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4 Eigenvalues, Diagonalization, and the Jordan Canonical Form

In this chapter, we will discuss eigenvalues and eigenvectors: these are characteristic values and vectors associated
to a linear operator T : V → V that will allow us to study T in a particularly convenient way. Our ultimate goal is
to describe methods for �nding a basis for V such that the associated matrix for T has an especially simple form.

We will �rst describe diagonalization, the procedure for (trying to) �nd a basis such that the associated matrix for
T is a diagonal matrix, and characterize the linear operators that are diagonalizable.

Unfortunately, not all linear operators are diagonalizable, so we will then discuss a method for computing the Jordan
canonical form of matrix, which is the representation that is as close to a diagonal matrix as possible. To do so
requires some substantial study of the closely associated notion of generalized eigenvectors, which we pursue �rst;
then we establish the existence and uniqueness of the Jordan canonical form.

We close with a few applications of diagonalization and the Jordan canonical form, including a proof of the Cayley-
Hamilton theorem that any matrix satis�es its characteristic polynomial, a proof of the spectral theorem for Her-
mitian operators, modeling discrete stochastic processes and Markov chains, and various applications to solving
systems of di�erential equations and computing matrix exponentials.
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4.1 Eigenvalues, Eigenvectors, and The Characteristic Polynomial

• Suppose that we have a linear transformation T : V → V from a �nite-dimensional vector space V to itself.
We would like to determine whether there exists a basis β of V such that the associated matrix [T ]ββ is a
diagonal matrix.

◦ Ultimately, our reason for asking this question is that we would like to describe T in as simple a way as
possible, and it is unlikely we could hope for anything simpler than a diagonal matrix.

◦ So suppose that β = {v1, . . . ,vn} and the diagonal entries of [T ]ββ are {λ1, . . . , λn}.
◦ Then, by assumption, we have T (vi) = λivi for each 1 ≤ i ≤ n, meaning that the linear transformation
T acts on the vector vi by scalar multiplication by λi.

◦ Conversely, if we were able to �nd a basis β of V such that T (vi) = λivi for some scalars λi, with

1 ≤ i ≤ n, then the associated matrix [T ]ββ would be a diagonal matrix.

◦ This suggests we should study vectors v such that T (v) = λv for some scalar λ.

4.1.1 Eigenvalues and Eigenvectors

• De�nition: If T : V → V is a linear transformation, a nonzero vector v with T (v) = λv is called an eigenvector
of T , and the corresponding scalar λ is called an eigenvalue of T .

◦ Remark: We do not consider the zero vector 0 an eigenvector. (The reason for this convention is to
ensure that if v is an eigenvector, then its corresponding eigenvalue λ is unique.)

◦ Note also that (implicitly) λ must be an element of the scalar �eld of V , since otherwise λv does not
make sense.

◦ When V is a vector space of functions, we often use the word eigenfunction in place of eigenvector.

• Here are a few examples of linear transformations and eigenvectors:

◦ Example: If T : R2 → R2 is the map with T (x, y) = 〈2x+ 3y, x+ 4y〉, then the vector v = 〈3,−1〉 is an
eigenvector of T with eigenvalue 1, since T (v) = 〈3,−1〉 = v.

◦ Example: If T : C2 → C2 is the map with T (x, y) = 〈2x+ 3y, x+ 4y〉, the vector w = 〈1, 1〉 is an
eigenvector of T with eigenvalue 5, since T (w) = 〈5, 5〉 = 5w.

◦ Example: If T : M2×2(R)→M2×2(R) is the transpose map, then the matrix

[
1 1
1 3

]
is an eigenvector

of T with eigenvalue 1.

◦ Example: If T : M2×2(R)→M2×2(R) is the transpose map, then the matrix

[
0 −2
2 0

]
is an eigenvector

of T with eigenvalue −1.

◦ Example: If T : P (R) → P (R) is the map with T (f(x)) = xf ′(x), then for any integer n ≥ 0, the
polynomial xn is an eigenfunction of T with eigenvalue n, since T (xn) = x · nxn−1 = nxn.

◦ Example: If V is the space of in�nitely-di�erentiable functions and D : V → V is the di�erentiation
operator, the function f(x) = erx is an eigenfunction with eigenvalue r, for any real number r, since
D(erx) = rerx.

◦ Example: If T : V → V is any linear transformation and v is a nonzero vector in ker(T ), then v is an
eigenvector of V with eigenvalue 0. In fact, the eigenvectors with eigenvalue 0 are precisely the nonzero
vectors in ker(T ).

• Finding eigenvectors is a generalization of computing the kernel of a linear transformation, but, in fact, we can
reduce the problem of �nding eigenvectors to that of computing the kernel of a related linear transformation:

• Proposition (Eigenvalue Criterion): If T : V → V is a linear transformation, the nonzero vector v is an
eigenvector of T with eigenvalue λ if and only if v is in ker(λI − T ) = ker(T − λI), where I is the identity
transformation on V .
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◦ This criterion reduces the computation of eigenvectors to that of computing the kernel of a collection of
linear transformations.

◦ Proof: Assume v 6= 0. Then v is an eigenvalue of T with eigenvalue λ ⇐⇒ T (v) = λv ⇐⇒
(λI)v − T (v) = 0 ⇐⇒ (λI − T )(v) = 0 ⇐⇒ v is in the kernel of λI − T . The equivalence
ker(λI − T ) = ker(T − λI) is also immediate.

• We will remark that some linear operators may have no eigenvectors at all.

• Example: If I : R[x]→ R[x] is the integration operator I(p) =
´ x

0
p(t) dt, show that I has no eigenvectors.

◦ Suppose that I(p) = λp, so that
´ x

0
p(t) dt = λp(x).

◦ Then, di�erentiating both sides with respect to x and applying the fundamental theorem of calculus
yields p(x) = λp′(x).

◦ If p had positive degree n, then λp′(x) would have degree at most n− 1, so it could not equal p(x).

◦ Thus, p must be a constant polynomial. But the only constant polynomial with I(p) = λp is the zero
polynomial, which is by de�nition not an eigenvector. Thus, I has no eigenvectors.

• In other cases, the existence of eigenvectors may depend on the scalar �eld being used.

• Example: Show that T : F 2 → F 2 de�ned by T (x, y) = 〈y,−x〉 has no eigenvectors when F = R, but does
have eigenvectors when F = C.

◦ If T (x, y) = λ 〈x, y〉, we get y = λx and −x = λy, so that (λ2 + 1)y = 0.

◦ If y were zero then x = −λy would also be zero, impossible. Thus y 6= 0 and so λ2 + 1 = 0.

◦ When F = R there is no such scalar λ, so there are no eigenvectors in this case.

◦ However, when F = C, we get λ = ±i, and then the eigenvectors are 〈x,−ix〉 with eigenvalue i and
〈x, ix〉 with eigenvalue −i.

• Computing eigenvectors of general linear transformations on in�nite-dimensional spaces can be quite di�cult.

◦ For example, if V is the space of in�nitely-di�erentiable functions, then computing the eigenvectors of
the map T : V → V with T (f) = f ′′ + xf ′ requires solving the di�erential equation f ′′ + xf ′ = λf for
an arbitrary λ.

◦ It is quite hard to solve that particular di�erential equation for a general λ (at least, without resorting
to using an in�nite series expansion to describe the solutions), and the solutions for most values of λ are
non-elementary functions.

• In the �nite-dimensional case, however, we can recast everything using matrices.

• Proposition (Eigenvalues and Matrices): Suppose V is a �nite-dimensional vector space with ordered basis
β and that T : V → V is linear. Then v is an eigenvector of T with eigenvalue λ if and only if [v]β is an

eigenvector of left-multiplication by [T ]ββ with eigenvalue λ.

◦ Proof: Note that v 6= 0 if and only if [v]β 6= 0, so now assume v 6= 0.

◦ Then v is an eigenvector of T with eigenvalue λ ⇐⇒ T (v) = λv ⇐⇒ [T (v)]β = [λv]β ⇐⇒
[T ]ββ [v]β = λ[v]β ⇐⇒ [v]β is an eigenvector of left-multiplication by [T ]ββ with eigenvalue λ.

4.1.2 Eigenvalues and Eigenvectors of Matrices

• We now study eigenvalues and eigenvectors of matrices. For convenience, we restate the de�nition for this
setting:

• De�nition: For A an n× n matrix, a nonzero vector x with Ax = λx is called1 an eigenvector of A, and the
corresponding scalar λ is called an eigenvalue of A.

1Technically, such a vector x is a �right eigenvector� of A: this stands in contrast to a vector y with yA = λy, which is called a

�left eigenvector� of A. We will only consider right eigenvectors in our discussion: we do not actually lose anything by ignoring left

eigenvectors, because a left eigenvector of A is the same as the transpose of a right eigenvector of AT .
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◦ Example: If A =

[
2 3
1 4

]
, the vector x =

[
3
−1

]
is an eigenvector of A with eigenvalue 1, because

Ax =

[
2 3
1 4

] [
3
−1

]
=

[
3
−1

]
= x.

◦ Example: If A =

 2 −4 5
2 −2 5
2 1 2

, the vector x =

 1
2
2

 is an eigenvector of A with eigenvalue 4, because

Ax =

 2 −4 5
2 −2 5
2 1 2

 1
2
2

 =

 4
8
8

 = 4x.

• Eigenvalues and eigenvectors can involve complex numbers, even if the matrix A only has real-number entries.
Because of this, we will typically assume that the underlying �eld of scalars is C (or another algebraically
closed �eld2) unless speci�cally indicated otherwise.

◦ Example: If A =

 6 3 −2
−2 0 0
6 4 2

, the vector x =

 1− i
2i
2

 is an eigenvector of A with eigenvalue 1+ i,

because Ax =

 6 3 −2
−2 0 0
6 4 −2

 1− i
2i
2

 =

 2
−2 + 2i
2 + 2i

 = (1 + i)x.

• It may at �rst seem that a given matrix could have many eigenvectors with many di�erent eigenvalues. But
in fact, any n × n matrix can only have a few eigenvalues, and there is a simple way to �nd them all using
determinants:

• Proposition (Computing Eigenvalues): If A is an n× n matrix, the scalar λ is an eigenvalue of A if and only
det(λI −A) = 0.

◦ Proof: Suppose λ is an eigenvalue with associated nonzero eigenvector x.

◦ Then Ax = λx, or as we observed earlier, (λI −A)x = 0.

◦ But from our results on invertible matrices, the matrix equation (λI − A)x = 0 has a nonzero solution
for x if and only if the matrix λI − A is not invertible, which is in turn equivalent to saying that
det(λI −A) = 0.

• When we expand the determinant det(tI − A), we will obtain a polynomial of degree n in the variable t, as
can be veri�ed by an easy induction.

• De�nition: For an n×nmatrixA, the degree-n polynomial p(t) = det(tI−A) is called the characteristic polynomial
of A, and its roots are precisely the eigenvalues of A.

◦ Some authors instead de�ne the characteristic polynomial as the determinant of the matrix A− tI rather
than tI −A. We de�ne it this way because then the coe�cient of tn will always be 1, rather than (−1)n.

• To �nd the eigenvalues of a matrix, we need only �nd the roots of its characteristic polynomial.

• When searching for roots of polynomials of small degree, the following case of the rational root test is often
helpful.

• Proposition: Suppose the polynomial p(t) = tn+ · · ·+b has integer coe�cients and leading coe�cient 1. Then
any rational number that is a root of p(t) must be an integer that divides b.

◦ The proposition cuts down on the amount of trial and error necessary for �nding rational roots of
polynomials, since we only need to consider integers that divide the constant term.

◦ Of course, a generic polynomial will not have a rational root, so to compute eigenvalues in practice one
generally needs to use some kind of numerical approximation procedure, such as Newton's method, to
�nd roots. (But we will arrange the examples so that the polynomials will factor nicely.)

2It is a nontrivial fact from �eld theory, which we take for granted, that every �eld can be considered as a sub�eld of an

algebraically closed �eld: a �eld in which every polynomial of positive degree can be factored into a product of linear factors.
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• Example: Find the eigenvalues of A =

[
3 1
2 4

]
.

◦ First we compute the characteristic polynomial det(tI −A) =

∣∣∣∣ t− 3 −1
−2 t− 4

∣∣∣∣ = t2 − 7t+ 10.

◦ The eigenvalues are then the zeroes of this polynomial. Since t2 − 7t + 10 = (t − 2)(t − 5) we see that

the zeroes are t = 2 and t = 5, meaning that the eigenvalues are 2 and 5 .

• Example: Find the eigenvalues of A =

 1 4
√

3
0 3 −8
0 0 π

.

◦ Observe that det(tI − A) =

∣∣∣∣∣∣
t− 1 −4 −

√
3

0 t− 3 8
0 0 t− π

∣∣∣∣∣∣ = (t − 1)(t − 3)(t − π) since the matrix is upper-

triangular. Thus, the eigenvalues are 1, 3, π .

• The idea from the example above works in generality:

• Proposition (Eigenvalues of Triangular Matrix): The eigenvalues of an upper-triangular or lower-triangular
matrix are its diagonal entries.

◦ Proof: If A is an n× n upper-triangular (or lower-triangular) matrix, then so is tI −A.
◦ Then by properties of determinants, det(tI−A) is equal to the product of the diagonal entries of tI−A.
◦ Since these diagonal entries are simply t− ai,i for 1 ≤ i ≤ n, the eigenvalues are ai,i for 1 ≤ i ≤ n, which
are simply the diagonal entries of A.

• It can happen that the characteristic polynomial has a repeated root. In such cases, it is customary to note
that the associated eigenvalue has �multiplicity� and include the eigenvalue the appropriate number of extra
times when listing them.

◦ For example, if a matrix has characteristic polynomial t2(t−1)3, we would say the eigenvalues are 0 with
multiplicity 2, and 1 with multiplicity 3. We would list the eigenvalues as λ = 0, 0, 1, 1, 1.

• Example: Find the eigenvalues of A =

 1 −1 0
1 3 0
0 0 0

.
◦ By expanding along the bottom row we see det(tI − A) =

∣∣∣∣∣∣
t− 1 1 0
−1 t− 3 0
0 0 t

∣∣∣∣∣∣ = t

∣∣∣∣ t− 1 1
−1 t− 3

∣∣∣∣ =

t(t2 − 4t+ 4) = t(t− 2)2.

