extend this inverse map to be de�ned on all of W (rather than just
im(T )) by selecting a subspace W1 of W with W = im(T )⊕W1 (we may �nd such a subspace simply by
extending a basis of im(T ) to a basis of W ) and declaring that S maps W1 to zero, so that ker(S) = W1.

◦ The resulting map S : W → V then behaves like a �partial inverse� of T : V → W , in the sense that for
any w ∈ im(T ) and any v ∈ V1, we have S(T (v)) = v and T (S(w)) = w, and also for any ṽ ∈ ker(T )
and w̃ ∈W1 we have T (S(T (v)) = 0 = T (v) and S(T (S(w)) = 0 = S(w).

◦ In particular, although S and T are not full inverses of one another, the calculations above show that
they do satisfy the relations STS = S and TST = T .

◦ Of course, we have made two arbitrary choices above; namely, we have chosen the complement subspace
V1 to ker(T ) in V arbitrarily, and we have also chosen the complement subspace W1 to im(T ) in W
arbitrarily.

◦ When V and W are �nite-dimensional inner product spaces, there are natural choices for these comple-
ments: speci�cally, we could take V1 to be the orthogonal complement of ker(T ) in V and W1 to be the
orthogonal complement of im(T ) in W .

◦ The resulting construction yields the Moore-Penrose pseudoinverse of T :

• De�nition: Suppose that V and W are �nite-dimensional inner product spaces and T : V →W is linear, and
let S : ker(T )⊥ → im(T ) be the restriction of T to ker(T )⊥. The (Moore-Penrose) pseudoinverse of T is the
linear transformation T † : W → V de�ned so that T †(w) = S−1(w) for all w ∈ im(T ) and T †(w) = 0 for all
w ∈ im(T )⊥.

◦ We extend the de�nition of the pseudoinverse to matrices in the natural way: if A ∈ Mm×n(F ) where
F = R or C, then the pseudoinverse of A is the associated matrix (with respect to the standard bases)
of the pseudoinverse T † of the linear transformation with T (v) = Av.

◦ By the discussion above, the pseudoinverse of T is well de�ned, since S is one-to-one (hence has a valid
inverse) and the union of bases of im(T ) and im(T )⊥ yields a basis for W , so the two conditions on T †

characterize the value of T † on all of W .

◦ If T is an isomorphism, then the pseudoinverse of T is merely T−1, since in that case ker(T )⊥ = V so
that S = T , and im(T ) = W , so that T †(w) = S−1(w) = T−1(w) for all w ∈W .

◦ If T is merely one-to-one, then T † is obtained by extending the domain of T−1 : im(T )→ V to all of W ,
where the �extra vectors� in W (namely, im(T )⊥) are sent to zero.

• In principle, we can use the de�nition of the pseudoinverse to compute it directly, although this requires
computing bases for ker(T )⊥, im(T ), and im(T )⊥ and then evaluating T−1 on im(T ):

• Example: Find the pseudoinverse of the linear transformation T : R3 → R2 given by T (x, y, z) = (x, 0), where
the inner products on R3 and R2 are the dot product.

◦ We have the obvious basis {(0, 1, 0), (0, 0, 1)} for ker(T ), and ker(T )⊥ is easily seen to have basis {(1, 0, 0)}.
◦ Likewise, we have the obvious basis {(1, 0)} for im(T ), and im(T )⊥ is easily seen to have basis {(0, 1)}.
◦ Therefore, since S(1, 0, 0) = (1, 0), we see that T †(1, 0) = S−1(1, 0) = (1, 0, 0), and also T †(0, 1) =

(0, 0, 0).

◦ Thus, the map T † : R2 → R3 has T †(x, y) = (x, 0, 0) .

• Example: Find the pseudoinverse of the linear transformation T : R3 → R2 given by T (x, y, z) = (x + y −
z, x+ z), where the inner products on R3 and R2 are the dot product.

