
Linear Algebra (part 3) : Inner Product Spaces (by Evan Dummit, 2023, v. 3.50)

Contents

3 Inner Product Spaces 1

3.1 Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.1.1 Inner Products on Real Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1.2 Inner Products on Complex Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1.3 Properties of Inner Products, Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Orthogonality, Orthonormal Bases, and the Gram-Schmidt Procedure . . . . . . . . . . . . . 8

3.2.2 Orthogonal Complements and Orthogonal Projection . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Linear Transformations and Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Characterizations of Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 The Adjoint of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Applications of Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Least-Squares Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.2 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Inner Product Spaces

In this chapter we will study vector spaces having an additional kind of structure called an inner product, which
generalizes the idea of the dot product of vectors in Rn, and which will allow us to formulate notions of �length�
and �angle� in more general vector spaces.

We de�ne inner products in real and complex vector spaces and establish some of their properties, including the
celebrated Cauchy-Schwarz inequality, and survey some applications.

We then discuss orthogonality of vectors and subspaces and in particular describe a method for constructing an
orthonormal basis for any �nite-dimensional inner product space, which provides an analogue of giving �standard
unit coordinate axes� in Rn.

Next, we discuss some interactions between inner products and linear transformations, and introduce the funda-
mental notion of the adjoint of a linear transformation.

Finally, we close with a discussion of two very important practical applications of inner products and orthogonality:
computing least-squares approximations and approximating periodic functions with Fourier series.

3.1 Inner Product Spaces

• Notation: In this chapter, we will use parentheses around vectors rather than angle brackets, since we will
shortly be using angle brackets to denote an inner product. We will also avoid using dots when discussing
scalar multiplication, and reserve the dot notation for the dot product of two vectors.
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3.1.1 Inner Products on Real Vector Spaces

• Our �rst goal is to describe the natural analogue in an arbitrary real vector space of the dot product in Rn.
We recall some basic properties of the dot product:

◦ The dot product distributes over addition and scaling: (v1 +cv2) ·w = (v1 ·w)+c(v2 ·w) for any vectors
v1,v2,w and scalar c.

◦ The dot product is commutative: v ·w = w · v for any vectors v,w.

◦ The dot product is nonnegative: v · v ≥ 0 for any vector v.

• We will use these three properties to de�ne an arbitrary inner product on a real vector space:

• De�nition: If V is a real vector space, an inner product on V is a pairing that assigns a scalar in F to each
ordered pair (v,w) of vectors in V . This pairing is denoted 〈v,w〉 and must satisfy the following properties:

[I1] Linearity in the �rst argument: 〈v1 + cv2,w〉 = 〈v1,w〉+ c〈v2,w〉.
[I2] Symmetry: 〈w,v〉 = 〈v,w〉.
[I3] Positive-de�niteness: 〈v,v〉 ≥ 0 for all v, and 〈v,v〉 = 0 only when v = 0.

◦ The linearity and symmetry properties are fairly clear: if we �x the second component, the inner product
behaves like a linear function in the �rst component, and we want both components to behave in the
same way.

◦ The positive-de�niteness property is intended to capture an idea about �length�: namely, the length of
a vector v should be the (inner) product of v with itself, and lengths are supposed to be nonnegative.
Furthermore, the only vector of length zero should be the zero vector.

• De�nition: A vector space V together with an inner product 〈·, ·〉 on V is called an inner product space.

◦ Any given vector space may have many di�erent inner products.

◦ When we say �Let V be an inner product space�, we intend this to mean that V is equipped with a
particular (�xed) inner product.

• The entire purpose of de�ning an inner product is to generalize the notion of the dot product to more general
vector spaces, so we should check that the dot product on Rn is actually an inner product:

• Example: Show that the standard dot product on Rn, de�ned as (x1, . . . , xn) · (y1, . . . , yn) = x1y1 + · · ·+xnyn
is an inner product.

◦ [I1]-[I2]: We have previously veri�ed the linearity and symmetry properties.

◦ [I3]: If v = (x1, . . . , xn) then v · v = x21 + x22 + · · ·+ x2n. Since each square is nonnegative, v · v ≥ 0, and
v · v = 0 only when all of the components of v are zero.

• There are other examples of inner products on Rn beyond the standard dot product.

• Example: Show that the pairing 〈(x1, y1), (x2, y2)〉 = 3x1x2 +2x1y2 +2x2y1 +4y1y2 on R2 is an inner product.

◦ [I1]-[I2]: It is an easy algebraic computation to verify the linearity and symmetry properties.

◦ [I3]: We have 〈(x, y), (x, y)〉 = 3x2 + 4xy + 4y2 = 2x2 + (x+ 2y)2, and since each square is nonnegative,
the inner product is always nonnegative. Furthermore, it equals zero only when both squares are zero,
and this clearly only occurs for x = y = 0.

• We can de�ne another class of inner products on function spaces using integration:

• Example: Let V be the vector space of continuous (real-valued) functions on the interval [a, b]. Show that

〈f, g〉 =
´ b
a
f(x)g(x) dx is an inner product on V .

◦ [I1]: We have 〈f1 + cf2, g〉 =
´ b
a

[f1(x) + cf2(x)] g(x) dx =
´ b
a
f1(x)g(x) dx+ c

´ b
a
f2(x)g(x) dx = 〈f1, g〉+

c 〈f2, g〉.
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◦ [I2]: Observe that 〈g, f〉 =
´ b
a
g(x)f(x) dx =

´ b
a
f(x)g(x) dx = 〈f, g〉.

◦ [I3]: Notice that 〈f, f〉 =
´ b
a
f(x)2 dx is the integral of a nonnegative function, so it is always nonnegative.

Furthermore (since f is assumed to be continuous) the integral of f2 cannot be zero unless f is identically
zero.

◦ Remark: More generally, if w(x) is any �xed positive (�weight�) function that is continuous on [a, b],

〈f, g〉 =
´ b
a
f(x)g(x) · w(x) dx is an inner product on V .

3.1.2 Inner Products on Complex Vector Spaces

• We would now like to extend the notion of an inner product to complex vector spaces.

◦ A natural �rst guess would be to use the same de�nition as in a real vector space. However, this turns
out not to be the right choice!

◦ To explain why, suppose that we try to use the same de�nition of dot product to �nd the �length� of a
vector of complex numbers, i.e., by computing v · v.
◦ We can see that the dot product of the vector (1, 0, i) with itself is 0, but this vector certainly is not
the zero vector. Even worse, the dot product of (1, 0, 2i) with itself is −3, while the dot product of
(1, 0, 1 + 2i) with itself is −2 + 4i. None of these choices for �lengths� seem sensible.

◦ Indeed, a more natural choice of �length� for the vector (1, 0, i) is
√

2: the �rst component has absolute
value 1, the second has absolute value 0, and the last has absolute value 1, for an overall �length� of√

12 + 02 + 12, in analogy with the real vector (1, 0, 1) which also has length
√

2. Similarly, (1, 0, 2i)
should really have length

√
12 + 02 + 22 =

√
5.

◦ One way to obtain a nonnegative function that seems to capture this idea of �length� for a complex vector
is to include a conjugation: notice that for any complex vector v, the dot product v · v will always be a
nonnegative real number.

◦ Using the example above, we can compute that (1, 0, i) · (1, 0, i) = 12 + 02 + 12 = 2, so this �modi�ed dot
product� seems to give the square of the length of a complex vector, at least in this one case.

◦ All of this suggests that the right analogy1 of the �Rn dot product� for a pair of complex vectors v, w
is v ·w rather than v ·w.

◦ We then lose the symmetry property of the real inner product, since now v ·w and w · v are not equal
in general. But notice we still have a relation between v ·w and w · v: namely, the latter is the complex
conjugate of the former.

◦ We can therefore obtain the right de�nition by changing the symmetry property 〈w,v〉 = 〈v,w〉 to
�conjugate-symmetry�: 〈w,v〉 = 〈v,w〉 .

• With this minor modi�cation, we can extend the idea of an inner product to a complex vector space:

• De�nition: If V is a (real or) complex vector space, an inner product on V is a pairing that assigns a scalar in
F to each ordered pair (v,w) of vectors in V . This pairing is denoted 〈v,w〉 and must satisfy the following
properties:

[I1] Linearity in the �rst argument: 〈v1 + cv2,w〉 = 〈v1,w〉+ c〈v2,w〉.
[I2] Conjugate-symmetry: 〈w,v〉 = 〈v,w〉 (where the bar denotes the complex conjugate).

[I3] Positive-de�niteness: 〈v,v〉 ≥ 0 for all v, and 〈v,v〉 = 0 only when v = 0.

◦ This de�nition generalizes the one we gave for a real vector space earlier: if V is a real vector space then
〈w,v〉 = 〈w,v〉 since 〈w,v〉 is always a real number.

1Another (perhaps more compelling) reason that symmetry is not the right property for complex vector spaces is that the only
�symmetric positive-de�nite complex bilinear pairing�, by which we mean a complex vector space V with an inner product 〈·, ·〉 satisfying
the three axioms we listed for a real inner product space, is the trivial inner product on the zero space. Therefore, because we want to
develop an interesting theory, we instead require conjugate-symmetry.
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◦ Important Warning: In other disciplines (particularly physics), inner products are often de�ned to be
linear in the second argument, rather than the �rst. With this convention, the roles of the �rst and
second component will be reversed (relative to our de�nition). This does not make any di�erence in
the general theory, but can be extremely confusing since the de�nitions in mathematics and physics are
otherwise identical, and the properties will have very similar statements.