◦ Thus, the characteristic polynomial has a single root t = 0 and a double root t = 2, so A has an eigenvalue
0 of multiplicity 1 and an eigenvalue 2 of multiplicity 2. As a list, the eigenvalues are λ = 0, 2, 2 .

• Example: Find the eigenvalues of A =

 1 1 0
0 1 1
0 0 1

.
◦ Since A is upper-triangular, the eigenvalues are the diagonal entries, so A has an eigenvalue 1 of multi-
plicity 3. As a list, the eigenvalues are λ = 1, 1, 1 .

• Note also that the characteristic polynomial may have non-real numbers as roots, even if the entries of the
matrix are real.

◦ Since the characteristic polynomial will have real coe�cients, any non-real eigenvalues will come in
complex conjugate pairs. Furthermore, the eigenvectors for these eigenvalues will also necessarily contain
non-real entries.
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• Example: Find the eigenvalues of A =

[
1 1
−2 3

]
.

◦ First we compute the characteristic polynomial det(tI −A) =

∣∣∣∣ t− 1 −1
2 t− 3

∣∣∣∣ = t2 − 4t+ 5.

◦ The eigenvalues are then the zeroes of this polynomial. By the quadratic formula, the roots are
4±
√
−4

2
= 2± i, so the eigenvalues are 2 + i, 2− i .

• Example: Find the eigenvalues of A =

 −1 2 −4
3 −2 1
4 −4 4

.
◦ By expanding along the top row,

det(tI −A) =

∣∣∣∣∣∣
t+ 1 −2 4
−3 t+ 2 −1
−4 4 t− 4

∣∣∣∣∣∣
= (t+ 1)

∣∣∣∣ t+ 2 −1
4 t− 4

∣∣∣∣+ 2

∣∣∣∣ −3 −1
−4 t− 4

∣∣∣∣+ 4

∣∣∣∣ −3 t+ 2
−4 4

∣∣∣∣
= (t+ 1)(t2 − 2t− 4) + 2(−3t+ 8) + 4(4t− 4)

= t3 − t2 + 4t− 4.

◦ To �nd the roots, we wish to solve the cubic equation t3 − t2 + 4t− 4 = 0.

◦ By the rational root test, if the polynomial has a rational root then it must be an integer dividing −4:
that is, one of ±1, ±2, ±4. Testing the possibilities reveals that t = 1 is a root, and then we get the
factorization (t− 1)(t2 + 4) = 0.

◦ The roots of the quadratic are t = ±2i, so the eigenvalues are 1, 2i, −2i .

4.1.3 Eigenspaces

• Using the characteristic polynomial, we can �nd all the eigenvalues of a matrix A without actually determining
the associated eigenvectors. However, we often also want to �nd the eigenvectors associated to each eigenvalue.

• We might hope that there is a straightforward way to describe all the eigenvectors, and (conveniently) there
is: the set of all eigenvectors with a particular eigenvalue λ has a vector space structure.

• Proposition (Eigenspaces): If T : V → V is linear, then for any �xed value of λ, the set Eλ of vectors in V
satisfying T (v) = λv is a subspace of V . This space Eλ is called the eigenspace associated to the eigenvalue
λ, or more simply the λ-eigenspace.

◦ Notice that Eλ is precisely the set of eigenvectors with eigenvalue λ, along with the zero vector.

◦ The eigenspaces for a matrix A are de�ned in the same way: Eλ is the space of vectors v such that
Av = λv.

◦ Proof: By de�nition, Eλ is the kernel of the linear transformation λI − T , and is therefore a subspace of
V .

• Example: Find the 1-eigenspaces, and their dimensions, for A =

[
1 0
0 1

]
and B =

[
1 1
0 1

]
.

◦ For the 1-eigenspace of A, we want to �nd all vectors with

[
1 0
0 1

] [
a
b

]
=

[
a
b

]
.

◦ Clearly, all vectors satisfy this equation, so the 1-eigenspace of A is the set of all vectors

[
a
b

]
, and

has dimension 2.
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◦ For the 1-eigenspace of B, we want to �nd all vectors with

[
1 1
0 1

] [
a
b

]
=

[
a
b

]
, or equivalently,[

a+ b
b

]
=

[
a
b

]
.

◦ The vectors satisfying the equation are those with b = 0, so the 1-eigenspace of B is the set of vectors of

the form

[
a
0

]
, and has dimension 1.

◦ Notice that the characteristic polynomial of each matrix is (t − 1)2, since both matrices are upper-
triangular, and they both have a single eigenvalue λ = 1 of multiplicity 2. Nonetheless, the matrices do
not have the same eigenvectors, and the dimensions of their 1-eigenspaces are di�erent.

• In the �nite-dimensional case, we would like to compute a basis for the λ-eigenspace: this is equivalent to
solving the system (λI −A)v = 0, which we can do by row-reducing the matrix λI −A.

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

[
2 2
3 1

]
.

◦ We have tI −A =

[
t− 2 −2
−3 t− 1

]
, so p(t) = det(tI −A) = (t− 2)(t− 1)− (−2)(−3) = t2 − 3t− 4.

◦ Since p(t) = t2 − 3t− 4 = (t− 4)(t+ 1), the eigenvalues are λ = −1, 4 .

◦ For λ = −1, we want to �nd the nullspace of

[
−1− 2 −2
−3 −1− 1

]
=

[
−3 −2
−3 −2

]
. By row-reducing

we �nd the row-echelon form is

[
−3 −2
0 0

]
, so the (−1)-eigenspace is 1-dimensional and is spanned by[

−2
3

]
.

◦ For λ = 4, we want to �nd the nullspace of

[
4− 2 −2
−3 4− 1

]
=

[
2 −2
−3 3

]
. By row-reducing we �nd

the row-echelon form is

[
1 −1
0 0

]
, so the 4-eigenspace is 1-dimensional and is spanned by

[
1
1

]
.

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

 1 0 1
−1 1 3
−1 0 3

.
◦ First, we have tI−A =

 t− 1 0 −1
1 t− 1 −3
1 0 t− 3

, so p(t) = (t−1) ·
∣∣∣∣ t− 1 −3

0 t− 3

∣∣∣∣+(−1) ·
∣∣∣∣ 1 t− 1

1 0

∣∣∣∣ =

(t− 1)2(t− 3) + (t− 1).

◦ Since p(t) = (t− 1) · [(t− 1)(t− 3) + 1] = (t− 1)(t− 2)2, the eigenvalues are λ = 1, 2, 2 .

◦ For λ = 1 we want to �nd the nullspace of

 1− 1 0 −1
1 1− 1 −3
1 0 1− 3

 =

 0 0 −1
1 0 −3
1 0 −3

. This matrix's

reduced row-echelon form is

 1 0 0
0 0 1
0 0 0

, so the 1-eigenspace is 1-dimensional and spanned by

 0
1
0

 .
◦ For λ = 2 we want to �nd the nullspace of

 2− 1 0 −1
1 2− 1 −3
1 0 2− 3

 =

 1 0 −1
1 1 −3
1 0 −1

. This matrix's re-

duced row-echelon form is

 1 0 −1
0 1 −2
0 0 0

, so the 2-eigenspace is 1-dimensional and spanned by

 1
2
1

 .
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• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

 0 0 0
1 0 −1
0 1 0

.

◦ We have tI −A =

 t 0 0
−1 t 1
0 −1 t

, so p(t) = det(tI −A) = t ·
∣∣∣∣ t 1
−1 t

∣∣∣∣ = t · (t2 + 1).

◦ Since p(t) = t · (t2 + 1), the eigenvalues are λ = 0, i, −i .

◦ For λ = 0 we want to �nd the nullspace of

 0 0 0
−1 0 1
0 −1 0

. This matrix's reduced row-echelon form is

 1 0 −1
0 1 0
0 0 0

, so the 0-eigenspace is 1-dimensional and spanned by

 1
0
1

 .
◦ For λ = i we want to �nd the nullspace of

 i 0 0
−1 i 1
0 −1 i

. This matrix's reduced row-echelon form is

 1 0 0
0 1 −i
0 0 0

, so the i-eigenspace is 1-dimensional and spanned by

 0
i
1

 .
◦ For λ = −i we want to �nd the nullspace of

 −i 0 0
−1 −i 1
0 −1 −i

. This matrix's reduced row-echelon form

is

 1 0 0
0 1 i
0 0 0

, so the (−i)-eigenspace is 1-dimensional and spanned by

 0
−i
1

 .
• Notice that in the example above, with a real matrix having complex-conjugate eigenvalues, the associated
eigenvectors were also complex conjugates. This is no accident:

• Proposition (Conjugate Eigenvalues): If A is a real matrix and v is an eigenvector with a complex eigenvalue
λ, then the complex conjugate v is an eigenvector with eigenvalue λ. In particular, a basis for the λ-eigenspace
is given by the complex conjugate of a basis for the λ-eigenspace.

◦ Proof: The �rst statement follows from the observation that the complex conjugate of a product or sum
is the appropriate product or sum of complex conjugates, so if A and B are any matrices of compatible
sizes for multiplication, we have A ·B = A · B.
◦ Thus, if Av = λv, taking complex conjugates gives Av = λv, and since A = A because A is a real
matrix, we see Av = λv: thus, v is an eigenvector with eigenvalue λ.

◦ The second statement follows from the �rst, since complex conjugation does not a�ect linear independence
or dimension.

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

[
3 −1
2 5

]
.

◦ We have tI − A =

[
t− 3 1
−2 t− 5

]
, so p(t) = det(tI − A) = (t − 3)(t − 5) − (−2)(1) = t2 − 8t + 17, so

the eigenvalues are λ = 4± i .

◦ For λ = 4 + i, we want to �nd the nullspace of

[
t− 3 1
−2 t− 5

]
=

[
1 + i 1
−2 −1 + i

]
. Row-reducing this

matrix yields [
1 + i 1
−2 −1 + i

]
R2+(1−i)R1−−−−−−−−→

[
1 + i 1

0 0

]
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from which we can see that the (4 + i)-eigenspace is 1-dimensional and spanned by

[
1

−1− i

]
.

◦ For λ = 4 − i we can simply take the conjugate of the calculation we made for λ = 4 + i: thus, the

(4− i)-eigenspace is also 1-dimensional and spanned by

[
1

−1 + i

]
.

• We will mention one more result about eigenvalues that can be useful in double-checking calculations:

• Theorem (Eigenvalues, Trace, and Determinant): The product of the eigenvalues of A is the determinant of
A, and the sum of the eigenvalues of A equals the trace of A.

◦ Recall that the trace of a matrix is de�ned to be the sum of its diagonal entries.

◦ Proof: Let p(t) be the characteristic polynomial of A.

◦ If we expand out the product p(t) = (t− λ1) · (t− λ2) · · · (t− λn), we see that the constant term is equal
to (−1)nλ1λ2 · · ·λn.
◦ But the constant term is also just p(0), and since p(t) = det(tI − A) we have p(0) = det(−A) =

(−1)n det(A): thus, λ1λ2 · · ·λn = det(A).

◦ Furthermore, upon expanding out the product p(t) = (t − λ1) · (t − λ2) · · · (t − λn), we see that the
coe�cient of tn−1 is equal to −(λ1 + · · ·+ λn).

◦ If we expand out the determinant det(tI − A) to �nd the coe�cient of tn−1, it is a straightforward
induction argument to see that the coe�cient is the negative of the sum of the diagonal entries of A.

◦ Thus, setting the two expressions equal shows that the sum of the eigenvalues equals the trace of A.

• Example: Find the eigenvalues of the matrix A =

 2 1 1
−2 −1 −2
2 2 −3

, and verify the formulas for trace and

determinant in terms of the eigenvalues.

◦ By expanding along the top row, we can compute

det(tI −A) = (t− 2)

∣∣∣∣ t+ 1 2
−2 t+ 3

∣∣∣∣− (−1)

∣∣∣∣ 2 2
−2 t+ 3

∣∣∣∣+ (−1)

∣∣∣∣ 2 t+ 1
−2 −2

∣∣∣∣
= (t− 2)(t2 + 4t+ 7) + (2t+ 10)− (2t− 2) = t3 + 2t2 − t− 2.

◦ To �nd the eigenvalues, we wish to solve the cubic equation t3 + 2t2 − t− 2 = 0.

◦ By the rational root test, if the polynomial has a rational root then it must be an integer dividing −2:
that is, one of ±1, ±2. Testing the possibilities reveals that t = 1, t = −1, and t = −2 are each roots,
from which we obtain the factorization (t− 1)(t+ 1)(t+ 2) = 0.

◦ Thus, the eigenvalues are t = −2,−1, 1.

◦ We see that tr(A) = 2 + (−1) + (−3) = −2, while the sum of the eigenvalues is (−2) + (−1) + 1 = −2.

◦ Also, det(A) = 2, and the product of the eigenvalues is (−2)(−1)(1) = 2.

• In all of the examples above, the dimension of each eigenspace was less than or equal to the multiplicity of
the eigenvalue as a root of the characteristic polynomial. This is true in general:

• Theorem (Eigenvalue Multiplicity): If λ is an eigenvalue of the matrix A which appears exactly k times as a
root of the characteristic polynomial, then the dimension of the eigenspace corresponding to λ is at least 1
and at most k.

◦ Remark: The number of times that λ appears as a root of the characteristic polynomial is sometimes called
the �algebraic multiplicity� of λ, and the dimension of the eigenspace corresponding to λ is sometimes
called the �geometric multiplicity� of λ. In this language, the theorem above says that the geometric
multiplicity is less than or equal to the algebraic multiplicity.
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◦ Example: If the characteristic polynomial of a matrix is (t − 1)3(t − 3)2, then the eigenspace for λ = 1
is at most 3-dimensional, and the eigenspace for λ = 3 is at most 2-dimensional.

◦ Proof: The statement that the eigenspace has dimension at least 1 is immediate, because (by assumption)
λ is a root of the characteristic polynomial and therefore has at least one nonzero eigenvector associated
to it.

◦ For the other statement, observe that the dimension of the λ-eigenspace is the dimension of the solution
space of the homogeneous system (λI − A)x = 0. (Equivalently, it is the dimension of the nullspace of
the matrix λI −A.)
◦ If λ appears k times as a root of the characteristic polynomial, then when we put the matrix λI −A into
its reduced row-echelon form B, we claim that B must have at most k rows of all zeroes.