◦ We can compute the basis {(−1, 2, 1)} for ker(T ), and ker(T )⊥ is easily seen to have basis {(1, 1,−1), (1, 0, 1)}.
◦ Likewise, we have the obvious basis {(1, 0), (0, 1)} for im(T ), while im(T )⊥ has empty basis.
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◦ Therefore, with S = T |ker(T )⊥ , we compute S(1, 1,−1) = (3, 0) and S(1, 0, 1) = (0, 2), so S(1/3, 1/3,−1/3) =
(1, 0) and S(1/2, 0, 1/2) = (0, 1).

◦ Thus, we have T †(1, 0) = S−1(1, 0) = (1/3, 1/3,−1/3), and also T †(0, 1) = (1/2, 0, 1/2).

◦ This means the map T † : R2 → R3 has T †(x, y) = (1
3x+ 1

2y,
1
3x,−

1
3x+ 1

2y) .

• Using singular value decomposition, we can give another procedure for computing pseudoinverses.

◦ Explicitly, for T : V → W suppose we have computed the singular value bases {v1, . . . ,vn} of V and
{w1, . . . ,wm} of W such that T (vi) = σiwi for 1 ≤ i ≤ r and T (vi) = 0 for i > r.

◦ Then {vr+1, . . . ,vn} is a basis for ker(T ) so {v1, . . . ,vr} is a basis for ker(T )⊥, and {w1, . . . ,wr} is a
basis for im(T ) so {wr+1, . . . ,wm} is a basis for im(T )⊥.

◦ We then see S(vi) = σiwi and so T †(wi) = S−1(wi) = vi/σi for each 1 ≤ i ≤ r, and also T †(wi) = 0
for i > r, which gives the values of T † on a basis for W .

• The above calculations in fact yield a singular value decomposition for the pseudoinverse of a matrix:

• Proposition (Pseudoinverses and SVDs): Suppose F = R or C and that A ∈ Mm×n(F ) has rank r and
a singular value decomposition A = UΣV ∗ where U ∈ Mn×n(F ) and V ∈ Mm×m(F ) are unitary and
Σ ∈ Mn×m(F ) is the matrix whose �rst r diagonal entries are σ1, . . . , σr and whose remaining entries are 0.
If Σ† ∈ Mm×n(F ) is the matrix whose �rst r diagonal entries are σ−11 , . . . , σ−1r and whose remaining entries
are 0, then the pseudoinverse A† has a singular value decomposition A† = V Σ†U∗.

◦ We will remark that the nonzero diagonal entries of Σ† are in increasing order rather than decreasing
order; one may put the singular values in the usual decreasing order simply by reversing the order of the
corresponding basis elements.

◦ Proof: Let T : Fn → Fm have T (v) = Av, and suppose we have singular value bases β = {v1, . . . ,vn}
of V = Fn and γ = {w1, . . . ,wm} of W = Fm such that T (vi) = σiwi for 1 ≤ i ≤ r and T (vi) = 0 for
i > r.

◦ Then as calculated above, we have T †(wi) = S−1(wi) = vi/σi for each 1 ≤ i ≤ r, and also T †(wi) = 0
for i > r.

◦ Thus, the associated matrix [T †]βγ is the m× n rectangular diagonal matrix Σ†.

◦ Now, if we let α be the standard basis of Fn and δ be the standard basis of Fm, then [T ]δα = A, V = [I]αβ ,

and U = [I]δγ so that [I]γδ = U−1 = U∗.

◦ Then the pseudoinverse A† = [T †]αδ = [I]αβ [T †]βγ [I]γδ = V Σ†U∗, as claimed, and as V and U are unitary

and Σ† is a rectangular diagonal matrix, this is in fact a singular value decomposition of A†.

• Example: Find the pseudoinverse of the matrix A =


2 2
2 2
−1 1
1 −1

.
◦ We previously calculated a singular value decomposition A = UΣV ∗ with

U =
1√
2


1 0 1 0
1 0 −1 0
0 1 0 1
0 −1 0 1

, Σ =


4 0
0 2
0 0
0 0

, and V ∗ =
1√
2

[
1 −1
1 1

]
.

◦ ThenA† = V Σ†U∗ =
1√
2

[
1 1
−1 1

] [
1/4 0 0 0
0 1/2 0 0

]
1√
2


1 1 0 0
0 0 1 −1
1 −1 0 0
0 0 1 1

 =
1

8

[
1 1 −2 2
1 1 2 −2

]
.