• The chief reason for using this de�nition is that our modi�ed dot product for complex vectors is an inner
product:

• Example: For complex numbers v = (x1, . . . , xn) and w = (y1, . . . , yn), show that the map 〈v,w〉 = x1y1 +
· · ·+ xnyn is an inner product on Cn.

◦ [I1]: If v1 = (x1, . . . , xn), v2 = (z1, . . . , zn), and w = (y1, . . . , yn), then

〈v1 + cv2,w〉 = (x1 + cz1)y1 + · · ·+ (xn + czn)yn

= (x1y1 + · · ·+ xnyn) + c(z1y1 + · · ·+ znyn)

= 〈v1,w〉+ c〈v2,w〉.

◦ [I2]: Observe that 〈w,v〉 = y1x1 + · · ·+ ynxn = y1x1 + · · ·+ ynxn = 〈v,w〉.
◦ [I3]: If v = (x1, . . . , xn) then 〈v,v〉 = x1x1 + x2x2 + · · · + xnxn = |x1|2 + · · · + |xn|2. Each term is
nonnegative, so v · v ≥ 0, and clearly v · v = 0 only when all of the components of v are zero.

◦ This map is often called the �standard inner product� on Cn, since it is fairly natural.

• Here is an example of a complex inner product on the space of n× n matrices:

• Example: Let V = Mn×n(C) be the vector space of complex n× n matrices. Show that 〈A,B〉 = tr(AB∗) is

an inner product on V , where M∗ = MT is the complex conjugate of the transpose of M (often called the
conjugate transpose or the adjoint of M).

◦ [I1]: We have 〈A+ cC,B〉 = tr[(A+cC)B∗] = tr[AB∗+cCB∗] = tr(AB∗)+c tr(CB∗) = 〈A,B〉+c 〈C,B〉,
where we used the facts that tr(M +N) = tr(M) + tr(M) and tr(cM) = c tr(M).

◦ [I2]: Observe that 〈B,A〉 = tr(BA∗) = tr(B∗A) = tr(AB∗) = 〈A,B〉, where we used the facts that
tr(MN) = tr(M∗N∗) and that tr(MN) = tr(NM), both of which are easy algebraic calculations.

◦ [I3]: We have 〈A,A〉 =

n∑
j=1

(AA∗)j,j =

n∑
j=1

n∑
k=1

Aj,kA
∗
k,j =

n∑
j=1

n∑
k=1

Aj,kAj,k =

n∑
j=1

n∑
k=1

|Aj,k|2 ≥ 0, and

equality can only occur when each element of A has absolute value zero (i.e., is zero).

◦ Remark: This inner product is often called the Frobenius inner product.

3.1.3 Properties of Inner Products, Norms

• Our fundamental goal in studying inner products is to extend the notion of length in Rn to a more general
setting. Using the positive-de�niteness property, we can de�ne a notion of length in an inner product space.

• De�nition: If V is an inner product space, we de�ne the norm (or length) of a vector v to be ||v|| =
√
〈v,v〉.

◦ When V = Rn with the standard dot product, the norm on V reduces to the standard notion of �length�
of a vector in Rn.

• Here are a few basic properties of inner products and norms:

• Proposition (Properties of Norms): If V is an inner product space with inner product 〈·, ·〉, the following hold:

1. For any vectors v, w1, and w2, 〈v,w1 + w2〉 = 〈v,w1〉+ 〈v,w2〉.
◦ Proof: We have 〈v,w1 + w2〉 = 〈w1 + w2,v〉 = 〈w1,v〉+ 〈w2,v〉 = 〈v,w1〉 + 〈v,w2〉 by [I1] and
[I2].

2. For any vectors v and w and scalar c, 〈v, cw〉 = c 〈v,w〉.
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◦ Proof: We have 〈v, cw〉 = 〈cw,v〉 = c〈w,v〉 = c 〈v,w〉 by [I1] and [I2].

3. For any vector v, 〈v,0〉 = 0 = 〈0,v〉.
◦ Proof: Apply property (3) and [I2] with c = 0, using the fact that 0w = 0 for any w.

4. For any vector v, ||v|| is a nonnegative real number, and ||v|| = 0 if and only if v = 0.

◦ Proof: Immediate from [I3].

5. For any vector v and scalar c, ||cv|| = |c| · ||v||.
◦ Proof: We have ||c · v|| =

√
〈c · v, c · v〉 =

√
cc 〈v,v〉 = |c| · ||v||, using [I2] and property (2).

• In Rn, there are a number of fundamental inequalities about lengths, which generalize quite pleasantly to
general inner product spaces.

• The following result, in particular, is one of the most fundamental inequalities in all of mathematics:

• Theorem (Cauchy-Schwarz Inequality): For any v and w in an inner product space V , we have |〈v,w〉| ≤
||v|| ||w||, with equality if and only if the set {v,w} is linearly dependent.

◦ Proof: If w = 0 then the result is trivial (since both sides are zero, and {v,0} is always dependent), so
now assume w 6= 0.

◦ Let t =
〈v,w〉
〈w,w〉

. By properties of inner products and norms, we can write

||v − tw||2 = 〈v − tw,v − tw〉 = 〈v,v〉 − t 〈w,v〉 − t 〈v,w〉+ tt 〈w,w〉

= 〈v,v〉 − 〈v,w〉 〈v,w〉
〈w,w〉

− |〈v,w〉|
2

〈w,w〉
+
|〈v,w〉|2

〈w,w〉

= 〈v,v〉 − |〈v,w〉|
2

〈w,w〉
.

◦ Therefore, since ||v − tw||2 ≥ 0 and 〈w,w〉 ≥ 0, clearing denominators and rearranging yields |〈v,w〉|2 ≤
〈v,v〉 〈w,w〉. Taking the square root yields the stated result.

◦ Furthermore, we will have equality if and only if ||v − tw||2 = 0, which is in turn equivalent to v−tw = 0;
namely, when v is a multiple of w. Since we also get equality if w = 0, equality occurs precisely when
the set {v,w} is linearly dependent.

◦ Remark: As written, this proof is completely mysterious: why does making that particular choice for
t work? Here is some motivation: in the special case where V is a real vector space, we can write
||v − tw|| = 〈v,v〉 − 2t 〈v,w〉+ t2 〈w,w〉, which is a quadratic function of t that is always nonnegative.

◦ To decide whether a quadratic function is always nonnegative, we complete the square to see that

〈v,v〉 − 2t 〈v,w〉+ t2 〈w,w〉 = 〈w,w〉
[
t− 〈v,w〉
〈w,w〉

]2
+

[
〈v,v〉 − 〈v,w〉

2

〈w,w〉

]
.

◦ Thus, the minimum value of the quadratic function is 〈v,v〉 − 〈v,w〉
2

〈w,w〉
, and it occurs when t =

〈v,w〉
〈w,w〉

.

• The Cauchy-Schwarz inequality has many applications (most of which are, naturally, proving other inequali-
ties). Here are a few such applications:

• Theorem (Triangle Inequality): For any v and w in an inner product space V , we have ||v + w|| ≤ ||v||+ ||w||,
with equality if and only if one vector is a positive-real scalar multiple of the other.

◦ Proof: Using the Cauchy-Schwarz inequality and the fact that Re(z) ≤ |z| for any z ∈ C, we have

||v + w||2 = 〈v + w,v + w〉 = 〈v,v〉+ 2Re(〈v,w〉) + 〈w,w〉
≤ 〈v,v〉+ 2 |〈v,w〉|+ 〈w,w〉
≤ 〈v,v〉+ 2 ||v|| ||w||+ 〈w,w〉
= ||v||2 + 2 ||v|| ||w||+ ||w||2 .

Taking the square root of both sides yields the desired result.
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◦ Equality will hold if and only if {v,w} is linearly dependent (for equality in the Cauchy-Schwarz inequal-
ity) and 〈v,w〉 is a nonnegative real number. If either vector is zero, equality always holds. Otherwise,
we must have v = c ·w for some nonzero constant c: then 〈v,w〉 = c 〈w,w〉 will be a nonnegative real
number if and only if c is a nonnegative real number.

• Example: Show that for any continuous function f on [0, 3], it is true that
´ 3
0
xf(x) dx ≤ 3

√´ 3
0
f(x)2 dx.

◦ Simply apply the Cauchy-Schwarz inequality to f and g(x) = x in the inner product space of continuous

functions on [0, 3] with inner product 〈f, g〉 =
´ 3
0
f(x)g(x) dx.

◦ We obtain |〈f, g〉| ≤ ||f || · ||g||, or, explicitly,
∣∣∣´ 30 xf(x) dx

∣∣∣ ≤√´ 30 f(x)2 dx ·
√´ 3

0
x2 dx = 3

√´ 3
0
f(x)2 dx.

◦ Since any real number is less than or equal to its absolute value, we immediately obtain the required

inequality
´ 3
0
xf(x) dx ≤ 3

√´ 3
0
f(x)2 dx.

• Example: Show that for any positive reals a, b, c, it is true that

√
a+ 2b

a+ b+ c
+

√
b+ 2c

a+ b+ c
+

√
c+ 2a

a+ b+ c
≤ 3.

◦ Let v = (
√
a+ 2b,

√
b+ 2c,

√
c+ 2a) and w = (1, 1, 1) in R3. By the Cauchy-Schwarz inequality, v ·w ≤

||v|| ||w||.
◦ We compute v ·w =

√
a+ 2b+

√
b+ 2c+

√
c+ 2a, along with ||v||2 = (a+ 2b) + (b+ 2c) + (c+ 2a) =

3(a+ b+ c) and ||w||2 = 3.