◦ Otherwise, the matrix B (and hence λI −A too, since the nullity and rank of a matrix are not changed
by row operations) would have 0 as an eigenvalue more than k times, because B is in echelon form and
therefore upper-triangular.

◦ But the number of rows of all zeroes in a square matrix in reduced row-echelon form is the same as
the number of nonpivotal columns, which is the number of free variables, which is the dimension of the
solution space.

◦ So, putting all the statements together, we see that the dimension of the eigenspace is at most k.

4.2 Diagonalization

• Let us now return to our original question that motivated our discussion of eigenvalues and eigenvectors in
the �rst place: given a linear operator T : V → V on a �nite-dimensional vector space V , can we �nd a basis
β of V such that the associated matrix [T ]ββ is a diagonal matrix?

4.2.1 Diagonalizability

• De�nition: A linear operator T : V → V on a �nite-dimensional vector space V is diagonalizable if there
exists a basis β of V such that the associated matrix [T ]ββ is a diagonal matrix.

◦ We can also formulate essentially the same de�nition for matrices: if A is an n×n matrix, then A is the
associated matrix of T : Fn → Fn given by left-multiplication by A.

◦ We then would like to say that A is diagonalizable when T is diagonalizable.

◦ By our results on change of basis, this is equivalent to saying that there exists an invertible matrix
Q ∈ Mn×n(F ), namely the change-of-basis matrix Q = [I]βγ , for which Q

−1AQ = [I]βγ [T ]γγ [I]γβ = [T ]ββ is
a diagonal matrix.

• De�nition: An n× n matrix A ∈Mn×n(F ) is diagonalizable over F if there exists an invertible n× n matrix
Q ∈Mn×n(F ) for which Q−1AQ is a diagonal matrix.

◦ Warning: We will often leave the �eld F implicit in our discussion. Whether a particular matrix is
diagonalizable does partly depend on the �eld F we are working in.

◦ Recall that we say two n× n matrices A and B are similar if there exists an invertible n× n matrix Q
such that B = Q−1AQ.

◦ Thus, a matrix is diagonalizable precisely when it is similar to a diagonal matrix.

• Our goal is to study and then characterize diagonalizable linear transformations, which (per the above dis-
cussion) is equivalent to characterizing diagonalizable matrices.

• Proposition (Characteristic Polynomials and Similarity): If A and B are similar, then they have the same
characteristic polynomial, determinant, trace, and eigenvalues (and their eigenvalues have the same multiplic-
ities).

◦ Proof: Suppose B = Q−1AQ. For the characteristic polynomial, we simply compute det(tI − B) =
det(Q−1(tI)Q−Q−1AQ) = det(Q−1(tI −A)Q) = det(Q−1) det(tI −A) det(Q) = det(tI −A).
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◦ The determinant and trace are both coe�cients (up to a factor of ±1) of the characteristic polynomial,
so they are also equal.

◦ Finally, the eigenvalues are the roots of the characteristic polynomial, so they are the same and occur
with the same multiplicities for A and B.

• The eigenvectors for similar matrices are also closely related:

• Proposition (Eigenvectors and Similarity): If B = Q−1AQ, then v is an eigenvector of B with eigenvalue λ if
and only if Qv is an eigenvector of A with eigenvalue λ.

◦ Proof: Since Q is invertible, v = 0 if and only if Qv = 0. Now assume v 6= 0.

◦ First suppose v is an eigenvector of B with eigenvalue λ. Then A(Qv) = Q(Q−1AQ)v = Q(Bv) =
Q(λv) = λ(Qv), meaning that Qv is an eigenvector of A with eigenvalue λ.

◦ Conversely, if Qv is an eigenvector of A with eigenvalue λ. Then Bv = Q−1A(Qv) = Q−1λ(Qv) =
λ(Q−1Qv) = λv, so v is an eigenvector of B with eigenvalue λ.

• Corollary: If B = Q−1AQ, then the eigenspaces for B have the same dimensions as the eigenspaces for A.

• As we have essentially worked out already, diagonalizability is equivalent to the existence of a basis of eigen-
vectors:

• Theorem (Diagonalizability): A linear operator T : V → V is diagonalizable if and only if there exists a basis
β of V consisting of eigenvectors of T .

◦ Proof: First suppose that V has a basis of eigenvectors β = {v1, . . . ,vn} with respective eigenvalues

λ1, · · · , λn. Then by hypothesis, T (vi) = λivi, and so [T ]ββ is the diagonal matrix with diagonal entries
λ1, . . . , λn.

◦ Conversely, suppose T is diagonalizable and let β = {v1, . . . ,vn} be a basis such that [T ]ββ is a diagonal
matrix whose diagonal entries are λ1, . . . , λn. Then by hypothesis, each vi is nonzero and T (vi) = λivi,
so each vi is an eigenvector of T .

• Although the result above does give a characterization of diagonalizable transformations, it is not entirely
obvious how to determine whether a basis of eigenvectors exists.

◦ It turns out that we can essentially check this property on each eigenspace.

◦ As we already proved, the dimension of the λ-eigenspace of T is less than or equal to the multiplicity of
λ as a root of the characteristic polynomial.

◦ But since the characteristic polynomial has degree n, that means the sum of the dimensions of the
λ-eigenspaces is at most n, and can equal n only when each eigenspace has dimension equal to the
multiplicity of its corresponding eigenvalue.

◦ Our goal is to show that the converse holds as well: if each eigenspace has the proper dimension, then
the matrix will be diagonalizable.

• We �rst need an intermediate result about linear independence of eigenvectors having distinct eigenvalues:

• Theorem (Independent Eigenvectors): If v1,v2, . . . ,vn are eigenvectors of T associated to distinct eigenvalues
λ1, λ2, . . . , λn, then v1,v2, . . . ,vn are linearly independent.

◦ Proof: We induct on n.

◦ The base case n = 1 is trivial, since by de�nition an eigenvector cannot be the zero vector.

◦ Now suppose n ≥ 2 and that we had a linear dependence a1v1+· · ·+anvn = 0 for eigenvectors v1, . . . ,vn
having distinct eigenvalues λ1, λ2, . . . , λn,

◦ Applying T to both sides yields 0 = T (0) = T (a1v1 + · · ·+ anvn) = a1(λ1v1) + · · ·+ an(λnvn).

◦ But now if we scale the original dependence by λ1 and subtract this new relation (to eliminate v1), we
obtain a2(λ2 − λ1)v2 + a3(λ3 − λ1)v3 + · · ·+ an(λn − λ1)vn = 0.
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◦ By the inductive hypothesis, all coe�cients of this dependence must be zero, and so since λk 6= λ1 for
each k, we conclude that a2 = · · · = an = 0. Then a1v1 = 0 implies a1 = 0 also, so we are done.

• We also must formalize the notion of what it means to have all of the necessary eigenvalues in F :

• De�nition: If p(x) ∈ F [x], we say that p(x) splits completely over F if p(x) can be written as a product of
linear factors in F [x]: i.e., as p(x) = a(x− r1)(x− r2) · · · (x− rd) for some a, r1, r2, . . . , rd ∈ F .

◦ Informally, a polynomial splits completely over F when all of its roots are actually elements of F , rather
than in some larger �eld.

◦ Example: The polynomial x2 − 1 splits completely over Q, since we can write x2 − 1 = (x− 1)(x+ 1) in
Q[x].

◦ Example: The polynomial x2 − 2 does not split completely over Q, but it does split completely over R
since we can write x2 − 2 = (x −

√
2)(x +

√
2) in R[x]. Notice here that the roots

√
2 and −

√
2 of this

polynomial are not elements of Q but are elements of R.
◦ If A is an n×n matrix, we say that all of the eigenvalues of A lie in F when the characteristic polynomial
of A splits completely over F .

• Now we can establish our diagonalizability criterion for matrices:

• Theorem (Diagonalizability Criterion): A matrix A ∈Mn×n(F ) is diagonalizable (over F ) if and only if all of
its eigenvalues lie in F and, for each eigenvalue λ, the dimension of the λ-eigenspace is equal to the multiplicity
of λ as a root of the characteristic polynomial.

◦ Proof: If the n × n matrix A is diagonalizable, then the diagonal entries of its diagonalization are the
eigenvalues of A, so they must all lie in the scalar �eld F .

◦ Furthermore, by our previous theorem on diagonalizability, V has a basis β of eigenvectors for A. For
any eigenvalue λi of A, let bi be the number of elements of β having eigenvalue λi, and let di be the
multiplicity of λi as a root of the characteristic polynomial.

◦ Then
∑
i bi = n since β is a basis of V , and

∑
i di = n by our results about the characteristic polynomial,

and bi ≤ di as we proved before. Thus, n =
∑
i bi ≤

∑
di = n, so ni = di for each i.

◦ For the other direction, suppose that all eigenvalues of A lie in F and that bi = di for all i. Then let
β be the union of bases for each eigenspace of A: by hypothesis, β contains

∑
i bi =

∑
i di = n vectors,

so to conclude it is a basis of the n-dimensional vector space V , we need only show that it is linearly
independent.

◦ Explicitly, let βi = {vi,1, . . . ,vi,ji} be a basis of the λi-eigenspace for each i, so that β = {v1,1,v1,2, . . . ,vk,j}
and Avi,j = λivi,j for each pair (i, j).

◦ Suppose we have a dependence a1,1v1,1 + · · ·+ ak,jvk,j = 0. Let wi =
∑
j ai,jvi,j , and observe that wi

has Awi = λiwi, and that w1 + w2 + · · ·+ wk = 0.

◦ If any of the wi were nonzero, then we would have a nontrivial linear dependence between eigenvectors
of A having distinct eigenvalues, which is impossible by the previous theorem.

◦ Therefore, each wi = 0, meaning that ai,1vi,1 + · · · + ai,jivi,ji = 0. But then since βi is linearly
independent, all of the coe�cients ai,j must be zero. Thus, β is linearly independent and therefore is a
basis for V .

• Corollary: If A ∈Mn×n(F ) has n distinct eigenvalues in F , then A is diagonalizable over F .

◦ Proof: Every eigenvalue must occur with multiplicity 1 as a root of the characteristic polynomial, since
there are n eigenvalues and the sum of their multiplicities is also n. Then the dimension of each eigenspace
is equal to 1 (since it is always between 1 and the multiplicity), so by the theorem above, A is diagonal-
izable.
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4.2.2 Computing Diagonalizations

• The proof of the diagonalizability theorem gives an explicit procedure for determining both diagonalizability
and the diagonalizing matrix. To determine whether a linear transformation T (or matrix A) is diagonalizable,

and if so how to �nd a basis β such that [T ]ββ is diagonal (or a matrix Q with Q−1AQ diagonal), follow these
steps:

◦ Step 1: Find the characteristic polynomial and eigenvalues of T (or A).

◦ Step 2: Find a basis for each eigenspace of T (or A).

◦ Step 3a: Determine whether T (or A) is diagonalizable. If each eigenspace is �nondefective� (i.e., its
dimension is equal to the number of times the corresponding eigenvalue appears as a root of the charac-
teristic polynomial) then T is diagonalizable, and otherwise, T is not diagonalizable.

◦ Step 3b: For a diagonalizable linear transformation T , take β to be a basis of eigenvectors for T . For a
diagonalizable matrix A, the diagonalizing matrix Q can be taken to be the matrix whose columns are
a basis of eigenvectors of A.

• Example: For T : R2 → R2 given by T (x, y) = 〈−2y, 3x+ 5y〉, determine whether T is diagonalizable and if

so, �nd a basis β such that [T ]ββ is diagonal.

◦ The associated matrix A for T relative to the standard basis is A =

[
0 −2
3 5

]
.

◦ For the characteristic polynomial, we compute det(tI−A) = t2−5t+6 = (t−2)(t−3), so the eigenvalues
are therefore λ = 2, 3. Since the eigenvalues are distinct we know that T is diagonalizable.

◦ A short calculation yields that 〈1,−1〉 is a basis for the 2-eigenspace, and that 〈−2, 3〉 is a basis for the
3-eigenspace.

◦ Thus, for β = {〈1,−1〉 , 〈−2, 3〉} , we can see that [T ]ββ =

[
2 0
0 3

]
is diagonal.

• Example: For A =

 1 −1 −1
0 1 −1
0 0 1

, determine whether there exists a diagonal matrix D and an invertible

matrix Q with D = Q−1AQ, and if so, �nd them.

◦ We compute det(tI −A) = (t− 1)3 since tI −A is upper-triangular, and the eigenvalues are λ = 1, 1, 1.

◦ The 1-eigenspace is then the nullspace of I − A =

 0 1 1
0 0 1
0 0 0

, which (since the matrix is already in

row-echelon form) is 1-dimensional and spanned by

 1
0
0

.
◦ Since the eigenspace for λ = 1 is 1-dimensional but the eigenvalue appears 3 times as a root of the

characteristic polynomial, the matrix A is not diagonalizable and there is no such Q.

• Example: For A =

 1 −1 0
0 2 0
0 2 1

, determine whether there exists a diagonal matrix D and an invertible

matrix Q with D = Q−1AQ, and if so, �nd them.

◦ We compute det(tI −A) = (t− 1)2(t− 2), so the eigenvalues are λ = 1, 1, 2.

◦ A short calculation yields that

 1
0
0

,
 0

0
1

 is a basis for the 1-eigenspace and that

 −1
1
2

 is a basis

for the 2-eigenspace.
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◦ Since the eigenspaces both have the proper dimensions, A is diagonalizable, and we can take D = 1 0 0
0 1 0
0 0 2

 with Q =

 1 0 −1
0 0 1
0 1 2

 .

◦ To check: we haveQ−1 =

 1 1 0
0 −2 1
0 1 0

, soQ−1AQ =

 1 1 0
0 −2 1
0 1 0

 1 −1 0
0 2 0
0 2 1

 1 0 −1
0 0 1
0 1 2

 = 1 0 0
0 1 0
0 0 2

 = D.

◦ Remark: We could (for example) also take D =

 2 0 0
0 1 0
0 0 1

 if we wanted, and the associated conju-

gating matrix could have been Q =

 −1 1 0
1 0 0
2 0 1

 instead. There is no particular reason to care much

about which diagonal matrix we want as long as we make sure to arrange the eigenvectors in the correct
order. We could also have used any other bases for the eigenspaces to construct Q.