• Example: Find the pseudoinverse of the matrix A =

[
1 + i 3 1 i
1 + i 1 2 −i

]
.
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◦ We previously calculated a singular value decomposition A = UΣV ∗ with U =
1√
13

[
3i 2i
2i −3i

]
,

Σ =

[ √
17 0 0 0
0 2 0 0

]
, and V ∗ =


(5 + 5i)/

√
221 (−1− i)/

√
52 (1 + i)/2 (−2 + 2i)/

√
34

11i/
√

221 3i/
√

52 −i/2 −1/
√

34

7i/
√

221 −4i/
√

52 0 4/
√

34

1/
√

221 5/
√

52 1/2 −3i/
√

34

.

◦ Then A† = V


1/
√

17 0
0 1/2
0 0
0 0

 1√
13

[
−3i −2i
−2i 3i

]
=

1

68


2− 2i 7− 7i

18 −5
−4 20
−14i 19i

 .

• Example: Find the pseudoinverse of the linear transformation T : R3 → R2 given by T (x, y, z) = (x + y −
z, x+ z), where the inner products on R3 and R2 are the dot product.

◦ We use the singular value decomposition formula on the associated matrix A =

[
1 1 −1
1 0 1

]
.

◦ We compute A∗A =

 2 1 0
1 1 −1
0 −1 2

 with eigenvalues λ = 3, 2, 0 and corresponding unit eigenvectors

v1 =
1√
3

 1
1
−1

, v2 =
1√
2

 1
0
1

, v3 =
1√
6

 −1
2
1

. The singular values are σ1 =
√

3, σ2 =
√

2, and

then w1 = Av1/σ1 =

[
1
0

]
and w1 = Av2/σ2 =

[
0
1

]
.

◦ The SVD for A is A =

[
1 0
0 1

] [ √
3 0 0

0
√

2 0

] 1/
√

3 1/
√

2 −1/
√

6

1/
√

3 0 2/
√

6

−1/
√

3 1/
√

2 1/
√

6

 so the SVD for A† is

A† =

 1/
√

3 1/
√

3 −1/
√

3

1/
√

2 0 1/
√

2

−1/
√

6 2/
√

6 1/
√

6

 1/
√

3 0

0 1/
√

2
0 0

[ 1 0
0 1

]
=

 1/3 1/2
1/3 0
−1/3 1/2

.
◦ This means the map T † : R2 → R3 has T †(x, y) = (1

3x+ 1
2y,

1
3x,−

1
3x+ 1

2y) , just as calculated before.

• The pseudoinverse is de�ned in terms of orthogonal complements, and as such we can use it to calculate
orthogonal projections and thereby also compute least-squares solutions to inconsistent systems.

◦ There are also several other quite di�erent characterizations of the pseudoinverse arising in other quite
natural contexts; as such, it has often been said that the pseudoinverse has been rediscovered many
di�erent times by many people.

• Theorem (Properties of Pseudoinverses): Suppose that V and W are �nite-dimensional inner product spaces,
T : V →W is linear, and F = R or C. Then the following hold:

1. The composition T †T is the orthogonal projection of V onto ker(T )⊥, and is Hermitian.

◦ Proof: By de�nition, the orthogonal projection of V onto ker(T )⊥ is the linear transformation that

is the identity on ker(T )⊥ and zero on
[
ker(T )⊥

]⊥
= ker(T ).

◦ But for v ∈ ker(T ) we have T †T (v) = T †(0) = 0, while for v ∈ ker(T )⊥ we have T †T (v) = v since
T † is the inverse of T when restricted to im(T ). Thus, T †T is the orthogonal projection of V onto
ker(T )⊥, and it is therefore Hermitian since it is an orthogonal projection.