◦ Thus, we see
√
a+ 2b+

√
a+ 2c+

√
b+ 2c ≤

√
3(a+ b+ c)·

√
3, and upon dividing through by

√
a+ b+ c

we obtain the required inequality.

• Example (for those who like quantum mechanics): Prove the momentum-position formulation of Heisenberg's
uncertainty principle: σxσp ≥ h/2. (In words: the product of uncertainties of position and momentum is
greater than or equal to half of the reduced Planck constant.)

◦ It is a straightforward computation that, for two (complex-valued) observables X and Y , the pairing
〈X,Y 〉 = E[XY ], the expected value of XY , is an inner product on the space of observables.

◦ Assume (for simplicity) that x and p both have expected value 0.

◦ We assume as given the commutation relation xp− px = ih.

◦ By de�nition, (σx)2 = E[xx] = 〈x, x〉 and (σp)
2 = E[pp] = E[pp] = 〈p, p〉 are the variances of x and p

respectively (in the statistical sense).

◦ By the Cauchy-Schwarz inequality, we can therefore write σ2
xσ

2
p = 〈x, x〉 〈p, p〉 ≥ |〈x, p〉|2 = |E[xp]|2.

◦ We can write xp =
1

2
(xp + px) +

1

2
(xp − px), where the �rst component is real and the second is

imaginary, so taking expectations yields E[xp] =
1

2
E[xp + px] +

1

2
E[xp − px], and therefore, |E[xp]| ≥

1

2
|E[xp− px]| = 1

2

∣∣ih∣∣ =
h

2
.

◦ Combining with the inequality above yields σ2
xσ

2
p ≥ h

2
/4, and taking square roots yields σxσp ≥ h/2.

• Example (for those who like statistics): Prove the Cramér-Rao inequality: if p(x; θ) is a positive probability
density function in x on a �nite sample space S that is di�erentiable in θ, and g(x) is an unbiased estimator
for the parameter θ, then E[(g(x)− θ)2] ≥ 1/I(θ) where I : S → R is de�ned by I(θ) = E[(pθ(x; θ)/p(x; θ))2].
(In words: the variance of the estimator g is greater than or equal to the reciprocal of the Fisher information
of p.)

◦ By de�nition we have
∑
x∈S p(x; θ) = 1 since p is a probability density function on S. Also, since the

expected value of a function g : S → R is the sum
∑
x∈S p(x; θ) g(x), saying that g is unbiased is the

same as saying that
∑
x∈S p(x; θ) g(x) = θ for all θ.

◦ Di�erentiating these two equalities with respect to θ then yields
∑
x∈S pθ(x; θ) = 0 and

∑
x∈S pθ(x; θ) g(x) =

1, and then subtracting these two yields
∑
x∈S pθ(x; θ) [g(x)− θ] = 1.
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◦ We may rewrite this last equality as 1 =
∑
x∈S

(
p(x; θ)1/2 [g(x)− θ]

) (
pθ(x; θ)/p(x; θ)1/2

)
.

◦ Now apply the Cauchy-Schwarz inequality to both sides: if Σ is the sum above, then we obtain 12 =
Σ2 ≤

[∑
x∈S p(x; θ)[g(x)− θ]2

]
·
[∑

x∈S pθ(x; θ)2/p(x; θ)
]
.

◦ This immediately yields
∑
x∈S p(x; θ)[g(x)− θ]2 ≥ 1/

∑
x∈S p(x; θ)[pθ(x; θ)/p(x; θ)]2, which is equivalent

to the claimed statement E[(g(x)− θ)2] ≥ 1/I(θ).

◦ Remark 1: Note that the quantity ||g(x)− θ||2 =
∑
x∈S p(x; θ)[g(x)−θ]2 represents the variance of g(x),

whereas the lower bound 1/I(θ) does not depend on g (it only depends on the pdf p). Thus, the Cramér-
Rao inequality gives a hard lower bound on how much variation g must have in its estimate for θ, if it
correctly predicts the right value θ on average.

◦ Remark 2: The formulation above is stated only for a probability density function on a �nite sample
space, but the same proof works for arbitrary discrete or continuous random variables as long as the
support of p (i.e., the set on which p is nonzero) does not depend on θ.

3.2 Orthogonality

• Motivated by the Cauchy-Schwarz inequality, we can de�ne a notion of angle between two nonzero vectors in
a real inner product space:

• De�nition: If V is a real inner product space, we de�ne the angle between two nonzero vectors v and w to

be the real number θ in [0, π] satisfying cos θ =
〈v,w〉
||v|| ||w||

.

◦ By the Cauchy-Schwarz inequality, the quotient on the right is a real number in the interval [−1, 1], so
there is exactly one such angle θ.

• Example: Compute the angle between the vectors v = (3,−4, 5) and w = (1, 2,−2) under the standard dot
product on R3.

◦ We have v ·w = −15, ||v|| =
√
v · v = 5

√
2, and ||w|| =

√
w ·w = 3.

◦ Then the angle θ between the vectors satis�es cos(θ) =
−15

15
√

2
= − 1√

2
, so θ = 3π/4 .

• Example: Compute the �angle� between p = 5x2 − 3 and q = 3x− 2 in the inner product space of continuous

functions on [0, 1] with inner product 〈f, g〉 =
´ 1
0
f(x)g(x) dx.

◦ We have 〈p, q〉 =
´ 1
0

(5x2−3)(3x−2) dx = 23/12, ||p|| =
√´ 1

0
(5x2 − 3)2 dx = 2, and ||q|| =

√´ 1
0

(3x− 2)2 dx =
1.

◦ Then the angle θ between the vectors satis�es cos(θ) =
23/12

2
=

23

24
, so θ = cos−1(

23

24
) .

◦ The fact that this angle is so close to 0 suggests that these functions are nearly �parallel� in this inner
product space. Indeed, the graphs of the two functions have very similar shapes:
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3.2.1 Orthogonality, Orthonormal Bases, and the Gram-Schmidt Procedure

• A particular case of interest is when the angle between two vectors is π/2 (i.e., they are perpendicular).

◦ For nonzero vectors, by our discussion above, this is equivalent to saying that their inner product is 0.

• De�nition: We say two vectors in an inner product space are orthogonal if their inner product is zero. We
say a set S of vectors is an orthogonal set if every pair of vectors in S is orthogonal.

◦ By our basic properties, the zero vector is orthogonal to every vector. Two nonzero vectors will be
orthogonal if and only if the angle between them is π/2. (This generalizes the idea of two vectors being
�perpendicular�.)

◦ Example: In R3 with the standard dot product, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are orthogonal.

◦ Example: In R3 with the standard dot product, the three vectors (−1, 1, 2), (2, 0, 1), and (1, 5,−2) form
an orthogonal set, since the dot product of each pair is zero.

◦ The �rst orthogonal set above seems more natural than the second. One reason for this is that the vectors
in the �rst set each have length 1, while the vectors in the second set have various di�erent lengths (

√
6,√

5, and
√

30 respectively).

• De�nition: We say a set S of vectors is an orthonormal set if every pair of vectors in S is orthogonal, and
every vector in S has norm 1.

◦ Example: In R3, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is an orthonormal set, but {(−1, 1, 2), (2, 0, 1), (1, 5,−2)} is
not.

• In both examples above, notice that the given orthogonal sets are also linearly independent. This feature is
not an accident:

• Proposition (Orthogonality and Independence): In any inner product space, every orthogonal set of nonzero
vectors is linearly independent.

◦ Proof: Suppose we had a linear dependence a1v1 + · · · + anvn = 0 for an orthogonal set of nonzero
vectors {v1, . . . ,vn}.
◦ Then, for any j, 0 = 〈0,vj〉 = 〈a1v1 + · · ·+ anvn,vj〉 = a1〈v1,vj〉+ · · ·+ an〈vn,vj〉 = aj〈vj ,vj〉, since
each of the inner products 〈vi,vj〉 for i 6= j is equal to zero.

◦ But now, since vj is not the zero vector, 〈vj ,vj〉 is positive, so it must be the case that aj = 0. This holds
for every j, so all the coe�cients of the linear dependence are zero. Hence there can be no nontrivial
linear dependence, so any orthogonal set is linearly independent.

• Corollary: If V is an n-dimensional vector space and S is an orthogonal set of n nonzero vectors, then S is a
basis for V . (We refer to such a basis as an orthogonal basis.)

◦ Proof: By the proposition above, S is linearly independent, and by our earlier results, a linearly-
independent set of n vectors in an n-dimensional vector space is necessarily a basis.

• Given a basis of V , every vector in V can be written as a unique linear combination of the basis vectors.
However, actually computing the coe�cients of the linear combination can be quite cumbersome.

◦ If, however, we have an orthogonal basis for V , then we can compute the coe�cients for the linear
combination much more conveniently.

• Theorem (Orthogonal Decomposition): If V is an n-dimensional vector space and S = {e1, . . . , en} is an

orthogonal basis, then for any v in S, we can write v = c1e1 + · · · + cnen, where ck =
〈v, ek〉
〈ek, ek〉

for each

1 ≤ k ≤ n. In particular, if S is an orthonormal basis, then each ck = 〈v, ek〉.

◦ Proof: Since S is a basis, there do exist such coe�cients ci and they are unique.
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◦ We then compute 〈v, ek〉 = 〈c1e1 + · · ·+ cnen, ek〉 = c1 〈e1, ek〉+ · · ·+cn 〈en, ek〉 = ck 〈ek, ek〉 since each
of the inner products 〈ej , ek〉 for j 6= k is equal to zero.