• Knowing that a matrix is diagonalizable can be very computationally useful.

◦ For example, if A is diagonalizable with D = Q−1AQ, then it is very easy to compute any power of A.

◦ Explicitly, since we can rearrange to write A = QDQ−1, then Ak = (QDQ−1)k = Q(Dk)Q−1, since the
conjugate of the kth power is the kth power of a conjugate.

◦ But since D is diagonal, Dk is simply the diagonal matrix whose diagonal entries are the kth powers of
the diagonal entries of D.

• Example: If A =

[
−2 −6
3 7

]
, �nd a formula for the kth power Ak, for k a positive integer.

◦ First, we (try to) diagonalize A. Since det(tI − A) = t2 − 5t + 4 = (t − 1)(t − 4), the eigenvalues are 1
and 4. Since these are distinct, A is diagonalizable.

◦ Computing the eigenvectors of A yields that

[
−2
1

]
is a basis for the 1-eigenspace, and

[
−1
1

]
is a

basis for the 4-eigenspace.

◦ Then D = Q−1AQ where D =

[
1 0
0 4

]
and Q =

[
−2 −1
1 1

]
, and also Q−1 =

[
−1 −1
1 2

]
.

◦ ThenDk =

[
1 0
0 4k

]
, soAk = QDkQ−1 =

[
−2 −1
1 1

] [
1 0
0 4k

] [
−1 −1
1 2

]
=

[
2− 4k 2− 2 · 4k
−1 + 4k −1 + 2 · 4k

]
.

◦ Remark: This formula also makes sense for values of k which are not positive integers. For example, if

k = −1 we get the matrix

[
7/4 3/2
−3/4 −1/2

]
, which is actually the inverse matrix A−1. And if we set

k =
1

2
we get the matrix B =

[
0 −2
1 3

]
, whose square satis�es B2 =

[
−2 −6
3 7

]
= A.

• By diagonalizing a given matrix, we can often prove theorems in a much simpler way. Here is a typical
example:

• De�nition: If T : V → V is a linear operator and p(x) = a0 + a1x + · · · + anx
n is a polynomial, we de�ne

p(T ) = a0I + a1T + · · ·+ anT
n. Similarly, if A is an n×n matrix, we de�ne p(A) = a0In + a1A+ · · ·+ anA

n.

◦ Since conjugation preserves sums and products, it is easy to check that Q−1p(A)Q = p(A−1AQ) for any
invertible Q.
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• Theorem (Cayley-Hamilton): If p(x) is the characteristic polynomial of a matrix A, then p(A) is the zero
matrix 0.

◦ The same result holds for the characteristic polynomial of a linear operator T : V → V .

◦ Example: For the matrix A =

[
2 2
3 1

]
, we have det(tI − A) =

∣∣∣∣ t− 2 −2
−3 t− 1

∣∣∣∣ = (t − 1)(t − 2) − 6 =

t2 − 3t− 4. We can compute A2 =

[
10 6
9 7

]
, and then indeed we have A2 − 3A− 4I2 =

[
10 6
9 7

]
−[

6 6
9 3

]
−
[

4 0
0 4

]
=

[
0 0
0 0

]
.

◦ Proof (if A is diagonalizable): If A is diagonalizable, then let D = Q−1AQ with D diagonal, and let p(x)
be the characteristic polynomial of A.

◦ The diagonal entries of D are the eigenvalues λ1, · · · , λn of A, hence are roots of the characteristic
polynomial of A. So p(λ1) = · · · = p(λn) = 0.

◦ Then, because raising D to a power just raises all of its diagonal entries to that power, we can see that

p(D) = p


 λ1

. . .

λn


 =

 p(λ1)
. . .

p(λn)

 =

 0
. . .

0

 = 0.

◦ Now by conjugating each term and adding the results, we see that 0 = p(D) = p(Q−1AQ) = Q−1 [p(A)]Q.
So by conjugating back, we see that p(A) = Q · 0 ·Q−1 = 0, as claimed.

• In the case where A is not diagonalizable, the proof of the Cayley-Hamilton theorem is substantially more
di�cult. In the next section, we will treat this case using the Jordan canonical form.

4.3 Generalized Eigenvectors and the Jordan Canonical Form

• As we saw in the previous section, there exist matrices which are not conjugate to any diagonal matrix.
For computational purposes, however, we might still like to know what the simplest form to which a non-
diagonalizable matrix is similar. The answer is given by what is called the Jordan canonical form:

• De�nition: The n × n Jordan block with eigenvalue λ is the n × n matrix J having λs on the diagonal, 1s
directly above the diagonal, and zeroes elsewhere.

◦ Here are the general Jordan block matrices of sizes 2, 3, and 4:

[
λ 1
0 λ

]
,

 λ 1 0
0 λ 1
0 0 λ

,

λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

.

• De�nition: A matrix is in Jordan canonical form if it is a �block-diagonal matrix� of the form


J1

J2

. . .

Jk

,
where each J1, · · · , Jk is a square Jordan block matrix (possibly with di�erent eigenvalues and di�erent sizes).

◦ Example: The matrix

 2 0 0
0 3 0
0 0 4

 is in Jordan canonical form, with J1 = [2], J2 = [3], J3 = [4].

◦ Example: The matrix

 2 1 0
0 2 0
0 0 3

 is in Jordan canonical form, with J1 =

[
2 1
0 2

]
and J2 = [3].

◦ Example: The matrix


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 is in Jordan canonical form, with J1 = [1], J2 =

[
1 1
0 1

]
,

J3 = [1].
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◦ Example: The matrix


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 is in Jordan canonical form, with J1 =

 0 1 0
0 0 1
0 0 0

 and J2 = [0].

• Our goal is to prove that every matrix is similar to a Jordan canonical form and to give a procedure for
computing the Jordan canonical form of a matrix.

◦ The Jordan canonical form therefore serves as an �approximate diagonalization� for non-diagonalizable
matrices, since the Jordan blocks are very close to being diagonal matrices.

◦ In order to describe the procedure, however, we require some preliminary results.

• We will begin by proving that any linear transformation can be represented by an upper-triangular matrix
with respect to some basis.

• Theorem (Upper-Triangular Associated Matrix): Suppose T : V → V is a linear operator on a �nite-

dimensional complex vector space. Then there exists a basis β of V such that the associated matrix [T ]ββ
is upper-triangular.

◦ Proof: We induct on n = dim(V ).

◦ For the base case n = 1, the result holds trivially, since any basis will yield an upper-triangular matrix.

◦ For the inductive step, now assume n ≥ 2, and let λ be any eigenvalue of T . (From our earlier results,
T necessarily has at least one eigenvalue.)

◦ De�ne W = im(T −λI): since λ is an eigenvalue of T , ker(T −λI) has positive dimension, so dim(W ) <
dim(V ).

◦ We claim that the map S : W → V given by S(w) = T (w) has im(S) contained in W , so that S will be
a linear operator on W (to which we can then apply the inductive hypothesis).

◦ To see this, let w be any vector in W . Then S(w) = (T − λI)w + λw, and both (T − λI)w and λw are
in W : since W is a subspace, we conclude that S(w) also lies in W .

◦ Now since S is a linear operator on W , by hypothesis there exists a basis γ = {w1, . . . ,wk} for W such
that the matrix [S]γγ is upper-triangular.

◦ Extend γ to a basis β = {w1, . . . ,wk,vk+1, . . . ,vn} of V . We claim that [T ]ββ is upper-triangular.

◦ The upper k×k portion of [T ]ββ is the matrix [S]γγ which is upper-triangular by hypothesis. Furthermore,
for each vi we can write T (vi) = (T −λI)vi+λvi, and (T −λI)vi is in W , hence is a linear combination
of {w1, . . . ,wk}.

◦ Thus, [T ]ββ is upper-triangular, as claimed.

• We will now build on this result by showing that we can improve our choice of basis to yield a matrix in
Jordan canonical form. We will in particular need the following re�nement:

• Corollary: Suppose T : V → V is a linear operator on a �nite-dimensional vector space such that the scalar
�eld of V contains all eigenvalues of T . If λ is an eigenvalue of T having multiplicity d, then there exists
a basis β of V such that the associated matrix [T ]ββ is upper-triangular and where the last d entries on the
diagonal of this matrix are equal to λ.

◦ Proof: Apply the same inductive construction as the proof above, using the eigenvalue λ at each stage
of the construction where it remains an eigenvalue of the subspace W .

◦ We observe that the diagonal entries of [T ]ββ are the eigenvalues of T (counted with multiplicity).

◦ Also observe that det(tI −T ) = det(tI −S) · (t−λ)dim(Eλ), where Eλ is the λ-eigenspace of T . Thus, all
eigenvalues of S will also lie in the scalar �eld of V .

◦ Thus, if at any stage of the construction we have not yet reached d diagonal entries equal to λ, the
operator S will still have λ as an eigenvalue, and we will generate at least one additional entry of λ on
the diagonal in the next step of the construction.
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4.3.1 Generalized Eigenvectors

• Ultimately, a non-diagonalizable linear transformation (or matrix) fails to have enough eigenvectors for us to
construct a diagonal basis. By generalizing the de�nition of eigenvector, we can �ll in these �missing� basis
entries.

• De�nition: For a linear operator T : V → V , a nonzero vector v satisfying (A− λI)kv = 0 for some positive
integer k and some scalar λ is called a generalized eigenvector of T .

◦ We take the analogous de�nition for matrices: a generalized eigenvector for A is a nonzero vector v with
(A− λI)kv = 0 for some positive integer k and some scalar λ.

◦ Observe that (regular) eigenvectors correspond to k = 1, and so every eigenvector is a generalized
eigenvector. The converse, however, is not true:

• Example: Show that v =

[
4
1

]
is a generalized 2-eigenvector for A =

[
1 −1
1 3

]
that is not a (regular)

2-eigenvector.

◦ We compute (A−2I)v =

[
1 1
−1 −1

] [
4
1

]
=

[
5
−5

]
, and since this is not zero, v is not a 2-eigenvector.

◦ However, (A − 2I)2v =

[
1 1
−1 −1

] [
5
−5

]
=

[
0
0

]
, and so v is a generalized 2-eigenvector, with

k = 2.

• Although it may seem that we have also generalized the idea of an eigenvalue, in fact generalized eigenvectors
can only have their associated constant λ be an eigenvalue of T :

• Proposition (Eigenvalues for Generalized Eigenvectors): If T : V → V is a linear operator and v is a nonzero
vector satisfying (T − λI)kv = 0 for some positive integer k and some scalar λ, then λ is an eigenvalue of T .
Furthermore, the eigenvalue associated to a generalized eigenvector is unique.

◦ Proof: Let k be the smallest positive integer for which (T − λI)kv = 0. Then by assumption, w =
(T−λI)k−1v is not the zero vector, but (T−λI)w = 0. Thus, w is an eigenvector of T with corresponding
eigenvalue λ.

◦ For uniqueness, we claim that T −µI is one-to-one on the generalized λ-eigenspace for any µ 6= λ. Then
by a trivial induction, (T − µI)n will also be one-to-one on the generalized λ-eigenspace for each n, so
no nonzero vector can be in the kernel.

◦ So suppose that v is a nonzero vector in the generalized λ-eigenspace and that (T − µI)v = 0. Let
k be the smallest positive integer such that (T − λI)kv = 0: then w = (T − λI)k−1v is nonzero and
(T − λI)w = 0.

◦ Also, we see that (T − µI)w = (T − µI)(T − λI)k−1v = (T − λI)k−1(T − µI)v = (T − λI)k−10 = 0.

◦ Then w would be a nonzero vector in both the λ-eigenspace and the µ-eigenspace, which is impossible.

• Like the (regular) eigenvectors, the generalized λ-eigenvectors (together with the zero vector) also form a
subspace, called the generalized λ-eigenspace:

• Proposition (Generalized Eigenspaces): For a linear operator T : V → V , the set of vectors v satisfying
(T − λI)kv = 0 for some positive integer k is a subspace of V .

◦ Proof: We verify the subspace criterion.

◦ [S1]: Clearly, the zero vector satis�es the condition.

◦ [S2]: If v1 and v2 have (T − λI)k1v1 = 0 and (T − λI)k2v2 = 0, then (T − λI)max(k1,k2)(v1 + v2) = 0.

◦ [S3]: If (T − λI)kv = 0, then (T − λI)k(cv) = 0 as well.

• From the de�nition of generalized eigenvector alone, it may seem from the de�nition that the value k with
(λI − T )kv = 0 may be arbitrarily large. But in fact, it is always the case that we can choose k ≤ dim(V )
when V is �nite-dimensional:
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• Theorem (Computing Generalized Eigenspaces): If T : V → V is a linear operator and V is �nite-dimensional,
then the generalized λ-eigenspace of T is equal to ker(T − λI)dim(V ). In other words, if (T − λI)kv = 0 for
some positive integer k, then in fact (T − λI)dim(V )v = 0.

◦ Proof: Let S = T − λI and de�ne Wi = ker(Si) for each i ≥ 1.

◦ Observe that W1 ⊆W2 ⊆W3 ⊆ · · · , since if Siv = 0 then Si+kv = 0 for each k ≥ 1.

◦ We claim that if Wi = Wi+1, then all Wi+k are also equal to Wi for all k ≥ 1: in other words, that if
two consecutive terms in the sequence are equal, then all subsequent terms are equal.

◦ So suppose that Wi = Wi+1, and let v be any vector in Wi+2. Then 0 = Si+2v = Si+1(Sv), meaning
that Sv is in ker(Si+1) = Wi+1 = Wi = ker(Si). Therefore, Si(Sv) = 0, so that v is actually in Wi+1.

◦ Therefore, Wi+2 = Wi+1. By iterating this argument we conclude that Wi = Wi+1 = Wi+2 = · · · as
claimed.

◦ Returning to the original argument, observe that dim(W1) ≤ dim(W2) ≤ · · · ≤ dim(Wk) ≤ dim(V ) for
each k ≥ 1.

◦ Thus, since the dimensions are all nonnegative integers, we must have dim(Wk) = dim(Wk+1) for some
k ≤ dim(V ), as otherwise we would have 1 ≤ dim(W1) < dim(W2) < · · · < dim(Wk), but this is not
possible since dim(Wk) would then exceed dim(V ).