2. The composition TT † is the orthogonal projection of W onto im(T ), and is Hermitian.

◦ Proof: By de�nition, the orthogonal projection of W onto im(T ) is the linear transformation that is
the identity on im(T ) and zero on im(T )⊥.
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◦ But for w ∈ im(T ) we have TT †(w) = w since T † is the inverse of T when restricted to im(T ),
while for w ∈ im(T )⊥ we have TT †(w) = T (0) = 0 since T † is zero on im(T )⊥. Thus, TT † is the
orthogonal projection of W onto im(T ), and is Hermitian.

3. We have TT †T = T and T †TT † = T †.

◦ Proof: For v ∈ ker(T ) we have TT †T (v) = 0 = T (v) and for v ∈ ker(T )⊥ we have TT †T (v) = T (v)
since T †T is the identity on v by (1). Thus TT †T and T agree on ker(T ) and ker(T )⊥, hence are
equal.

◦ Similarly, w ∈ im(T )⊥ we have T †TT †(w) = 0 = T (w) and for w ∈ im(T ) we have T †TT †(w) =
T †(w) since TT † is the identity on w by (2). Thus T †TT † and T † agree on im(T ) and im(T )⊥,
hence are equal.

4. For any A ∈Mm×n(F ), the product A†A represents orthogonal projection onto the row space of A, while
AA† represents orthogonal projection onto the column space of A.

◦ Proof: This follows immediately from (1) and (2) by taking associated matrices.

5. For any A ∈ Mm×n(F ) and c ∈ Fm, if the system Ax = c is consistent, then the vector x̂ = A†c is
the unique solution of minimum norm, meaning that any other solution y ∈ Fn has ||x̂|| ≤ ||y|| with
equality only for y = x̂.

◦ Proof: Let T : Fn → Fm have T (v) = Av. If Ax = c is consistent then c ∈ im(T ) and then
Ax̂ = AA†c = c by (2): thus x̂ is a solution to the system.

◦ For the second part suppose that Ay = c: then A†Ay = A†c = x̂, and so by (1), x̂ is the orthogonal
projection of y onto ker(T )⊥.

◦ Then for y⊥ = y−x̂ ∈ [ker(T )⊥]⊥ = ker(T ) we have the Pythagorean relation ||y||2 = ||x̂||2+
∣∣∣∣y⊥∣∣∣∣2,

which immediately yields ||x̂|| ≤ ||y|| with equality only for y = x̂.

6. For any A ∈Mm×n(F ) and c ∈ Fm, the vector x̂ = A†c is the unique least-squares solution of minimum
norm to the system Ax = c, meaning that for any y ∈ Fn it is true that ||Ax̂− c|| ≤ ||Ay − c|| with
equality only if Ax̂ = Ay, and in that case ||x̂|| ≤ ||y|| with equality only for y = x̂.

◦ Proof: Let T : Fn → Fm have T (v) = Av. By our discussion of least squares, the unique vector
w ∈ im(T ) minimizing the distance ||w − c|| will be the orthogonal projection c into im(T ), which
by (1) is w = AA†c = Ax̂.

◦ In other words, for any y ∈ Fn we see that ||Ax̂− c|| ≤ ||Ay − c|| with equality only if Ax̂ = Ay.

◦ For the second part, let Ax̂ = Ay = c′. Then by (3) we have A†c′ = A†Ax̂ = A†AA†c = A†c = x̂,
and so by applying (5) to the system Ax = c′ we have ||x̂|| ≤ ||y|| with equality only for y = x̂.

7. The pseudoinverse T † is the unique linear transformation U : W → V such that TUT = T , UTU = U ,
and UT and TU are both Hermitian.

◦ This algebraic characterization of the pseudoinverse is due to Moore and Penrose, and these condi-
tions are usually called the Moore-Penrose conditions.

◦ Proof: The fact that T † has all of these properties follows from (1)-(3) above. For uniqueness,
suppose now that TUT = T , UTU = U , (UT )∗ = UT , and (TU)∗ = TU .

◦ Then TT † = (TUT )T † = (TU)(TT †) = (TU)∗(TT †)∗ = U∗T ∗(T †T )∗ = U∗(TT †T )∗ = U∗T ∗ =
(TU)∗ = TU and using a similar argument with terms in the other order we also see that T †T = UT .

◦ Then �nally we have T † = T †TT † = T †TU = UTU = U , as required.