◦ Therefore, we must have ck =
〈v, ek〉
〈ek, ek〉

for each 1 ≤ k ≤ n.

◦ If S is an orthonormal basis, then 〈ek, ek〉 = 1 for each k, so we get the simpler expression ck = 〈v, ek〉.

• Example: Write v = (7, 3,−4) as a linear combination of the basis {(−1, 1, 2), (2, 0, 1), (1, 5,−2)} of R3.

◦ We saw above that this set is an orthogonal basis, so let e1 = (−1, 1, 2), e2 = (2, 0, 1), and e3 = (1, 5,−2).

◦ We compute v · e1 = −12, v · e2 = 10, v · e3 = 30, e1 · e1 = 6, e2 · e2 = 5, and e3 · e3 = 30.

◦ Thus, per the theorem, v = c1e1 + c2e2 + c3e3 where c1 =
−12

6
= −2, c2 =

10

5
= 2, and c3 =

30

30
= 1.

◦ Indeed, we can verify that (7, 3,−4) = −2(−1, 1, 2) + 2(2, 0, 1) + 1(1, 5,−2) .

• Given a basis, there exists a way to write any vector as a linear combination of the basis elements: the
advantage of having an orthogonal basis is that we can easily compute the coe�cients. We now give an
algorithm for constructing an orthogonal basis for any �nite-dimensional inner product space:

• Theorem (Gram-Schmidt Procedure): Let S = {v1,v2, . . . } be a basis of the inner product space V , and set
Vk = span(v1, . . . ,vk). Then there exists an orthogonal set of vectors {w1,w2, . . . } such that, for each k ≥ 1,
span(w1, . . . ,wk) = span(Vk) and wk is orthogonal to every vector in Vk−1. Furthermore, this sequence is
unique up to multiplying the elements by nonzero scalars.

◦ Proof: We construct the sequence {w1,w2, . . . } recursively: we start with the simple choice w1 = v1.

◦ Now suppose we have constructed {w1,w2, . . . ,wk−1}, where span(w1, . . . ,wk−1) = span(Vk−1).

◦ De�ne the next vector as wk = vk − a1w1 − a2w2 − · · · − ak−1wk−1, where aj = 〈vk,wj〉 / 〈wj ,wj〉.
◦ From the construction, we can see that each of w1, . . . ,wk is a linear combination of v1, . . . ,vk, and vice
versa. Thus, by properties of span, span(w1, . . . ,wk) = Vk.

◦ Then 〈wk,wj〉 = 〈vk − a1w1 − a2w2 − · · · − ak−1wk−1,wj〉 = 〈vk,wj〉−a1 〈w1,wj〉−· · ·−ak−1 〈wk−1,wj〉 =
〈vk,wj〉 − aj 〈wj ,wj〉 = 0 because all of the inner products 〈wi,wj〉 are zero except for 〈wj ,wj〉.
◦ Thus wk is orthogonal to each of w1, . . . ,wk−1 and hence also to all linear combinations of these vectors.

◦ The uniqueness follows from the observation that (upon appropriate rescaling) we are essentially required
to choose wk = vk − a1w1 − a2w2 − · · · − ak−1wk−1 for some scalars a1, . . . ak−1: orthogonality then
forces the choice of the coe�cients aj that we used above.

• Corollary: Every �nite-dimensional inner product space has an orthonormal basis.

◦ Proof: Choose any basis {v1, . . . ,vn} for V and apply the Gram-Schmidt procedure: this yields an
orthogonal basis {w1, . . . ,wn} for V .
◦ Now simply normalize each vector in {w1, . . . ,wn} by dividing by its norm: this preserves orthogonality,
but rescales each vector to have norm 1, thus yielding an orthonormal basis for V .

• The proof of the Gram-Schmidt procedure may seem involved, but applying it in practice is fairly straight-
forward (if somewhat cumbersome computationally).

◦ We remark here that, although our algorithm above gives an orthogonal basis, it is also possible to
perform the normalization at each step during the procedure, to construct an orthonormal basis one
vector at a time.

◦ When performing computations by hand, it is generally disadvantageous to normalize at each step,
because the norm of a vector will often involve square roots (which will then be carried into subsequent
steps of the computation).

◦ When using a computer (with approximate arithmetic), however, normalizing at each step can avoid
certain numerical instability issues. The particular description of the algorithm we have discussed turns
out not to be especially numerically stable, but it is possible to modify the algorithm to avoid magnifying
the error as substantially when iterating the procedure.
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• Example: For V = R3 with the standard inner product, apply the Gram-Schmidt procedure to the vectors
v1 = (2, 1, 2), v2 = (5, 4, 2), v3 = (−1, 2, 1). Use the result to �nd an orthonormal basis for R3.

◦ We start with w1 = v1 = (2, 1, 2) .

◦ Next, w2 = v2 − a1w1, where a1 =
v2 ·w1

w1 ·w1
=

(5, 4, 2) · (2, 1, 2)

(2, 1, 2) · (2, 1, 2)
=

18

9
= 2. Thus, w2 = (1, 2,−2) .

◦ Finally, w3 = v3 − b1w1 − b2w2 where b1 =
v3 ·w1

w1 ·w1
=

(−1, 2, 1) · (2, 1, 2)

(2, 1, 2) · (2, 1, 2)
=

2

9
, and b2 =

v3 ·w2

w2 ·w2
=

(−1, 2, 1) · (1, 2,−2)

(1, 2,−2) · (1, 2,−2)
=

1

9
. Thus, w3 = (−14

9
,

14

9
,

7

9
) .

◦ For the orthonormal basis, we simply divide each vector by its length.

◦ We get
w1

||w1||
= (

2

3
,

1

3
,

2

3
),

w2

||w2||
= (

1

3
,

2

3
,−2

3
), and

w3

||w3||
= (−2

3
,

2

3
,

1

3
).

• Example: For V = R[x] with inner product 〈f, g〉 =
´ 1
0
f(x)g(x) dx, apply the Gram-Schmidt procedure to

the polynomials p1 = 1, p2 = x, p3 = x2, p4 = x3.

◦ We start with w1 = p1 = 1 .

◦ Next, w2 = p2 − a1w1, where a1 =
〈p2,w1〉
〈w1,w1〉

=

´ 1
0
x dx´ 1

0
1 dx

=
1

2
. Thus, w2 = x− 1

2
.

◦ Then,w3 = p3−b1w1−b2w2 where b1 =
〈p3,w1〉
〈w1,w1〉

=

´ 1
0
x2 dx´ 1

0
1 dx

=
1

3
, and b2 =

〈p3,w2〉
〈w2,w2〉

=

´ 1
0
x2(x− 1/2) dx´ 1

0
(x− 1/2)2 dx

=

1/12

1/12
= 1. Thus, w3 = x2 − x+

1

6
.

◦ Finally, w4 = p4 − c1w1 − c2w2 − c3w3 where b1 =
〈p4,w1〉
〈w1,w1〉

=

´ 1
0
x3 dx´ 1

0
1 dx

=
1

4
, b2 =

〈p4,w2〉
〈w2,w2〉

=

´ 1
0
x3(x− 1/2) dx´ 1

0
(x− 1/2)2 dx

=
3/40

1/12
=

9

10
, and b3 =

〈p4,w3〉
〈w3,w3〉

=

´ 1
0
x3(x2 − x+ 1/6) dx´ 1

0
(x2 − x+ 1/6)2 dx

=
1/120

1/180
=

3

2
. Thus,

w4 = x3 − 3

2
x2 +

3

5
x− 1

20
.

• We will mention that, although the Gram-Schmidt procedure allows us to construct an orthogonal basis
for an arbitrary �nite-dimensional vector space, there exist in�nite-dimensional vector spaces that have no
orthogonal basis.

◦ The precise details are somewhat involved, but in fact, the space `2(R) of in�nite real sequences (a1, a2, . . . )
such that a21 + a22 + · · · is �nite, with inner product 〈(a1, a2, . . . ), (b1, b2, . . . )〉 = a1b1 + a2b2 + · · · , has
no orthogonal basis.

◦ Notice, for example, that the set {e1, e2, . . . } where ei has a 1 in the ith coordinate and 0s elsewhere is
an orthonormal set but is not a basis. Nevertheless, this orthonormal set is maximal, in the sense that
the only other element of the space orthogonal to every vector in the set is the zero vector: it cannot be
extended to any larger orthonormal set.

3.2.2 Orthogonal Complements and Orthogonal Projection

• If V is an inner product space, W is a subspace, and v is some vector in V , we would like to study the problem
of �nding a �best approximation� of v in W .

◦ For two vectors v and w, the distance between v and w is ||v −w||, so what we are seeking is a vector
w in S that minimizes the quantity ||v −w||.
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◦ As a particular example, suppose we are given a point P in R2 and wish to �nd the minimal distance
from P to a particular line in R2. Geometrically, the minimal distance is achieved by the segment PQ,
where Q is chosen so that PQ is perpendicular to the line.

◦ In a similar way, the minimal distance between a point in R3 and a given plane will also be minimized
by �nding the segment perpendicular to the plane.

◦ Both of these problems suggest that the solution to this optimization problem will involve some notion
of �perpendicularity� to the subspace W .

• De�nition: Let V be an inner product space. If S is a nonempty subset of V , we say a vector v in V is
orthogonal to S if it is orthogonal to every vector in S. The set of all vectors orthogonal to S is denoted S⊥

(�S-perpendicular�, or often �S-perp� for short).