◦ Then Wk = Wk+1 = Wk+2 = · · · = Wdim(V ) = Wdim(V )+1 = · · · .
◦ Finally, if v is a generalized eigenvector, then it lies in some Wi, but since the sequence of subspaces Wi

stabilizes at Wdim(V ), we conclude that v is contained in Wdim(V ) = ker(Sdim(V )) = ker(T − λI)dim(V ),
as claimed.

• The theorem above gives us a completely explicit way to �nd the vectors in a generalized eigenspace, since
we need only �nd all possible eigenvalues λ for T , and then compute the kernel of (T − λI)dim(V ) for each λ.

◦ We will show later that it is not generally necessary to raise T − λI to the full power dim(V ): in fact,
it is su�cient to compute the kernel of (T − λI)di , where di is the multiplicity of λ as a root of the
characteristic polynomial.

◦ The advantage of taking the power as dim(V ), however, is that it does not depend on T or λ in any way.

• Example: Find a basis for each generalized eigenspace of A =

 2 0 0
−1 2 1
1 −1 0

.
◦ By expanding along the top row, we see det(tI − A) = (t − 1)2(t − 2). Thus, the eigenvalues of A are
λ = 1, 1, 2.

◦ For the generalized 1-eigenspace, we must compute the nullspace of (A − I)3 =

 1 0 0
−1 0 0
1 0 0

. Upon

row-reducing, we see that the generalized 1-eigenspace has dimension 2 and is spanned by the vectors 0
1
0

 and

 0
0
1

.
◦ For the generalized 2-eigenspace, we must compute the nullspace of (A − 2I)3 =

 0 0 0
−1 2 3
1 −3 −4

.
Upon row-reducing, we see that the generalized 2-eigenspace has dimension 1 and is spanned by the

vector

 1
−1
1

.
• In the example above, note that neither of the generalized 1-eigenvectors is a 1-eigenvector, so the 1-eigenspace
of A is only 1-dimensional. Thus, A is not diagonalizable, and V does not possess a basis of eigenvectors of
A.
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◦ On the other hand, we can also easily see from our description that V does possess a basis of generalized
eigenvectors of A.

◦ Our goal is now to prove that there always exists a basis of generalized eigenvectors for V . Like in our
argument for (regular) eigenvectors, we �rst prove that generalized eigenvectors associated to di�erent
eigenvalues are linearly independent.

• Theorem (Independent Generalized Eigenvectors): If v1,v2, . . . ,vn are generalized eigenvectors of T associ-
ated to distinct eigenvalues λ1, λ2, . . . , λn, then v1,v2, . . . ,vn are linearly independent.

◦ Proof: We induct on n.

◦ The base case n = 1 is trivial, since by de�nition a generalized eigenvector cannot be the zero vector.

◦ Now suppose n ≥ 2 and that we had a linear dependence a1v1+· · ·+anvn = 0 for generalized eigenvectors
v1, . . . ,vn having distinct eigenvalues λ1, λ2, . . . , λn.

◦ Suppose that (T − λ1I)kv1 = 0. Then applying (T − λ1I)k to both sides yields 0 = T (0) = a1(T −
λ1I)kv1 + · · ·+ an(T − λ1I)kvn = a2(T − λ1I)kv2 + · · ·+ an(T − λ1I)kvn.

◦ Now observe that (T −λ1I)kvj lies in the generalized λj-eigenspace, for each j, because if (T −λjI)avj =
0, then (T − λjI)a[(T − λ1I)kvj ] = (T − λ1I)k[(T − λjI)avj ] = (T − λ1I)k0 = 0.

◦ By the inductive hypothesis, each of these vectors aj(T − λ1I)kvj must be zero. If aj 6= 0, then this
would imply that vj is a nonzero vector in both the generalized λj-eigenspace and the generalized λ1-
eigenspace, which is impossible. Therefore, aj = 0 for all j ≥ 2. We then have a1v1 = 0 so a1 = 0 as
well, meaning that the vi are linearly independent.

• Next, we compute the dimension of a generalized eigenspace.

• Theorem (Dimension of Generalized Eigenspace): If V is �nite-dimensional, T : V → V is linear, and λ is a
scalar, then the dimension of the generalized λ-eigenspace is equal to the multiplicity d of λ as a root of the
characteristic polynomial of T , and in fact the generalized λ-eigenspace is the kernel of (T − λI)d.

◦ Proof: Suppose the multiplicity of λ as a root of the characteristic polynomial of T is d.

◦ As we proved earlier, there exists a basis β of V for which the associated matrix A = [T ]ββ is upper-
triangular and has the last d diagonal entries equal to λ. (The remaining diagonal entries are the other
eigenvalues of T , which by hypothesis are not equal to λ.)

◦ Then, for B = A−λI, we see that B =

[
D ∗
0 U

]
, where D is upper-triangular with nonzero entries on

the diagonal and U is a d× d upper-triangular matrix with zeroes on the diagonal.

◦ Observe that Bdim(V ) =

[
Ddim(V ) ∗

0 Udim(V )

]
, and also, by a straightforward induction argument, Ud

is the zero matrix, so Udim(V ) is also the zero matrix, since d ≤ dim(V ).

◦ The generalized λ-eigenspace then has dimension equal to the nullity of (A− λI)dim(V ) = Bdim(V ), but
since Ddim(V ) is upper-triangular with nonzero entries on the diagonal, we see that the nullity of Bdim(V )

is exactly d.

◦ The last statement follows from the observation that Ud is the zero matrix.

• Example: Find the dimensions of the generalized eigenspaces of A =


0 0 1 0
0 2 −3 1
0 1 −2 1
0 0 −1 1

, and then verify the

result by �nding a basis for each generalized eigenspace.

◦ Some computation produces det(tI −A) = t3(t− 1). Thus, the eigenvalues of A are λ = 0, 0, 0, 1.

◦ So by the theorem above, the dimension of the generalized 0-eigenspace is 3 and the dimension of the
generalized 1-eigenspace is 1.

◦ For the generalized 0-eigenspace, the nullspace ofA4 =


0 0 0 0
0 1 −1 0
0 0 0 0
0 −1 1 0

 has basis


1
0
0
0

 ,


0
1
1
0

 ,


0
0
0
1

.
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◦ Since 1 is a root of multiplicity 1, the generalized 1-eigenspace is simply the 1-eigenspace, and row-

reducing I −A =


1 0 −1 0
0 −1 3 −1
0 −1 3 −1
0 0 1 0

 yields a basis vector


0
1
0
−1

.
• At last, we can show that any �nite-dimensional (complex) vector space has a basis of generalized eigenvectors:

• Theorem (Spectral Decomposition): If V is �nite-dimensional, T : V → V is linear, and all eigenvalues of T
lie in the scalar �eld of V , then V has a basis of generalized eigenvectors of T .

◦ Proof: Suppose the eigenvalues of T are λi with respective multiplicities di as roots of the characteristic
polynomial, and let βi = {vi,1, . . . ,vi,di} be a basis for the generalized λi-eigenspace for each 1 ≤ i ≤ k.
◦ We claim that β = β1 ∪ · · · ∪ βk is a basis for V .

◦ By the previous theorem, the number of elements in βi is di: then β contains
∑
i di = dim(V ) vectors,

so to show β is a basis it su�ces to prove linear independence.

◦ So suppose we have a dependence a1,1v1,1 + · · · + ak,jvk,j = 0. Let wi =
∑
j ai,jvi,j : observe that wi

lies in the generalized λi-eigenspace and that w1 + w2 + · · ·+ wk = 0.

◦ If any of the wi were nonzero, then we would have a nontrivial linear dependence between generalized
eigenvectors of T having distinct eigenvalues, which is impossible.

◦ Therefore, each wi = 0, meaning that ai,1vi,1 + · · · + ai,divi,di = 0. But then since βi is linearly
independent, all of the coe�cients ai,j must be zero. Thus, β is linearly independent and therefore is a
basis for V .

4.3.2 The Jordan Canonical Form

• Now that we have established the existence of a basis of generalized eigenvectors (under the assumption that
V is �nite-dimensional and that its scalar �eld contains all eigenvalues of T ), our goal is to �nd as simple a
basis as possible for each generalized eigenspace.

• To motivate our discussion, suppose that there is a basis β = {vk−1,vk−2, . . . ,v1,v0} of V such that T : V →

V has associated matrix [T ]ββ =


λ 1 0 0
0 λ 1 0

0 0
. . . 1

0 0 0 λ

, a Jordan block matrix.

◦ Then Tvk−1 = λvk−1 and T (vi) = λvi + vi+1 for each 0 ≤ i ≤ k − 2.

◦ Rearranging, we see that (T − λI)vk−1 = 0 and (T − λI)vi = vi+1 for each 0 ≤ i ≤ k − 2.

◦ Thus, by a trivial induction, we see that v0 is a generalized λ-eigenvector of T and that vi = (T −λI)iv0

for each 0 ≤ i ≤ k − 1.

◦ In other words, the basis β is composed of a �chain� of generalized eigenvectors obtained by successively
applying the operator T − λI to a particular generalized eigenvector v0.

• De�nition: Suppose T : V → V is linear and v is a generalized λ-eigenvector of T such that (T − λI)kv = 0
and k is minimal. The list {vk−1,vk−2, . . . ,v1,v0}, where vi = (T − λI)iv for each 0 ≤ i ≤ k − 1, is called a
chain of generalized eigenvectors.

◦ By running the calculation above in reverse (assuming for now that the vi are linearly independent), if
we take β = {vk−1, . . . ,v1,v0} as an ordered basis of W = span(β), then the matrix associated to T on

W has the form


λ 1 0 0
0 λ 1 0

0 0
. . . 1

0 0 0 λ

: in other words, a Jordan-block matrix.
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◦ Our goal is to prove that there exists a basis for the generalized λ-eigenspace consisting of chains of
generalized eigenvectors: by applying this to each generalized eigenspace, we obtain a Jordan canonical
form for T .

• A simple way to construct chains of generalized eigenvectors is simply to �nd a generalized eigenvector and
then repeatedly apply T − λI to it.

• Example: If A =


−1 2 −2 1
−1 2 −1 1
0 0 1 0
−1 1 −2 1

, �nd a chain of generalized 1-eigenvectors for A having length 3.

◦ We compute det(tI −A) = t(t− 1)3. Thus, the eigenvalues of A are λ = 0, 1, 1, 1.

◦ By our theorems, the 1-eigenspace is 3-dimensional and equal to the nullspace of the matrix

(A− I)3 =


−1 1 −1 0
0 0 0 0
0 0 0 0
−1 1 −1 0

, hence has a basis


1
1
0
0

,


0
1
1
0

,


0
0
0
1

.
◦ The �rst vector is an eigenvector of A (so it only produces a chain of length 0), but if we instead take

v =


0
1
1
0

, we get (A− I)v =


0
0
0
−1

 and (A− I)2v =


−1
−1
0
0

, which has length 3.

• However, this procedure of constructing a chain starting from an arbitrary generalized eigenvector is rather
haphazard.

◦ If we are looking to construct a chain of generalized eigenvectors in a more careful manner, we could
instead run the construction in the opposite direction, by starting with a collection of eigenvectors and
trying to �nd generalized eigenvectors that are mapped to them by T − λI.

◦ By re�ning this idea appropriately, we can give a method for constructing a basis for V consisting of
chains of generalized eigenvectors.

• Theorem (Existence of Jordan Basis): If V is �nite-dimensional, T : V → V is linear, and all eigenvalues of T
lie in the scalar �eld of V , then V has a basis consisting of chains of generalized eigenvectors of T .

◦ Proof: It su�ces to show that each eigenspace has a basis consisting of chains of generalized eigenvectors,
since (as we already showed) the union of bases for the generalized eigenspaces will be a basis for V .

◦ So suppose λ is an eigenvalue of T , let W be the generalized λ-eigenspace of V , with dim(W ) = d.

◦ Also, take S : W → W to be the map S = T − λI, and note (as we showed) that Sd is the zero
transformation on W .

◦ We must then prove that there exist vectors w1, . . . ,wk and integers a1, . . . , ak such that Sai(wi) = 0
and the set {w1, Sw1, . . . , S

a1−1w1,w2, Sw2, . . . , S
a2−1w2, . . . ,wk, . . . , S

ak−1wk} is a basis of W .

◦ We will show this result by (strong) induction on d. If d = 1 then the result is trivial, since then S is the
zero transformation so we can take a1 = 1 and w1 to be any nonzero vector in W .

◦ Now assume d > 2 and that the result holds for all spaces of dimension less than d.

◦ Since S : W → W is not one-to-one (else it would be an isomorphism, but then Sd could not be zero)
W ′ = im(S) has dimension strictly less than d = dim(W ).

◦ If W ′ is the zero space, then we can take a1 = · · · = ak = 1 and {w1, . . . ,wk} to be any basis of W .

◦ Otherwise, if W ′ is not zero, then by the inductive hypothesis, there exist vectors v1, . . . ,vk and integers
a1, . . . , ak such that Sai(vi) = 0 and the set β′ = {v1, . . . , S

a1−1v1, . . . ,vk, . . . , S
ak−1vk} is a basis of

W ′.

◦ Now, since each vi is in W
′ = im(S), by de�nition there exists a vector wi in W with Swi = vi. (In

other words, can �extend� each of the chains for W ′ to obtain chains for W .)

21



◦ Furthermore, note that {Sa1−1v1, . . . S
ak−1vk} are linearly independent vectors in ker(S), so we can

extend that set to obtain a basis γ = {Sa1−1v1, . . . S
ak−1vk, z1, . . . , zs} of ker(S).

◦ We claim that the set β = {w1, . . . , S
a1w1, . . . ,vk, . . . , S

akwk, z1, . . . , zs} is the desired basis for W . It
clearly has the proper form, since Szi = 0 for each i, and the total number of vectors is a1+· · ·+ak+s+k.

◦ Furthermore, since {v1, . . . , S
a1−1v1, . . . ,vk, . . . , S

ak−1vk} is a basis of W ′, dim(imT ) = a1 + · · · + ak,
and since {Sa1−1v1, . . . S

ak−1vk, z1, . . . , zs} is a basis of ker(T ), we see dim(kerT ) = s+ k.