8. The pseudoinverse T † is given by the limit limε→0(T ∗T + εI)−1T ∗.

◦ To motivate this limit, observe �rst that T ∗TT † = T ∗(TT †)∗ = (TT †T )∗ = T ∗ using the properties
in (7). Thus, if T ∗T were invertible, we would have T † = (T ∗T )−1T ∗.

◦ When T ∗T is not invertible, we cannot extract T † this way, but in that situation, T ∗T + εI will be
invertible for small ε: then we have instead (T ∗T+εI)T † = T ∗+εT † so T † = (T ∗T+εI)−1(T ∗+εT †).
The idea is then that taking ε→ 0 allows us to discard the εT † term.

◦ Proof: First, we show that the limit exists. Because T ∗T is positive semide�nite, its eigenvalues are
nonnegative, and then the eigenvalues of T ∗T + εI are those of T ∗T plus ε. Thus, if the smallest
positive eigenvalue of T ∗T is at most r, any eigenvalue of T ∗T + εI is either ε or has absolute value
at least r − ε by the triangle inequality.
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◦ Hence for 0 < |ε| < r, the eigenvalues of T ∗T + εI are nonzero, so T ∗T + εI is invertible for all
such ε. Since matrix inversion is a continuous function of the entries of the matrix, this means
limε→0(T ∗T + εI)−1 exists.

◦ Now we observe that limε→0[(T ∗T + εI)T † − T ∗] = T ∗TT † − T ∗ = T ∗(TT † − I) = T ∗TT † − T ∗ = 0
as shown above.

◦ Hence we have limε→0(T ∗T + εI)T † = T ∗. Finally, since limε→0(T ∗T + εI)−1 exists, multiplying by
this limit on both sides and noting the obvious cancellation yields the desired T † = limε→0(T ∗T +
εI)−1T ∗.

• Example: Find the matrix associated to orthogonal projection onto the subspace of C4 spanned by the vectors
(1 + i, 3, 1, i) and (1 + i, 1, 2,−i), with respect to the standard basis under the standard inner product.

◦ For A =

[
1 + i 3 1 i
1 + i 1 2 −i

]
, we wish to compute the orthogonal projection onto the row space of A,

which by (4) of the theorem above is given by the product A†A.

◦ SinceA† =
1

68


2− 2i 7− 7i

18 −5
−4 20
−14i 19i

, the projection isA†A =
1

68


18 13− 13i 16− 16i −5− 5i

13 + 13i 49 8 23i
16 + 16i 8 36 −24i
−5 + 5i −23i 24i 33

 .

• Example: Find the solution of minimal norm to the system x+ y − z = 6, x+ z = 2.

◦ By (5) of the theorem above, the unique solution of minimum norm is x̂ = A†c for A =

[
1 1 −1
1 0 1

]
and c =

[
6
2

]
.

◦ Since A† =

 1/3 1/2
1/3 0
−1/3 1/2

, the solution is x̂ = A†c =

 1/3 1/2
1/3 0
−1/3 1/2

[ 6
2

]
=

 3
2
−1

 .

◦ Remark: Solving the system with row-reduction yields (x, y, z) = (2− t, 4 + 2t, t) which as a vector has
squared norm (2− t)2 + (4 + 2t)2 + t2 = 6t2 + 12t+ 18 = 6(t+ 1)2 + 12, so the minimum norm indeed
occurs when t = −1, as claimed.

• Example: Find the least-squares solution of minimal norm to the inconsistent system 2x+2y = 5, 2x+2y = 3,
−x+ y = 3, x− y = −5.

◦ By (6) of the theorem above, for A =


2 2
2 2
−1 1
1 −1

 and c =


5
3
3
−5

 the least-squares solution of

minimal norm is x̂ = A†c. Earlier we found A† =
1

8

[
1 1 −2 2
1 1 2 −2

]
, so the desired solution is

x̂ = A†c =
1

8

[
1 1 −2 2
1 1 2 −2

]
5
3
3
−5

 =

[
−1
3

]
.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2019-2023. You may not reproduce or distribute this
material without my express permission.
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