◦ We will typically be interested in the case where S is a subspace of V . It is easy to see via the subspace
criterion that S⊥is always a subspace of V , even if S itself is not.

◦ Example: In R3, if W is the xy-plane consisting of all vectors of the form (x, y, 0), then W⊥ is the z-axis,
consisting of the vectors of the form (0, 0, z).

◦ Example: In R3, if W is the x-axis consisting of all vectors of the form (x, 0, 0), then W⊥ is the yz-plane,
consisting of the vectors of the form (0, y, z).

◦ Example: In any inner product space V , V ⊥ = {0} and {0}⊥ = V .

• When V is �nite-dimensional, we can use the Gram-Schmidt process to compute an explicit basis of W⊥:

• Theorem (Basis for Orthogonal Complement): SupposeW is a subspace of the �nite-dimensional inner product
space V , and that S = {e1, . . . , ek} is an orthonormal basis forW . If {e1, . . . , ek, ek+1, . . . , en} is any extension
of S to an orthonormal basis for V , the set {ek+1, . . . , en} is an orthonormal basis for W⊥. In particular,
dim(V ) = dim(W ) + dim(W⊥).

◦ Remark: It is always possible to extend the orthonormal basis S = {e1, . . . , ek} to an orthonormal basis
for V : simply extend the linearly independent set S to a basis {e1, . . . , ek,xk+1, . . . ,xn} of V , and then
apply Gram-Schmidt to obtain an orthonormal basis {e1, . . . , ek, ek+1, . . . , en}.
◦ Proof: For the �rst statement, the set {ek+1, . . . , en} is orthonormal and hence linearly independent.
Since each vector is orthogonal to every vector in S, each of ek+1, . . . , en is in W⊥, and so it remains to
show that {ek+1, . . . , en} spans W⊥.
◦ So let v be any vector in W⊥. Since {e1, . . . , ek, ek+1, . . . , en} is an orthonormal basis of V , by the
orthogonal decomposition we know that v = 〈v, e1〉 e1 + · · ·+〈v, ek〉 ek+〈v, ek+1〉 ek+1 + · · ·+〈v, en〉 en.
◦ But since v is in W⊥, 〈v, e1〉 = · · · = 〈v, ek〉 = 0: thus, v = 〈v, ek+1〉 ek+1 + · · · + 〈v, en〉 en, and
therefore v is contained in the span of {ek+1, . . . , en}, as required.
◦ The statement about dimensions follows immediately from our explicit construction of the basis of V as
a union of the basis for W and the basis for W⊥.

• Example: If W = span[
1

3
(1, 2,−2),

1

3
(−2, 2, 1)] in R3 with the standard dot product, �nd a basis for W⊥.

◦ Notice that the vectors e1 =
1

3
(1, 2,−2) and e2 =

1

3
(−2, 2, 1) form an orthonormal basis for W .

◦ It is straightforward to verify that if v3 = (1, 0, 0), then {e1, e2,v3} is a linearly independent set and
therefore a basis for R3.

◦ Applying Gram-Schmidt to the set {e1, e2,v3} yields w1 = e1, w2 = e2, and w3 = v3 − 〈v3,w1〉w1 −
〈v3,w2〉w2 =

1

9
(4, 2, 4).

◦ Normalizing w3 produces the orthonormal basis {e1, e2, e3} for V , with e3 =
1

3
(2, 1, 2).

◦ By the theorem above, we conclude that {e3} = {1

3
(2, 1, 2)} is an orthonormal basis of W⊥.
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◦ Alternatively, we could have computed a basis forW⊥ by observing that dim(W⊥) = dim(V )−dim(W ) =

1, and then simply found one nonzero vector orthogonal to both
1

3
(1, 2,−2) and

1

3
(−2, 2, 1). (For this,

we could have either solved the system of equations explicitly, or computed the cross product of the two
given vectors.)

• We can give a simpler (although ultimately equivalent) method for �nding a basis for W⊥ using matrices:

• Theorem (Orthogonal Complements and Matrices): If A is an m× n matrix, then the rowspace of A and the
nullspace of A are orthogonal complements of one another in Rn, with respect to the standard dot product.

◦ Proof: Let A be an m× n matrix, so that the rowspace and nullspace are both subspaces of Rn.
◦ By de�nition, any vector in rowspace(A) is orthogonal to any vector in nullspace(A), so rowspace(A) ⊆

nullspace(A)⊥ and nullspace(A) ⊆ rowspace(A)⊥.

◦ Furthermore, since dim(rowspace(A)) + dim(nullspace(A)) = n from our results on the respective di-
mensions of these spaces, we see that dim(rowspace(A)) = dim(nullspace(A)⊥) and dim(nullspace(A)) =
dim(rowspace(A)⊥).

◦ Since all these spaces are �nite-dimensional, we must therefore have equality everywhere, as claimed.

• From the theorem above, when W is a subspace of Rn with respect to the standard dot product, we can easily
compute a basis for W⊥ by computing the nullspace of the matrix whose rows are a spanning set for W .

◦ Although this method is much faster, it will not produce an orthonormal basis of W . It can also be
adapted for subspaces of an arbitrary �nite-dimensional inner product space, but this requires having an
orthonormal basis for the space computed ahead of time.

• Example: If W = span[(1, 1,−1, 1), (1, 2, 0,−2)] in R4 with the standard dot product, �nd a basis for W⊥.

◦ We row-reduce the matrix whose rows are the given basis for W :[
1 1 −1 1
1 2 0 −2

]
R2−R1−→

[
1 1 −1 1
0 1 1 −3

]
R1−R2−→

[
1 0 −2 4
0 1 1 −3

]
.

◦ From the reduced row-echelon form, we see that {(−4, 3, 0, 1), (2,−1, 1, 0)} is a basis for the nullspace

and hence of W⊥.

• As we might expect from geometric intuition, if W is a subspace of the (�nite-dimensional) inner product
space V , we can decompose any vector uniquely as the sum of a component in W with a component in W⊥:

• Theorem (Orthogonal Components): Let V be an inner product space andW be a �nite-dimensional subspace.
Then every vector v ∈ V can be uniquely written in the form v = w + w⊥ for some w ∈ W and w⊥ ∈ W⊥,
and furthermore, we have the Pythagorean relation ||v||2 = ||w||2 +

∣∣∣∣w⊥∣∣∣∣2.
◦ Proof: First, we show that such a decomposition exists. Since W is �nite-dimensional, it has some
orthonormal basis {e1, . . . , ek}.
◦ Now set w = 〈v, e1〉 e1 + 〈v, e2〉 e2 + · · ·+ 〈v, ek〉 ek, and then w⊥ = v −w.

◦ Clearly w ∈W and v = w + w⊥, so we need only check that w⊥ ∈W⊥.
◦ To see this, �rst observe that 〈w, ei〉 = 〈v, ei〉 since {e1, . . . , ek} is an orthonormal basis. Then, we
see that

〈
w⊥, ei

〉
= 〈v −w, ei〉 = 〈v, ei〉 − 〈w, ei〉 = 0. Thus, w⊥ is orthogonal to each vector in the

orthonormal basis of W , so it is in W⊥.

◦ For the uniqueness, suppose we had two decompositions v = w1 + w⊥1 and v = w2 + w⊥2 .

◦ By subtracting and rearranging, we see that w1 −w2 = w⊥2 −w⊥1 . Denoting this common vector by x,
we see that x is in both W and W⊥: thus, x is orthogonal to itself, but the only such vector is the zero
vector. Thus, w1 = w2 and w⊥1 = w⊥2 , so the decomposition is unique.

◦ For the last statement, since
〈
w,w⊥

〉
= 0, we have ||v||2 = 〈v,v〉 =

〈
w + w⊥,w + w⊥

〉
= 〈w,w〉 +〈

w⊥,w⊥
〉

= ||w||2 +
∣∣∣∣w⊥∣∣∣∣2 , as claimed.
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• De�nition: If V is an inner product space and W is a �nite-dimensional subspace with orthonormal basis
{e1, . . . , ek}, the orthogonal projection of v into W is the vector projW (v) = 〈v, e1〉 e1 + 〈v, e2〉 e2 + · · · +
〈v, ek〉 ek.

◦ If instead we only have an orthogonal basis {u1, . . . ,uk} of W , the corresponding expression is instead

projW (v) =
〈v,u1〉
〈u1,u1〉

u1 +
〈v,u2〉
〈u2,u2〉

u2 + · · ·+ 〈v,u2〉
〈uk,uk〉

uk.

• Example: For W = span[(1, 0, 0),
1

5
(0, 3, 4)] in R3 under the standard dot product, compute the orthogonal

projection of v = (1, 2, 1) into W , and verify the relation ||v||2 = ||w||2 +
∣∣∣∣w⊥∣∣∣∣2.

◦ Notice that the vectors e1 = (1, 0, 0) and e2 =
1

5
(0, 3, 4) form an orthonormal basis for W .

◦ Thus, the orthogonal projection is w = projW (v) = 〈v, e1〉 e1 + 〈v, e2〉 e2 = 1 (1, 0, 0) + 2 (0, 3/5, 4/5) =

(1, 6/5, 8/5) .

◦ We see that w⊥ = v−w = (0, 4/5,−3/5) is orthogonal to both (1, 0, 0) and (0, 3/5, 4/5), so it is indeed

in W⊥. Furthermore, ||v||2 = 6, while ||w||2 = 5 and
∣∣∣∣w⊥∣∣∣∣2 = 1, so indeed ||v||2 = ||w||2 +

∣∣∣∣w⊥∣∣∣∣2.
• The orthogonal projection gives the answer to the approximation problem we posed earlier:

• Corollary (Best Approximations): If W is a �nite-dimensional subspace of the inner product space V , then
for any vector v in V , the orthogonal projection of v into W is closer to v than any other vector in W .
Explicitly, if w is the projection, then for any w′ ∈ W , we have ||v −w|| ≤ ||v −w′|| with equality if and
only if w = w′.