◦ Then dim(W ) = dim(kerT ) + dim(imT ) = a1 + · · · + ak + s + k, and so we see that the set β contains
the proper number of vectors.

◦ It remains to verify that β is linearly independent. So suppose that c1,1w1 + · · ·+ ck,akS
ak−1wk + b1z1 +

· · ·+ bszs = 0.

◦ Since Smwi = Sm−1vi, applying S to both sides yields c1,1v1 + · · ·+ ck,ak−1S
ak−1vk = 0, so since β′ is

linearly independent, all coe�cients must be zero.

◦ The original dependence then reduces to c1,a1S
a1w1 + · · · + ck,akwk + b1z1 + · · · + bszs = 0, but since

γ is linearly independent, all coe�cients must be zero. Thus, β is linearly independent and therefore a
basis for W .

• Using the theorem above, we can establish the existence of the Jordan form, which also turns out to be
essentially unique:

• Theorem (Jordan Canonical Form): If V is �nite-dimensional, T : V → V is linear, and all eigenvalues of T

lie in the scalar �eld of V , then there exists a basis β of V such that [T ]ββ is a matrix in Jordan canonical
form. Furthermore, the Jordan canonical form is unique up to rearrangement of the Jordan blocks.

◦ Proof: By the theorem above, each eigenspace of T has a basis consisting of chains of generalized
eigenvectors. If {v, Sv, . . . , Sa−1v} is such a chain, where S = T − λI and Sav = 0, then we can easily
see that T (Sbv) = (S + λ)Sbv = Sb+1v + λ(Sbv), and so the associated matrix for this portion of the
basis is a Jordan-block matrix of size a and eigenvalue λ.

◦ Therefore, if we take β to be the union of chains of generalized eigenvectors for each eigenspace, then
[T ]ββ is a matrix in Jordan canonical form.

◦ For the uniqueness, we claim that the number of Jordan blocks of eigenvalue λ having size at least d is
equal to dim(ker(T − λI)d−1)− dim(ker(T − λI)d). Since this quantity depends only on T (and not on
the particular choice of basis) and completely determines the exact number of each type of Jordan block,
the number of Jordan blocks of each size and eigenvalue must be the same in any Jordan canonical form.

◦ To see this, let S = T−λI and take {w1, Sw1, . . . , S
a1−1w1,w2, Sw2, . . . , S

a2−1w2, . . . ,wk, . . . , S
ak−1wk}

to be a Jordan basis for the generalized λ-eigenspace: the sizes of the Jordan blocks are then a1 ≤ a2 ≤
· · · ≤ ak.
◦ Then a basis for the kernel of Sd is given by {Sai−dwi, . . . S

ai−1w1, . . . , S
ai−dwk, . . . , S

ak−1wk}, where
i is the smallest value such that d ≤ ai.
◦ We can see that in extending the basis of ker(Sd−1) to a basis of ker(Sd), we adjoin the additional vectors
{Sai−dwi, S

ai+1−dwi+1, . . . , S
ak−dwk}, and the number of such vectors is precisely the number of ai that

are at least d.

◦ Thus, dim(kerSd−1)− dim(kerSd) is the number of Jordan blocks of size at least d, as claimed.

• In addition to proving the existence of the Jordan canonical form, the theorem above also gives us a method for
computing it explicitly: all we need to do is �nd the dimensions of ker(T −λI), ker(T −λI)2, ... , ker(T −λI)d

where d is the multiplicity of the eigenvalue λ, and then use the results to �nd the number of each type of
Jordan block.

◦ From the analysis above, the number of d× d Jordan blocks with eigenvalue λ is equal to −dim(ker(T −
λI)d+1) + 2 dim(ker(T − λI)d)− dim(ker(T − λI)d−1), which, by the nullity-rank theorem, is also equal
to rank((T − λI)d+1)− 2rank((T − λI)d) + rank((T − λI)d−1).

◦ When actually working with the Jordan form J of a particular matrix A, one also wants to know the
conjugating matrix Q with A = Q−1JQ.
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◦ By our theorems, we can take the columns of Q to be chains of generalized eigenvectors, but actually
computing these chains is more di�cult. A procedure for doing these calculations can be extracted from
our proof of the theorem above, but we will not describe it explicitly.

• Example: Find the Jordan canonical form of A =


0 1 0 1
−4 3 1 3
−5 3 2 4
3 −1 −1 −1

.
◦ We compute det(tI − A) = (t − 1)4, so the eigenvalues of A are λ = 1, 1, 1, 1, meaning that all of the
Jordan blocks have eigenvalue 1.

◦ To �nd the sizes, we haveA−I =


−1 1 0 1
−4 2 1 3
−5 3 1 4
3 −1 −1 −2

. Row-reducingA−I yields


1 −1 0 −1
0 2 −1 1
0 0 0 0
0 0 0 0

,
so rank(A− I) = 2. Furthermore, we can compute that (A− I)2 is the zero matrix, so rank(A− I)2 = 0.

◦ Thus, the number of 1×1 Jordan blocks is rank(A−I)2−2rank(A−I)1 +rank(A−I)0 = 0−2 ·2+4 = 0,
and the number of 2×2 Jordan blocks is rank(A− I)3−2rank(A− I)2 + rank(A− I)1 = 0−2 ·0 + 2 = 2.

◦ Thus, there are 2 blocks of size 2 with eigenvalue 1 (and no blocks of other sizes or other eigenvalues),

so the Jordan canonical form is


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

• Example: Find the Jordan canonical form of A =


0 −1 3 2
1 0 −2 0
−1 0 3 1
2 −1 −3 0

.
◦ We compute det(tI −A) = t(t− 1)3, so the eigenvalues of A are λ = 0, 1, 1, 1. Since 0 is a non-repeated
eigenvalue, there can only be a Jordan block of size 1 associated to it.

◦ To �nd the Jordan blocks with eigenvalue 1, we have A − I =


−1 −1 3 2
1 −1 −2 0
−1 0 2 1
2 −1 −3 −1

. Row-reducing

A− I yields


1 1 −3 −2
0 1 −1 −1
0 0 1 0
0 0 0 0

, so rank(A− I) = 3.

◦ Next, we compute (A − I)2 =


1 0 −1 −1
0 0 1 0
1 0 −2 −1
−2 0 5 2

, and row-reducing yields


1 0 −1 −1
0 0 1 0
0 0 0 0
0 0 0 0

, so
rank(A− I)2 = 2.

◦ Finally, (A− I)3 =


−2 0 4 2
−1 0 2 1
−1 0 2 1
1 0 −2 −1

 so rank(A− I)3 = 1.

◦ Therefore, for λ = 1, we see that there are 2 − 2 · 3 + 4 = 0 blocks of size 1, 1 − 2 · 2 + 3 = 0 blocks of
size 2, and 1− 2 · 1 + 2 = 1 block of size 3.

◦ This means there is a Jordan 1-block of size 3 (along with the Jordan 0-block of size 1), and so the

Jordan canonical form is


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 0

 .
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4.4 Applications of Diagonalization and the Jordan Canonical Form

• The Jordan canonical form, and also the special case of diagonalization, have a wide variety of applications.
The Jordan form is primarily useful as a theoretical tool, although it does also have some important practical
applications to performing computations with matrices as well.

4.4.1 Spectral Mapping and the Cayley-Hamilton Theorem

• First, we establish the Cayley-Hamilton theorem for arbitrary matrices:

• Theorem (Cayley-Hamilton): If p(x) is the characteristic polynomial of a matrix A, then p(A) is the zero
matrix 0.

◦ The same result holds for the characteristic polynomial of a linear operator T : V → V on a �nite-
dimensional vector space.

◦ Proof: Since the characteristic polynomial of a matrix does not depend on the underlying �eld of coe�-
cients, we may assume that the characteristic polynomial factors completely over the �eld (i.e., that all
of the eigenvalues of A lie in the �eld) by replacing the �eld with its algebraic closure.

◦ Then by our results, A has a Jordan canonical form J such that J = Q−1AQ for some invertible Q. Also
let p(x) = (x− λ1)d1 · · · (x− λk)dk be the characteristic polynomial of A.

◦ We �rst claim that for a d×d Jordan block matrix Ji with associated eigenvalue λi, we have (Ji−λiI)d =
0.

◦ To see this, let T : V → V be a linear transformation on a d-dimensional vector space with ordered basis
{v0,v1 . . . ,vd−1} having associated matrix Ji and let S = T − λiI.

◦ Then by construction, vi+1 = Svi for each 0 ≤ i ≤ d− 2, and Svd−1 = 0: we then see Sdvi = Si+dv0 =
Sivd−1 = 0, so Sd is the zero transformation on V , as required.

◦ Now, if Ji is any d× d Jordan block in J of eigenvalue λi, the characteristic polynomial of A is divisible
by (t − λi)

d, since λi occurs as an eigenvalue with multiplicity at least d. Therefore, p(Ji) = (Ji −
λ1I)d1 · · · (Ji − λiI)di · · · (Ji − λkI)dk , and by the calculation above, (Ji − λiI)di = 0, so p(Ji) = 0.

◦ We then see p(J) =

 p(J1)
. . .

p(Jn)

 = 0, and then �nally, p(A) = Q[p(J)]Q−1 = Q(0)Q−1 = 0,

as required.

• Using the same ideas, we can also establish the spectral mapping theorem:

• Theorem (Spectral Mapping): If T : V → V is a linear operator on an n-dimensional vector space having
eigenvalues λ1, . . . , λn (counted with multiplicity), then for any polynomial q(x), the eigenvalues of q(T ) are
q(λ1), . . . , q(λn).

◦ In fact, this result holds if q is replaced by any function that can be written as a convergent power series
(for example, the exponential function).

◦ Proof: Let β be a basis for V such that [T ]ββ = J is in Jordan canonical form. Then [q(T )]ββ = q(J), so
it su�ces to �nd the eigenvalues of q(J).

◦ Now observe that if B is any upper-triangular matrix with diagonal entries b1,1, . . . , bn,n, then q(B) is
also upper-triangular and has diagonal entries q(b1,1), . . . , q(bn,n).

◦ Applying this to the Jordan canonical form J , we see that the diagonal entries of q(J) are q(λ1), . . . , q(λn),
and the diagonal entries of any upper-triangular matrix are its eigenvalues (counted with multiplicity).
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4.4.2 The Spectral Theorem for Hermitian Operators

• We now use our results on generalized eigenvectors and the Jordan canonical form to establish a fundamental
result about the diagonalizability of self-adjoint operators known as the spectral theorem:

• De�nition: If T : V → V is a linear transformation and T ∗ exists, we say T is Hermitian (or self-adjoint) if
T ∗ = T , and that T is skew-Hermitian if T ∗ = −T .

◦ We extend this de�nition to matrices in the natural way: we say a matrix A is (skew)-Hermitian if
A = [T ]ββ for some basis β of V and some (skew)-Hermitian linear transformation T .

◦ As we showed above, the matrix associated to T ∗ is A∗, the conjugate-transpose of A, so A is Hermitian
precisely when A∗ = A and A is skew-Hermitian precisely when A∗ = −A.
◦ If A is a matrix with real entries, then A is Hermitian if and only if AT = A (i.e., A is a symmetric
matrix), and A is skew-Hermitian if and only if AT = −A (i.e., A is a skew-symmetric matrix).

• Hermitian linear operators (and Hermitian matrices) have a variety of very nice properties. Among the most
fundamental of these properties is that all of their eigenvalues are real, and that they are diagonalizable:

• Theorem (Properties of Hermitian Operators): Suppose V is a �nite-dimensional inner product space and
T : V → V is a Hermitian linear transformation. Then the following hold:

1. For any v ∈ V , 〈T (v),v〉 is a real number.

◦ Proof: We have 〈T (v),v〉 = 〈v, T ∗(v)〉 = 〈v, T (v)〉 = 〈T (v),v〉, so 〈T (v),v〉 is equal to its complex
conjugate, hence is real.

2. All eigenvalues of T are real numbers.

◦ Proof: Suppose λ is an eigenvalue of T with eigenvector v 6= 0.

◦ Then 〈T (v),v〉 = 〈λv,v〉 = λ 〈v,v〉 is real. Since v is not the zero vector we conclude that 〈v,v〉 is
a nonzero real number, so λ is also real.

3. Eigenvectors of T with di�erent eigenvalues are orthogonal.

◦ Proof: Suppose that Tv1 = λ1v1 and Tv2 = λ2v2.

◦ Then λ1 〈v1,v2〉 = 〈Tv1,v2〉 = 〈v1, T
∗v2〉 = 〈v1, λ2v2〉 = λ2 〈v1,v2〉 since λ2 is real. But since

λ1 6= λ2, this means 〈v1,v2〉 = 0.

4. Every generalized eigenvector of T is an eigenvector of T .

◦ Proof: We show by induction that if (T − λI)kw = 0 then in fact (T − λI)w = 0.

◦ For the base case we take k = 2, so that (λI − T )2w = 0. Then since λ is an eigenvalue of T and
therefore real, we have

0 =
〈
(T − λI)2w,w

〉
= 〈(T − λI)w, (T − λI)∗w〉
=

〈
(T − λI)w, (T ∗ − λI)w

〉
= 〈(T − λI)w, (T − λI)w〉

and thus the inner product of (T − λI)w with itself is zero, so (T − λI)w must be zero.

◦ For the inductive step, observe that (T − λI)k+1w = 0 implies (T − λI)k [(T − λI)w] = 0, and
therefore by the inductive hypothesis this means (T − λI) [(T − λI)w] = 0, or equivalently, (T −
λI)2w = 0. Applying the result for k = 2 from above yields (T − λI)w = 0, as required.

• Using these basic properties, we can prove that Hermitian operators are diagonalizable, and in fact that they
are diagonalizable in a particularly nice way:

• Theorem (Spectral Theorem): Suppose V is a �nite-dimensional inner product space over R or C and T :
V → V is a Hermitian linear transformation. Then V has an orthonormal basis β of eigenvectors of T , so in
particular, T is diagonalizable.
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◦ The set of scalars λ for which T − λI is not invertible is called the spectrum of T , which when V is
�nite-dimensional is simply the set of eigenvalues of T . The spectral theorem shows that V is the direct
sum of the eigenspaces of T , meaning that the action of T on V can be decomposed into simple pieces
(acting as scalar multiplication), with one piece coming from each element of the spectrum. (This is the
reason for the name of the theorem.)