◦ Proof: By the theorem on orthogonal complements, we can write v = w + w⊥ where w ∈ W and
w⊥ ∈W⊥. Now, for any other vector w′ ∈W , we can write v−w′ = (v−w) + (w−w′), and observe
that v −w = w⊥ is in W⊥, and w −w′ is in W (since both w and w′ are, and W is a subspace).

◦ Thus, v−w′ = (v−w) + (w−w′) is a decomposition of v−w′ into orthogonal vectors. Taking norms,

we see that ||v −w′||2 = ||v −w||2 + ||w −w′||2.
◦ Then, if w′ 6= w, since the norm of ||w −w′|| is positive, we conclude that ||v −w|| < ||v −w′||.

• Example: Find the best approximation to v = (3,−3, 3) lying in the subspaceW = span[
1

3
(1, 2,−2),

1

3
(−2, 2, 1)],

where distance is measured under the standard dot product.

◦ Notice that the vectors e1 =
1

3
(1, 2,−2) and e2 =

1

3
(−2, 2, 1) form an orthonormal basis for W .

◦ Thus, the desired vector, the orthogonal projection, is projW (v) = 〈v, e1〉 e1 + 〈v, e2〉 e2 = −3e1−3e2 =

(1,−4, 1) .

• Example: Find the best approximation to the function f(x) = sin(πx/2) that lies in the subspace P2(R),

under the inner product 〈f, g〉 =
´ 1
−1 f(x)g(x) dx.

◦ First, by applying Gram-Schmidt to the basis {1, x, x2}, we can generate an orthogonal basis of P2(R)
under this inner product: the result (after rescaling to eliminate denominators) is {1, x, 3x2 − 1}.
◦ Now, with p1 = 1, p2 = x, p3 = 3x2 − 1 we can compute 〈f, p1〉 = 0, 〈f, p2〉 = 8/π2, 〈f, p3〉 = 0, and also
〈p1, p1〉 = 2, 〈p2, p2〉 = 2/3, and 〈p3, p3〉 = 8/5.

◦ Thus, the desired orthogonal projection is projP1(R)(f) =
〈f, p1〉
〈p1, p1〉

p1 +
〈f, p2〉
〈p2, p2〉

p2 +
〈f, p3〉
〈p3, p3〉

p3 =
12

π2
x .

◦ We can see from a plot of the orthogonal projection polynomial and f on [−1, 1] that this line is a
reasonably accurate approximation of sin(x) on the interval [−1, 1]:
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• Example: Find the linear polynomial p(x) that minimizes the expression
´ 1
0

(p(x)− ex)2 dx.

◦ Observe that the minimization problem is asking us to �nd the orthogonal projection of ex into P1(R)

under the inner product 〈f, g〉 =
´ 1
0
f(x)g(x) dx.

◦ First, by applying Gram-Schmidt to the basis {1, x}, we can generate an orthogonal basis of P1(R) under
this inner product: the result (after rescaling to clear denominators) is {1, 2x− 1}.
◦ Now, with p1 = 1 and p2 = 2x − 1, we can compute 〈ex, p1〉 = e − 1, 〈ex, p2〉 = 3 − e, 〈p1, p1〉 = 1, and
〈p2, p2〉 = 1/3.

◦ Then projP2(R)(e
x) =

〈ex, p1〉
〈p1, p1〉

p1 +
〈ex, p2〉
〈p2, p2〉

p2 = (10− 4e) + (18− 6e)x ≈ 0.873 + 1.690x .

◦ We can see from a plot (see above) of the orthogonal projection polynomial and ex on [0, 1] that this line
is indeed a very accurate approximation of ex on the interval [0, 1].

3.3 Linear Transformations and Inner Products

• We will now study linear transformations T : V →W where V and W are (�nite-dimensional) vector spaces,
at least one of which is equipped with an inner product.

• Most of our results will use the fact that inner products are linear in their �rst coordinate: 〈v1 + v2,w〉 =
〈v1,w〉+ 〈v2,w〉 and 〈cv,w〉 = c 〈v,w〉.

3.3.1 Characterizations of Inner Products

• First, if we have an orthonormal basis for W , we can use it to compute the entries in the matrix associated
to T .

• Proposition (Entries of Associated Matrix): Suppose T : V → W is a linear transformation of �nite-
dimensional vector spaces, and W is an inner product space. If β = {v1, . . . ,vn} is an ordered basis for
V and γ = {e1, . . . , em} is an orthonormal ordered basis for W , then the (i, j)-entry of [T ]γβ is 〈T (vj), ei〉 for
each 1 ≤ i ≤ m and 1 ≤ j ≤ n.

◦ Proof: By our results on vector spaces with an orthonormal basis, we know that T (vj) =

m∑
i=1

aiei where

ai = 〈T (vj), ei〉.
◦ But this is precisely the statement that the ith entry of the coe�cient vector [T (vj)]γ , which is in turn
the (i, j)-entry of [T ]γβ , is 〈T (vj), ei〉.

• Example: Let T : P2(R) → R3 be de�ned by T (p) = 〈p(0), p(1), p(2)〉. Find the matrix associated to T with

respect to the bases β = {1− 2x+ x2, 2x+ x2, 3 + x− x2} and γ = {1

3
〈1, 2, 2〉 , 1

3
〈2, 1,−2〉 , 1

3
〈−2, 2,−1〉} of

P2(R) and R3 respectively.

14



◦ Notice that γ is an orthonormal basis of R3, so we need only compute the appropriate inner products.

◦ Since T (1 − 2x + x2) = 〈1, 0, 1〉, we compute 〈1, 0, 1〉 · 1

3
〈1, 2, 2〉 = 1, 〈1, 0, 1〉 · 1

3
〈2, 1,−2〉 = 0, and

〈1, 0, 1〉 · 1

3
〈−2, 2,−1〉 = −1.

◦ Next, since T (2x+ x2) = 〈0, 3, 8〉, we compute 〈0, 3, 8〉 · 1
3
〈1, 2, 2〉 = 22/3, 〈0, 3, 8〉 · 1

3
〈2, 1,−2〉 = −13/3,

and 〈0, 3, 8〉 · 1

3
〈−2, 2,−1〉 = −2/3.

◦ Finally, since T (3+x−x2) = 〈3, 3, 1〉, we compute 〈3, 3, 1〉 · 1
3
〈1, 2, 2〉 = 11/3, 〈3, 3, 1〉 · 1

3
〈2, 1,−2〉 = 7/3,

and 〈3, 3, 1〉 · 1

3
〈−2, 2,−1〉 = −1/3.

◦ Thus, [T ]γβ =

 1 22/3 11/3
0 −13/3 7/3
−1 −2/3 −1/3

 .

• As we noted above, for a �xed w in V , the function T : V → F de�ned by T (v) = 〈v,w〉 is a linear
transformation. In general, a linear transformation T : V → F from a vector space to its scalar �eld is called
a linear functional.

◦ Perhaps surprisingly, when V is a �nite-dimensional inner product space, it turns out that every linear
transformation T : V → F is of the form above.

• Theorem (Riesz Representation Theorem): If V is a �nite-dimensional inner product space with scalar �eld
F , and T : V → F is linear, then there exists a unique vector w in V such that T (v) = 〈v,w〉.

◦ Proof: Let {e1, . . . , en} be an orthonormal basis for V , and let w = T (e1)e1 + T (e2)e2 + · · ·+ T (en)en.

◦ We claim that the linear transformation R(v) = 〈v,w〉 is equal to T .

◦ For each i, R(ei) =
〈
ei, T (e1)e1 + T (e2)e2 + · · ·+ T (en)en

〉
=
〈
ei, T (ei)ei

〉
= T (ei) 〈ei, ei〉 = T (ei).

◦ But now, since linear transformations are characterized by their values on a basis, the fact that R(ei) =
T (ei) for each i implies that R(v) = T (v) for each v in V , as claimed.

◦ For uniqueness, if 〈v,w〉 = 〈v,w′〉 for all v, then we would have 〈v,w −w′〉 = 0 for all v. Setting
v = w −w′ yields 〈w −w′,w −w′〉 = 0, meaning that w −w′ = 0 so that w = w′.

• We can also de�ne a matrix associated to an inner product in a similar way to how we de�ne a matrix
associated to a linear transformation.

• De�nition: If V is a �nite-dimensional inner product space with ordered bases β and γ, we de�ne the matrix
Mγ
β associated to the inner product on V to have (i, j)-entry equal to 〈βj , γi〉.

◦ Note that if β = γ is an orthonormal basis for V , then the associated matrix will be the identity matrix.

• The main reason we use this de�nition is the following result, which is the inner-product analogue of the
structure theorem for �nite-dimensional vector spaces we proved earlier:

• Theorem (Inner Products and Dot Products): If V is a �nite-dimensional inner product space over F with
ordered bases β and γ, and associated matrix Mγ

β , then for any vectors v and w in V , we have 〈v,w〉 =〈
Mγ
β [v]β , [w]γ

〉
, where the second inner product is the standard inner product on Fn.

◦ If F = R, then the standard inner product is the standard dot product x · y, where if F = C then the
standard inner product is the modi�ed dot product x · y.
◦ This theorem therefore says that the inner product structure of V is essentially the same as the (modi�ed)
dot product on Fn, up to a factor of the matrix Mγ

β . In particular, if we choose β = γ to be an
orthonormal basis, then the matrix factor is simply the identity matrix.
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◦ Proof: Suppose β = {v1, . . . ,vn} and γ = {w1, . . . ,wn}, and take v =
∑n
i=1 aivi and w =

∑n
j=1 bjwj

for scalars ai and bj .

◦ Then by properties of inner products, 〈v,w〉 =
〈∑n

i=1 aivi,
∑n
j=1 bjwj

〉
=
∑n
i=1

∑n
j=1 aibj 〈vi,wj〉.

◦ Also, since [v]β =

 a1
...
an

, we compute Mγ
β [v]β =


∑n
i=1 ai 〈vi,w1〉

...∑n
i=1 ai 〈vi,wn〉

.

◦ So, since [w]γ =

 b1
...
bn

, we see 〈Mγ
β [v]β , [w]γ

〉
=
∑n
j=1 bj [

∑n
i=1 ai 〈vi,wj〉] =

∑n
j=1

∑n
i=1 aibj 〈vi,wj〉.

◦ This expression is equal to the one we gave above, so we are done.

3.3.2 The Adjoint of a Linear Transformation

• As we have already noted, an inner product is linear in its �rst coordinate. Thus, if T : V → W is a linear
transformation, the composition 〈T (v),w〉 will also be linear in its �rst coordinate, and as we have already
seen, such compositions play an important role in the structure of an inner product.

• Theorem (Adjoint Transformations): Suppose that V and W are �nite-dimensional inner product spaces with
inner products〈·, ·〉V and 〈·, ·〉W respectively, and that T : V → W is linear. Then there exists a unique
function T ∗ : W → V such that 〈T (v),w〉W = 〈v, T ∗(w)〉V for all v in V and w in W , and in fact T ∗ is also
a linear transformation.

◦ Proof: For a �xed vector w, the map Rw(v) = 〈T (v),w〉W is a linear transformation R : V → F , since
it is the composition of the linear transformations 〈·,w〉W and T .

◦ Now, since V is �nite-dimensional, by the Riesz representation theorem, there exists a vector w′ in V
such that Rw(v) = 〈v,w′〉V for every v in V .

◦ Therefore, if we de�ne T ∗(w) to be this vector w′, we conclude that 〈T (v),w〉W = 〈v, T ∗(w)〉V for all
v and w in V .

◦ For uniqueness, if we had another function T ∗0 with 〈T (v),w〉W = 〈v, T ∗0 (w)〉V , then we would have
〈v, T ∗(w)− T ∗0 (w)〉V = 〈v, T ∗(w)〉V − 〈v, T ∗0 (w)〉V = 〈T (v),w〉W − 〈T (v),w〉W = 0, so setting v =
T ∗(w)− T ∗0 (w) immediately gives T ∗(w) = T ∗0 (w).

◦ Finally, to see that T ∗ is linear, observe that

〈v, T ∗(w1 + w2)〉V = 〈T (v),w1 + w2〉W = 〈T (v),w1〉W + 〈T (v),w2〉W = 〈v, T ∗(w1) + T ∗(w2)〉V
〈v, T ∗(cw)〉V = 〈T (v), cw〉W = c 〈T (v),w〉W = c 〈v, T ∗(w)〉V = 〈v, cT ∗(w)〉V

and so by the uniqueness of T ∗ we must have T ∗(w1 + w2) = T ∗(w1) + T ∗(w2) and T ∗(cw) = cT ∗(w).

• De�nition: If V and W are inner product spaces and T : V → W is linear, then, if it exists, the function
T ∗ : W → V with the property that 〈T (v),w〉W = 〈v, T ∗(w)〉V for all v in V and w in W is called the
adjoint of T .

◦ The theorem above guarantees the existence and uniqueness of this map T ∗ when the inner product
spaces are �nite-dimensional.

◦ When V and W are in�nite-dimensional, there may not exist such a map T ∗.

◦ It is not so easy to give an explicit counterexample, but if V is the set of in�nite sequences with only
�nitely many nonzero terms, and T is the transformation that maps the standard basis vector en to
e1 + e2 + · · ·+ en, then T has no adjoint.

◦ If T does have an adjoint, however, the proof above shows that it is unique, and in any case, even when
T ∗ exists, it is not so obvious how to compute T ∗ explicitly.

• Example: With V = C2 with the standard inner product and T : V → V is the linear transformation with
T (x, y) = (ax+ by, cx+ dy), �nd the adjoint map T ∗.
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◦ Let {e1, e2} = {〈1, 0〉 , 〈0, 1〉} be the standard orthonormal basis for V . Since a linear transformation is
characterized by its values on a basis, it is enough to �nd T ∗(e1) and T ∗(e2).

◦ By de�nition, 〈(x, y), T ∗(e1)〉 = 〈T (x, y), e1〉 = 〈(ax+ by, cx+ dy), e1〉 = ax+ by.

◦ Therefore, T ∗(e1) must be the vector (a, b), since that is the only vector with the property that
〈(x, y), T ∗(e1)〉 = ax+ by for arbitrary x and y.

◦ Similarly, 〈(x, y), T ∗(e2)〉 = 〈T (x, y), e2〉 = 〈(ax+ by, cx+ dy), e2〉 = cx + dy, so by the same argument
as above, T ∗(e2) must be the vector (c, d).

◦ Then we see T ∗(x, y) = xT ∗(e1) + yT ∗(e2) = (ax+ cy, bx+ dy) .

◦ Notice here that the matrix associated to T is [T ]ββ =

[
a b
c d

]
while the matrix associated to T ∗ is

[T ∗]ββ =

[
a c

b d

]
, the conjugate-transpose of the matrix associated to T .

• It seems, based on the example above, that T ∗ is related to the conjugate-transpose of a matrix. In fact, this
is true in general (which justi�es our use of the same notation for both):

• Proposition (Adjoint Matrix): If V andW are �nite-dimensional inner product spaces with orthonormal bases
β and γ respectively, and T : V →W is linear, then the matrix [T ∗]βγ associated to the adjoint T ∗ is ([T ]γβ)∗,
the conjugate-transpose of the matrix associated to T .

◦ Proof: Let β = {v1, . . . ,vn} and γ = {w1, . . . ,wm}.
◦ From our results on associated matrices in inner product spaces, the (i, j)-entry of [T ∗]βγ is 〈T ∗(wj),vi〉 =

〈vi, T ∗(wj)〉 = 〈T (vi),wj〉.

◦ Now notice that the quantity 〈T (vi),wj〉 is the complex conjugate of the (j, i)-entry of [T ]γβ : thus,

[T ∗]βγ = ([T ]γβ)∗ as claimed.

• Here are a few basic properties of the adjoint, which each follow via the uniqueness property:

1. If S : V →W and T : V →W are linear, then (S + T )∗ = S∗ + T ∗.

◦ Proof: Observe that 〈v, (S + T )∗w〉 = 〈(S + T )v,w〉 = 〈S(v) + T (v),w〉 = 〈v, S∗(w) + T ∗(w)〉.
Thus, since (S + T )∗ is unique, it must be equal to S∗ + T ∗.

2. If T : V →W is linear, then (cT )∗ = c T ∗.

◦ Proof: Observe that 〈v, (cT )∗w〉 = 〈(cT )v,w〉 = c 〈T (v),w〉 = 〈v, cT ∗(w)〉, so by uniqueness,
(cT )∗ = cT ∗.

3. If S : V →W and T : U → V are linear, then (ST )∗ = T ∗S∗.

◦ Proof: Observe that 〈u, (ST )∗w〉 = 〈(ST )u,w〉 = 〈T (u), S∗w〉 = 〈u, T ∗S∗(w)〉, so by uniqueness,
(ST )∗ = T ∗S∗.

4. If T : V →W is linear, then (T ∗)∗ = T .

◦ Proof: Observe that 〈T ∗(v),w〉 = 〈w, T ∗(v)〉 = 〈T (w),v〉 = 〈v, T (w)〉, so by uniqueness, (T ∗)∗ = T .

• As immediate corollaries, we can also deduce the analogous properties of conjugate-transpose matrices. (Of
course, with the exception of the statement that (AB)∗ = B∗A∗, these are all immediate from the de�nition.)

• We will mention one other useful property of adjoints:

• Theorem (Orthogonal Complements and Adjoints): Suppose T : V → W has an adjoint T ∗ : W → V .
Then ker(T ) and im(T ∗) are orthogonal subspaces of V , and if V is �nite-dimensional they are orthogonal
complements.

◦ This result is a generalization of our earlier observation that the rowspace and nullspace of a real matrix
A are orthogonal.

◦ Proof: Suppose v ∈ ker(T ) and v′ ∈ im(T ∗), so that v′ = T ∗w for some w ∈W .
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◦ Then 〈v,v′〉 = 〈v, T ∗w〉 = 〈Tv,w〉 = 〈0,w〉 = 0, and so v is orthogonal to v′. This means ker(T ) is
orthogonal to im(T ∗), as claimed. In particular, we have im(T ∗) ⊆ [ker(T )]⊥.

◦ For the second statement, choose orthonormal bases β of V and γ of W . Then for A = [T ]γβ we have
dim(imT ) = rank(A) = rank(A∗) = dim(imT ∗) since the rank of A equals the rank of A∗ by our results
on row and column spaces.

◦ By our results on dimensions of orthogonal complements and the nullity-rank theorem, we have dim([ker T ]⊥) =
dim(V )− dim(ker T ) = dim(imT ) = dim(imT ∗).