◦ Proof: By the theorem above, every eigenvalue of T is real hence lies in the scalar �eld.

◦ Then every generalized eigenvector of T is an eigenvector of T , and so since V has a basis of generalized
eigenvectors, it has a basis of eigenvectors and is therefore diagonalizable.

◦ To �nish the proof, start with a basis for each eigenspace, and then apply Gram-Schmidt, yielding an
orthonormal basis for each eigenspace.

◦ Since T is diagonalizable, the union of these bases is a basis for V : furthermore, each of the vectors has
norm 1, and they are all orthogonal by the orthogonal result above.

◦ By construction, each vector is orthogonal to the others in its eigenspace, and by the observation above
it is also orthogonal to the vectors in the other eigenspaces, so we obtain an orthonormal basis β of
eigenvectors of T .

• A very useful special case is the situation where V = Rn or Cn (i.e., the matrix version), in which case the
theorem says that every Hermitian matrix A can be written as A = UDU−1 where D is a real diagonal matrix
and U is a unitary matrix (i.e., satisfying U∗ = U−1).

◦ Example: The real symmetric matrix A =

[
3 6
6 8

]
has eigenvalues λ = −1, 12 and has A = UDU−1

where D =

[
−1 0
0 12

]
and U =

1√
13

[
−3 2
2 3

]
.

◦ Example: The Hermitian matrix A =

[
6 2− i

2 + i 2

]
has eigenvalues λ = 1, 7 and has A = UDU−1

where D =

[
1 0
0 7

]
and U =

1√
30

[
5 2− i

2 + i −5

]
.

◦ Note that U being unitary is equivalent to saying that its columns form an orthonormal basis for V , so,
up to possibly including a re�ection along one axis, U represents a rotation in space around the origin.

◦ Therefore, we may interpret the spectral theorem geometrically as saying that we can decompose any
Hermitian transformation of V into a sequence of a rotation of the coordinate axes (applying U∗) followed
by a scaling along each coordinate axis (applying D), and then undoing the rotation (applying U).

• As a corollary we obtain the following extremely useful computational fact:

• Corollary: Every real symmetric matrix has real eigenvalues and is diagonalizable over the real numbers.

◦ Proof: This follows immediately from the spectral theorem on V = Rn since a real symmetric matrix is
Hermitian.

• To �nd the required diagonalization, we need only compute an orthonormal basis for each eigenspace.

• Example: For A =

 3 2 −2
2 2 0
−2 0 4

, �nd a diagonal matrix D and a unitary matrix U such that A = UDU−1.

◦ First, we �nd the eigenvalues of A. The characteristic polynomial is p(t) = det(tI−A) = t3−9t2 +18t =
t(t− 3)(t− 9) so the eigenvalues are λ = 0, 3, 6 and the eigenspaces are all 1-dimensional.

◦ A short calculation then yields the orthonormal bases
1

3

 2
−2
1

, 1

3

 1
2
2

, and 1

3

 2
1
−2

 for the 0-,

3-, and 6-eigenspaces respectively.

◦ Then the desired matrices are D =

 0 0 0
0 3 0
0 0 6

 and U =
1

3

 2 1 2
−2 2 1
1 2 −2

 .
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• We will remark that although real symmetric matrices are diagonalizable, and complex Hermitian matrices
are diagonalizable, it is not true that complex symmetric matrices are always diagonalizable.

◦ For example, the complex symmetric matrix

[
1 i
i −1

]
is not diagonalizable. This follows from the

observation that its trace and determinant are both zero, but since it is not the zero matrix, the only

possibility for its Jordan form is

[
0 1
0 0

]
.

• We also remark that most of these results also extend to the class of skew-Hermitian operators (having the
property that T ∗ = −T ), with appropriate minor modi�cations.

◦ For example, every eigenvalue of a skew-Hermitian operator is a pure imaginary number (i.e., of the
form ai for some real number a), and every skew-Hermitian operator is diagonalizable over C via an
orthonormal basis of eigenvectors.

◦ All of these statements follow immediately from the simple observation that T is skew-Hermitian if and
only if iT is Hermitian.

• Additionally, the converse of the spectral theorem not quite true: if V has an orthonormal basis of eigenvectors
of T , then T is not necessarily Hermitian.

◦ The correct general converse theorem is that V has an orthonormal basis of eigenvectors of T if and only
if T is a normal operator, meaning that T ∗T = TT ∗.

4.4.3 Stochastic Matrices and Markov Chains

• In many applications, we can use linear algebra to model the behavior of an iterated system. Such models
are quite common in applied mathematics, the social sciences (particularly economics), and the life sciences.

◦ For example, consider a state with two cities A and B whose populations �ow back and forth over time:
after one year passes a resident of city A has a 10% chance of moving to city B and a 90% chance of
staying in city A, while a resident of city B has a 30% change of moving to A and a 70% chance of
staying in B.

◦ We would like to know what will happen to the relative populations of cities A and B over a long period
of time.

◦ If city A has a population of Aold and city B has a population of Bold, then one year later, we can
see that city A's population will be Anew = 0.9Aold + 0.3Bold, while B's population will be Bnew =
0.1Aold + 0.7Bold.

◦ By iterating this calculation, we can in principle compute the cities' populations as far into the future
as desired, but the computations rapidly become quite messy to do exactly.

◦ For example, with the starting populations (A,B) = (1000, 3000), here is a table of the populations (to
the nearest whole person) after n years:
n 0 1 2 3 4 5 6 7 8 9 10 15 20 30

A 1000 1800 2280 2568 2741 2844 2907 2944 2966 2980 2988 2999 3000 3000
B 3000 2200 1720 1432 1259 1156 1093 1056 1034 1020 1012 1001 1000 1000

◦ We can see that the populations seem to approach (rather rapidly) having 3000 people in city A and
1000 in city B.

◦ We can do the computations above much more e�ciently by writing the iteration in matrix form:[
Anew

Bnew

]
=

[
0.9 0.3
0.1 0.7

] [
Aold

Bold

]
.

◦ Since the population one year into the future is obtained by left-multiplying the population vector by

M =

[
0.9 0.3
0.1 0.7

]
, the population k years into the future can then be obtained by left-multiplying the

population vector by Mk.
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◦ By diagonalizing this matrix, we can easily computeMk, and thus analyze the behavior of the population
as time extends forward.

◦ In this case, M is diagonalizable: M = QDQ−1 with D =

[
1 0
0 3/5

]
and Q =

[
3 −1
1 1

]
.

◦ ThenMk = QDkQ−1, and as k →∞, we see thatDk →
[

1 0
0 0

]
, soMk will approachQ

[
1 0
0 0

]
Q−1 =[

3/4 3/4
1/4 1/4

]
.

◦ From this calculation, we can see that as time extends on, the cities' populations will approach the
situation where 3/4 of the residents live in city A and 1/4 of the residents live in city B.

◦ Notice that this �steady-state� solution where the cities' populations both remain constant represents an
eigenvector of the original matrix with eigenvalue λ = 1.

• The system above, in which members of a set (in this case, residents of the cities) are identi�ed as belonging
to one of several states that can change over time, is known as a stochastic process.

◦ If, as in our example, the probabilities of changing from one state to another are independent of time,
the system is called a Markov chain.

◦ Markov chains and their continuous analogues (known as Markov processes) arise (for example) in prob-
ability problems involving repeated wagers or random walks, in economics modeling the �ow of goods
among industries and nations, in biology modeling the gene frequencies in populations, and in civil
engineering modeling the arrival of people to buildings.

◦ A Markov chain model was also used for one of the original versions of the PageRank algorithm used by
Google to rank internet search results.

• De�nition: A square matrix whose entries are nonnegative and whose columns sum to 1 is called a stochastic matrix
(or a transition matrix).

◦ Equivalently, a square matrix M is a stochastic matrix precisely when MTv = v, where v is the column
vector of all 1s.

◦ From this description, we can see that v is an eigenvector of MT of eigenvalue 1, and since MT and M
have the same characteristic polynomial, we conclude that M has 1 as an eigenvalue.

◦ If it were true that M were diagonalizable and every eigenvalue of M had absolute value less than 1
(except for the eigenvalue 1), then we could apply the same argument as we did in the example to
conclude that the powers of M approached a limit.

◦ Unfortunately, this is not true in general: the stochastic matrix M =

[
0 1
1 0

]
has M2 equal to the

identity matrix, so odd powers of M are equal to M while even powers are equal to the identity. (In this
case, the eigenvalues of M are 1 and −1.)

◦ Fortunately, the argument does apply to a large class of stochastic matrices:

• Theorem (Markov Chains): IfM is a stochastic matrix, then every eigenvalue λ ofM has |λ| ≤ 1. Furthermore,
if some power of M has all entries positive, then the only eigenvalue of M of absolute value 1 is λ = 1, and
the 1-eigenspace has dimension 1. In such a case, the matrix limit limk→∞Mk exists and has all columns
equal to a 1-eigenvector of M .

◦ We will not prove this theorem, although most of the arguments when M is diagonalizable are similar
to the computations we did in the example above.

4.4.4 Systems of Linear Di�erential Equations

• Consider the problem of solving a system of linear di�erential equations.

◦ First, observe that we can reduce any system of linear di�erential equations to a system of �rst-order
linear di�erential equations (in more variables): if we de�ne new variables equal to the higher-order
derivatives of our old variables, then we can rewrite the old system as a system of �rst-order equations.
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◦ For example, to convert y′′′ + y′ = 0 into a system of 1st-order equations, we can de�ne new variables
z = y′ and w = y′′ = z′: then the single 3rd-order equation y′′′ + y′ = 0 is equivalent to the 1st-order
system y′ = z, z′ = w, w′ = −z.

• By rearranging the equations and de�ning new variables appropriately, we can put any system of linear
di�erential equations into the form

y′1 = a1,1(x) · y1 + · · ·+ a1,n(x) · yn + q1(x)

...
...

y′n = an,1(x) · y1 + · · ·+ an,n(x) · yn + qn(x)

for some functions ai,j(x) and qi(x) for 1 ≤ i, j ≤ n.

◦ We can write this system more compactly using matrices: if A =

 a1,1(x) · · · a1,n(x)
...

. . .
...

an,1(x) · · · an,n(x)

, q =

 q1(x)
...

qn(x)

, and y =

 y1(x)
...

yn(x)

 so that y′ =

 y′1(x)
...

y′n(x)

, we can write the system more compactly as

y′ = Ay + q.

◦ We say that the system is homogeneous if q = 0, and it is nonhomogeneous otherwise.

• Our goal is only to outline some of the applications of linear algebra to the study of di�erential equations, so
we will now assume that all of the entries in the matrix A are constants and that the system is homogeneous.
In this case, we have the following fundamental theorem:

• Theorem (Existence-Uniqueness for Homogeneous Systems): If the n×n coe�cient matrix A is constant and
I is any interval containing a, then there exists a unique solution to the homogeneous initial value problem
y′ = Ay with y(a) = y0 on I. As a consequence, the vector space of solutions to y′ = Ay on I is an
n-dimensional vector space.

◦ This existence and uniqueness parts of the theorem are analytic in nature. The fact that the vector space
of solutions is n-dimensional follows by noting that the existence-uniqueness statement implies that the
vector space of solutions to y′ = Ay is isomorphic to the vector space of possible initial condition vectors
y0, which is clearly n-dimensional.

◦ We, of course, would actually like to write down the solutions explicitly. The key observation is that if
v is an eigenvector of A with eigenvalue λ, then y = eλxv is a solution to y′ = Ay.

◦ This follows simply by di�erentiating y = eλxv with respect to x: we see y′ = λeλxv = λy = Ay.

◦ In the event that A has n linearly independent eigenvectors (which is to say, if A is diagonalizable), we
will therefore obtain n solutions to the di�erential equation. In fact, they will always give us a basis for
the solution space:

• Theorem (Eigenvalue Method): If A has n linearly independent eigenvectors v1,v2, . . . ,vn with associated
eigenvalues λ1, λ2, . . . , λn, then the general solution to the matrix di�erential system y′ = Ay is given by
y = C1e

λ1xv1 + C2e
λ2xv2 + · · ·+ Cne

λnxv2, where C1, · · · , Cn are arbitrary constants.

◦ Recall that the matrix A will have n linearly independent eigenvectors precisely when it is diagonalizable,
which is equivalent to saying that the dimension of each eigenspace is equal to the multiplicity of the
corresponding eigenvalue as a root of the characteristic polynomial of A.

◦ Proof: By the observation above, each of eλ1xv1, e
λ2xv2, · · · , eλnxvn is a solution to y′ = Ay. We claim

that they are a basis for the solution space. Since the solution space is n-dimensional, it su�ces to show
that these solutions are linearly independent.
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◦ For this, we simply compute the determinant of the matrix W whose columns are these n vectors:
after factoring out the exponentials from each column, we obtain det(W ) = e(λ1+···+λn)x det(M), where

M =

 | | |
v1 · · · vn
| | |

.
◦ The exponential is always nonzero and the vectors v1,v2, . . . ,vn are (by hypothesis) linearly independent,
meaning that det(M) is also nonzero. Thus, det(W ) is nonzero, so eλ1xv1, e

λ2xv2, · · · , eλnxvn are linearly
independent.

◦ Since these solutions are therefore a basis for the solution space, we immediately conclude that the general
solution to y′ = Ay has the form y = C1e

λ1xv1 + C2e
λ2xv2 + · · · + Cne

λnxv2, for arbitrary constants
C1, · · · , Cn.

• Example: Find all functions y1 and y2 such that
y′1 = y1 − 3y2

y′2 = y1 + 5y2
.

◦ The coe�cient matrix isA =

[
1 −3
1 5

]
, whose characteristic polynomial is det(tI−A) =

∣∣∣∣ t− 1 3
−1 t− 5

∣∣∣∣ =

(t− 1)(t− 5) + 3 = t2 − 6t+ 8 = (t− 2)(t− 4), so the eigenvalues of A are λ = 2, 4.

◦ Since the eigenvalues are distinct, A is diagonalizable, and some calculation will produce the eigenvectors[
−3
1

]
for λ = 2 and

[
−1
1

]
for λ = 4.

◦ Thus, the general solution to the system is

[
y1

y2

]
= C1

[
−3
1

]
e2x + C2

[
−1
1

]
e4x .

• We also remark that in the event that the coe�cient matrix is real but has nonreal eigenvalues, by taking an
appropriate linear combination we can produce real-valued solution vectors.

◦ Explicitly, suppose A has a complex eigenvalue λ = a + bi with associated eigenvector v = w1 + iw2.
Then λ̄ = a − bi has an eigenvector v = w1 − iw2 (the conjugate of v), so we obtain the two solutions
eλxv and eλ̄xv̄ to the system y′ = Ay.

◦ Then the linear combinations
1

2
(eλxv + eλ̄xv̄) = eax(w1 cos(bx) − w2 sin(bx)) and

1

2i
(eλxv − eλ̄xv̄) =

eax(w1 sin(bx) + w2 cos(bx)) are both real-valued.

◦ Thus, to obtain real-valued solutions, we can replace the two complex-valued solutions eλxv and eλ̄xv̄
with the two real-valued solutions eax(w1 cos(bx)−w2 sin(bx)) and eax(w1 sin(bx) + w2 cos(bx)), which
are simply the real and imaginary parts of eλxv respectively.

• Example: Find all real-valued functions y1 and y2 such that
y′1 = 3y1 − 2y2

y′2 = y1 + y2
.

◦ The coe�cient matrix isA =

[
3 −2
1 1

]
, whose characteristic polynomial is det(tI−A) =

∣∣∣∣ t− 3 2
−1 t− 1

∣∣∣∣ =

t2 − 4t+ 5 so the eigenvalues are λ = 2± i.

◦ By row-reducing we see that the (2 + i)-eigenspace is spanned by

[
1 + i

1

]
, while the (2− i)-eigenspace

is spanned by

[
1− i

1

]
.

◦ This yields the complex-valued basis

[
1 + i

1

]
e(2+i)x,

[
1− i

1

]
e(2−i)x for the solution space.

◦ We want real-valued solutions, so extracting the real and imaginary parts as above yields the equivalent

basis e2x

([
1
1

]
cos(x)−

[
1
0

]
sin(x)

)
and e2x

([
1
1

]
sin(x) +

[
1
0

]
cos(x)

)
.

◦ The general real-valued solution is then

[
y1

y2

]
= C1e

2x

[
cos(x)− sin(x)

cos(x)

]
+ C2e

2x

[
sin(x) + cos(x)

sin(x)

]
.
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• When the coe�cient matrix is not diagonalizable, we can adapt the eigenvalue method to generate a basis for
the solution space using chains of generalized eigenvectors.

◦ The main observation is the following: if {vk−1,vk−2, . . . ,v1,v0} is a chain of k generalized λ-eigenvectors
above the λ-eigenvector v, where vi = (A− λI)iv for each i, then eλxv0, e

λx(v1 + xv0), eλx(v2 + xv1 +
x2

2 v0), ... , eλx(vk−1 + xvk−2 + · · · + xk−2

(k−2)!v1 + xk−1

(k−1)!v0) yield k linearly independent solutions to the

system y′ = Ay.

◦ To see this, observe that
d

dx

[
xd

d!
eλxvi

]
=

xd−1

(d− 1)!
eλxvi + λ

xd

d!
eλxvi, while (A − λI)

[
xd

d!
eλxvi

]
=

xd

d!
eλxvi−1 hence A

[
xd

d!
eλxvi

]
=
xd

d!
eλxvi−1 + λ

xd

d!
eλxvi; then summing from d = 0 to d = k − 1 and

reindexing the sum on the �rst term shows that
d

dx

[
vk−1 + · · ·+ xk−1

(k−1)!v0

]
is equal to A[vk−1 + · · · +

xk−1

(k−1)!v0], as desired.

◦ These solutions are (trivially) linearly independent since {vk−1,vk−2, . . . ,v1,v0} is linearly independent,
and each solution contains one more of the vectors vi than the previous solution.

◦ Since we can always �nd a basis of generalized eigenvectors, we can always construct a solution basis in
this manner.

• Example: Find all functions y1 and y2 such that
y′1 = 5y1 − 9y2

y′2 = 4y1 − 7y2
.

◦ The coe�cient matrix is A =

[
5 −9
4 −7

]
, whose characteristic polynomial is det(tI − A) = (t + 1)2, so

the eigenvalues of A are λ = 1, 1.

◦ The 1-eigenspace is 1-dimensional and spanned by the eigenvector v0 =

[
3
2

]
. To construct a chain

above this vector, we solve (A− λI)v1 = v0 to obtain a solution v1 =

[
2
1

]
.

◦ The procedure above then yields the two linearly independent solutions

[
3
2

]
e−t and

[
3
2

]
te−t +[

2
1

]
e−t, so the general solution to the system is

[
y1

y2

]
= C1

[
3
2

]
e−x + C2

([
3
2

]
xe−x +

[
2
1

]
e−x

)
.

• As a �nal remark, we will note that there exists a method known as variation of parameters for solving a
non-homogeneous system of linear di�erential equations if the homogeneous system can be solved.

◦ Explicitly, suppose y1, . . . ,yn are the n linearly independent solutions to the homogeneous equation
y′ = Ay and we want to solve the nonhomogeneous equation y′ = Ay + q where q = (q1, . . . , qn).

◦ We look for functions c1(x), . . . , cn(x) making ỹ = c1(x)y1 + · · · + cn(x)yn a solution to the nonhomo-
geneous equation y′ = Ay + q.

◦ Di�erentiating ỹ via the product rule and using the fact that y′i = Ayi for each i yields ỹ′ = (c1y
′
1 +

· · ·+ cny
′
n)+(c′1y1 + · · ·+ c′nyn) = A(c1y1 + · · ·+ cnyn)+(c′1y1 + · · ·+ c′nyn) = Aỹ+(c′1y1 + · · ·+ c′nyn).

◦ Therefore, we simply need to take c′1, . . . , c
′
n to satisfy the equation c′1y1 + · · · + c′nyn = q, which is

merely a matrix equation Y c′ = q where Y is the matrix whose columns are y1, . . . ,yn and c′ is the
column vector (c′1, . . . , c

′
n).

◦ In fact, since Y is invertible because its columns y1, . . . ,yn are linearly independent, the system has
a unique solution, and we may then integrate the resulting solution vector to obtain the functions
c1, . . . , cn. Including the arbitrary constants of integration there, in fact, will give the general solution
to the nonhomogeneous system y′ = Ay + q.

• Example: Find all functions y1 and y2 such that
y′1 = y2

y′2 = −y1 + sec(x)
.
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◦ The coe�cient matrix for the homogeneous system is A =

[
0 1
−1 0

]
with eigenvalues λ = ±i. Row-

reducing to �nd eigenvectors yields the complex-valued solution basis

[
−i
1

]
eix,

[
i
1

]
e−ix, and then ex-

tracting real and imaginary parts yields the equivalent real-valued solution basis

[
sin(x)
cos(x)

]
,

[
− cos(x)
sin(x)

]
.

◦ We then want ỹ = c1(x)

[
sin(x)
cos(x)

]
+c2(x)

[
− cos(x)
sin(x)

]
where

[
sin(x) − cos(x)
cos(x) sin(x)

] [
c′1(x)
c′2(x)

]
=

[
0

sec(x)

]
.

◦ Left-multiplying by

[
sin(x) cos(x)
− cos(x) sin(x)

]
yields

[
c′1(x)
c′2(x)

]
=

[
sin(x) cos(x)
− cos(x) sin(x)

] [
0

sec(x)

]
=

[
1

tan(x)

]
and now taking antiderivatives yields c1(x) = C1 + x and c2(x) = C2 + ln(sec(x)).

◦ The general solution is therefore

[
y1

y2

]
= (C1 + x)

[
sin(x)
cos(x)

]
+ (C2 + ln(secx))

[
− cos(x)
sin(x)

]
.

4.4.5 Matrix Exponentials and the Jordan Form

• There is also another, quite di�erent, method for using diagonalization and the Jordan canonical form to solve
a homogeneous system of linear di�erential equations with constant coe�cients.

◦ As motivation, if we consider the di�erential equation y′ = ky with the initial condition y(0) = C, it is
not hard to verify that the general solution is y(x) = ekxC.

◦ We would like to extend this result to an n× n system y′ = Ay with initial condition y(0) = c.

◦ The natural way would be to try to de�ne the �exponential of a matrix� eA in such a way that eAt has
the property that d

dt [e
At] = AeAt: then y(t) = eAtc will have y′(t) = AeAtc = Ay.

• De�nition: If A ∈Mn×n(C), we de�ne the exponential of A as the in�nite sum eA =
∑∞
n=0A

n/n!.

◦ The de�nition is motivated by the Taylor series for the real exponential ez =
∑∞
n=0 z

n/n!, but in order
for this de�nition to make sense, we need to know that the in�nite sum actually converges.

• Theorem (Exponential Solutions): For any matrix A, the in�nite series
∑∞
n=0

∑∞
n=0A

n/n! converges abso-
lutely, in the sense that the series in each of the entries of the matrix converges absolutely. Furthermore, the
unique solution to the initial value problem y′ = Ay with y(a) = y0 is given by y(t) = eA(t−a)y0.

◦ Proof: De�ne the �matrix norm� ||M || to be the sum of the absolute values of the entries of M .

◦ Observe that ||A+B|| ≤ ||A|| + ||B|| for any matrices A and B: this simply follows by applying the
triangle inequality in each entry of A+B.

◦ Likewise, we also have ||AB|| ≤ ||A|| · ||B|| for any matrices A and B: this follows by observing that the
entries of the product matrix are a sum of products of entries from A and entries from B and applying
the triangle inequality.

◦ Then

∣∣∣∣∣∣∣∣∑k
n=0

An

n!

∣∣∣∣∣∣∣∣ ≤ ∑k
n=0

||An||
n!

≤
∑k
n=0

||A||n

n!
≤
∑∞
n=0

||A||n

n!
= e||A||, so each entry in any partial

sum of the in�nite series
∑∞
n=0

An

n!
has absolute value at most e||A||.

◦ Thus, the in�nite series converges absolutely, so we can di�erentiate term-by-term to see that
d

dx
[eAx] =

d

dx

[∑∞
n=0

An

n!
xn
]

=
∑∞
n=0

An

(n− 1)!
xn−1 = A

[∑∞
n=0

An

n!
xn
]

= AeAx.

◦ Therefore, we see that y(t) = eA(t−a)y0 is a solution to the initial value problem (since it satis�es the
di�erential equation and the initial condition). The uniqueness part of the existence-uniqueness theorem
guarantees it is the only solution.

• The theorem above tells us that we can use matrix exponentials to write down the solutions of initial value
problems. All that remains is actually to compute the exponential of a matrix, which we have not yet explained.
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◦ When the matrix is diagonalizable, we can do this comparatively easily: explicitly, if A = Q−1DQ, then

eA =
∑∞
n=0

An

n!
=
∑∞
n=0

(Q−1DQ)n

n!
=
∑∞
n=0

Q−1DnQ

n!
= Q−1

[∑∞
n=0

Dn

n!

]
Q = Q−1eDQ.

◦ Furthermore, again from the power series de�nition, if D is diagonal with diagonal entries λ1, . . . , λn,
then eD is diagonal with diagonal entries eλ1 , . . . , eλn .

◦ Thus, by using the diagonalization, we can compute the exponential of the original matrix A, and thereby
use it to solve the di�erential equation y′ = Ay.

• Example: Find all functions y1 and y2 such that
y′1 = 2y1 − y2

y′2 = −2y1 + 3y2
.

◦ The coe�cient matrix is A =

[
2 −1
−2 3

]
, with eigenvalues λ = 1, 4. Since the eigenvalues are distinct,

A is diagonalizable, and we can �nd eigenvectors

[
1
1

]
for λ = 1 and

[
1
−2

]
for λ = 4.

◦ Then with Q =

[
1 1
1 −2

]
, with Q−1 =

1

3

[
2 1
1 −1

]
, we have Q−1AQ = D =

[
1 0
0 4

]
.

◦ Thus, eAx = QeDxQ−1 = Q

[
ex 0
0 e4x

]
Q−1 =

1

3

[
2ex + e4x ex − e4x

2ex − 2e4x ex + 2e4x

]
.

◦ Then

[
y1

y2

]
=

1

3

[
2ex + e4x ex − e4x

2ex − 2e4x ex + 2e4x

] [
C1

C2

]
for arbitrary constants C1 and C2.

• If the matrix is not diagonalizable, we must use the Jordan canonical form. By the same calculation as given
above for the diagonalization, it su�ces to compute the exponential of each Jordan block separately.

• Proposition (Exponential of Jordan Block): We have eJx =



eλx xeλx x2

2 e
λx · · · xd−1

(d−1)!e
λx

eλx xeλx
. . .

...
. . .

. . . x2

2 e
λx

eλx xeλx

eλx


, where

J is the d× d Jordan block matrix with eigenvalue λ.

◦ Proof: Write J = λI + N . As we showed earlier, Nd is the zero matrix, and NI = IN since I is the
identity matrix.

◦ Applying the binomial expansion yields (Jx)k = xk(λI+N)k = xk
[
λkI +

(
k
1

)
λk−1N1 + · · ·+

(
k
k−d
)
λk−dNd + · · ·

]
,

but since Nd is the zero matrix, only the terms up through Nd−1 are nonzero. (Note that we are using
the fact that IN = NI, since the binomial theorem does not hold for general matrices.)

◦ It is then a straightforward (if somewhat lengthy) computation to plug these expressions into the in�nite
sum de�ning eJx and evaluate the in�nite sum to obtain the stated result.

• Example: Solve the system of linear di�erential equations y′(x) =


2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 1

y, where y(0) =


1
2
−4
3

.
◦ Observe that the coe�cient matrix A is already in Jordan canonical form.

◦ Hence eAx =


e2x xe2x x2e2x/2 0
0 e2x xe2x 0
0 0 e2x 0
0 0 0 ex

, so the solution is y(t) = eAx


1
2
−4
3

 =


e2x + 2xe2x + 2x2e2x

2e2x − 4xe2x

−4e2x

3ex

 .

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2023. You may not reproduce or distribute this
material without my express permission.
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