◦ But since im(T ∗) ⊆ [ker(T )]⊥ we must have equality since V is �nite-dimensional: thus im(T ∗) is the
orthogonal complement of ker(T ), as claimed.

3.4 Applications of Inner Products

• In this section we discuss several practical applications of inner products.

3.4.1 Least-Squares Estimates

• A fundamental problem in applied mathematics and statistics is data �tting: �nding a model that well
approximates some set of experimental data. Problems of this type are ubiquitous in the physical sciences,
social sciences, life sciences, and engineering.

◦ A common example is that of �nding a linear regression: a line y = mx + b that best �ts a set of
2-dimensional data points {(x1, y1), . . . , (xn, yn)} when plotted in the plane.

◦ Of course, in many cases a linear model is not appropriate, and other types of models (polynomials,
powers, exponential functions, logarithms, etc.) are needed instead.

◦ The most common approach to such regression analysis is the method of �least squares�, which minimizes
the sum of the squared errors (the error being the di�erence between the model and the actual data).

• As we will discuss, many of these questions ultimately reduce to the following: if A is an m× n matrix such
that the matrix equation Ax = c has no solution, what vector x̂ is the closest approximation to a solution?

◦ In other words, we are asking for the vector x̂ that minimizes the vector norm ||Ax̂− c||.
◦ Since the vectors of the form Ax̂ are precisely those in the column space (i.e., image) of A, from our
analysis of best approximations earlier we see that the vector w = Ax̂ will be the orthogonal projection
of c into the column space of A.

◦ Then, by orthogonal decomposition, we know that w⊥ = c−Ax̂ is in the orthogonal complement of the
column space of A.

◦ By our theorem on orthogonal complements and adjoints, however, we know that the orthogonal com-
plement of the column space of A is the kernel of A∗.

◦ Therefore, w⊥ is in ker(A∗), so A∗w⊥ = 0.

◦ Explicitly, this means A∗(c − Ax̂) = 0, which is to say, A∗Ax̂ = A∗c: this is an explicit matrix system
that we can solve for x̂.

• De�nition: If A is an m× n matrix with m > n, a least-squares solution to the matrix equation Ax = c is a
vector x̂ satisfying A∗Ax̂ = A∗c (this equation is called the normal equation).

◦ The system A∗Ax̂ = A∗c for x̂ is always consistent for any matrix A, although it is possible for there to
be in�nitely many solutions (a trivial case would be when A is the zero matrix). Even in this case, the
orthogonal projection w = Ax̂ onto the column space of A will always be unique.

• In typical cases, the rank of A is often equal to n. In this case, the matrix A∗A will always be invertible, and
there is a unique least-squares solution:

• Proposition (Least-Squares Solution): If A is an m× n matrix and rank(A) = n, then A∗A is invertible and
the unique least-squares solution to Ax = c is x̂ = (A∗A)−1A∗c.
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◦ We usually use this result in the situation where A is real, in which case A∗ = AT .

◦ Proof: First, we show that the nullspace of A∗A is the same as the nullspace of A. Clearly, if Ax = 0
then (A∗A)x = 0. Conversely, if A∗Ax = 0 then 〈Ax, Ax〉 = 〈x, A∗Ax〉 = 0, but by [I3] this means
Ax = 0, and so x is in the nullspace of A.

◦ Now suppose rank(A) = n. Then since the dimension of the nullspace is the number of columns minus
the rank, and A∗A and A both have n columns, rank(A∗A) = rank(A) = n.

◦ But since A∗A is an n × n matrix, this means A∗A is invertible. The second statement then follows
immediately upon left-multiplying Ax = c by (A∗A)−1.

• Example: Find the least-squares solution to the inconsistent system x+ 2y = 3, 2x+ y = 4, x+ y = 2.

◦ In this case, we have A =

 1 2
2 1
1 1

 and c =

 3
4
2

. Since A clearly has rank 2, A∗A will be invertible

and there will be a unique least-squares solution.

◦ We compute A∗A =

[
6 5
5 6

]
, which is indeed invertible and has inverse (A∗A)−1 =

1

11

[
6 −5
−5 6

]
.

◦ The least-squares solution is therefore x̂ = (A∗A)−1A∗c =

[
3
−1

]
.

◦ In this case, we see Ax̂ =

 2
5
2

, so the error vector is c − Ax̂ =

 2
1
0

. Our analysis above indicates

that this error vector has the smallest possible norm.

• We can apply these ideas to the problem of �nding an optimal model for a set of data points.

◦ For example, suppose that we wanted to �nd a linear model y = mx + b that �ts a set of data points
{(x1, y1), . . . , (xn, yn)}, in such a way as to minimize the sum of the squared errors (y1 −mx1 − b)2 +
· · ·+ (yn −mxn − b)2.
◦ If the data points happened to �t exactly on a line, then we would be seeking the solution to the system
y1 = mx1 + b, y2 = mx2 + b, ... , yn = mxn + b.

◦ In matrix form, this is the system Ax = c where A =


1 x1
1 x2
...

...
1 xn

, x =

[
b
m

]
, and c =


y1
y2
...
yn

.
◦ Of course, due to experimental errors and other random noise, it is unlikely for the data points to �t the
model exactly. Instead, the least-squares estimate x̂ will provide the values of m and b that minimize
the sum of the squared errors.

◦ In a similar way, to �nd a quadratic model y = ax2+bx+c for a data set {(x1, y1), . . . , (xn, yn)}, we would

use the least-squares estimate for Ax = c, with A =


1 x1 x21
1 x2 x22
...

...
...

1 xn x2n

, x =

 c
b
a

, and c =


y1
y2
...
yn

.
◦ In general, to �nd a least-squares model of the form y = a1f1(x) + · · · + amfm(x) for a data set
{(x1, y1), . . . , (xn, yn)}, we would want the least-squares estimate for the system Ax = c, with A = f1(x1) · · · fm(x1)

...
. . .

...
f1(xn) · · · fm(xn)

, x =

 a1
...
am

, and c =

 y1
...
yn

.
• Example: Use least-squares estimation to �nd the line y = mx+ b that is the best model for the data points
{(9, 24), (15, 45), (21, 49), (25, 55), (30, 60)}.
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◦ We seek the least-squares solution for Ax = c, where A =


1 9
1 15
1 21
1 25
1 30

, x =

[
b
m

]
, and c =


24
45
49
55
60

.

◦ We compute A∗A =

[
5 100

100 2272

]
, so the least-squares solution is x̂ = (A∗A)−1A∗c ≈

[
14.615
1.599

]
.

◦ Thus, to three decimal places, the desired line is y = 1.599x+ 14.615 . From a plot, we can see that
this line is fairly close to all of the data points:

• Example: Use least-squares estimation to �nd the quadratic function y = ax2 + bx+ c best modeling the data
points {(−2, 19), (−1, 7), (0, 4), (1, 2), (2, 7)}.

◦ We seek the least-squares solution for Ax = c, with A =


1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

, x =

 c
b
a

, c =


19
7
4
2
7

.

◦ We compute A∗A =

 5 0 10
0 10 0
10 0 34

, so the least-squares solution is x̂ = (A∗A)−1A∗c =

 2.8
−2.9
2.5

.
◦ Thus, the desired quadratic polynomial is y = −2.5x2 − 2.9x+ 2.8 . From a plot (see above), we can
see that this quadratic function is fairly close to all of the data points.

• Example: Use least-squares estimation to �nd the trigonometric function y = a + b sin(x) + c cos(x) best
modeling the data points {(π/2, 8), (π,−4), (3π/2, 2), (2π, 10)}.

◦ We seek the least-squares solution for Ax = c, with A =


1 1 0
1 0 −1
1 −1 0
1 0 1

, x =

 a
b
c

, c =


8
−4
2
10

.

◦ We compute A∗A =

 4 0 0
0 2 0
0 0 2

, so the least-squares solution is x̂ = (A∗A)−1A∗c =

 4
3
7

.
◦ Thus, the desired function is y = 4 + 3 sin(x) + 7 cos(x) . In this case, the model predicts the points

{(π/2, 7), (π,−3), (3π/2, 1), (2π, 11)}, so it is a good �t to the original data:
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• Our results on least squares also yield a method for writing down the matrix associated to orthogonal projection
onto a subspace W of Fn with respect to the standard basis:

• Corollary (Associated Matrices for Projections): Suppose F = R or C and W is a subspace of Fn with basis
{v1, . . . ,vk}. If β is the standard basis for Fn and T : Fn → Fn represents orthogonal projection onto the

subspace S, then the associated matrix [T ]ββ = A(A∗A)−1A∗, where A is the n× k matrix whose columns are
the vectors vi.

◦ Proof: By our earlier results, for any column vector c, the unique least-squares solution to Ax = c is
x̂ = (A∗A)−1A∗c, and the vector Ax̂ = A(ATA)−1AT c represents the projection of c into the column
space of A.

◦ But the column space of the matrix A is precisely W , by de�nition, so the associated matrix [T ]ββ is

precisely A(A∗A)−1A∗, as claimed.

• Example: Find the matrix M (with respect to the standard basis of R4) associated to orthogonal projection
onto the subspace W spanned by {(1, 1, 0, 0), (−1, 1, 1, 1)} inside R4.

◦ By the corollary above, the associated matrix is A(A∗A)−1A∗ where A =


1 −1
1 1
0 1
0 1

.

◦ We compute (A∗A)−1 =

[
1/2 0
0 1/4

]
and so M = A(A∗A)−1A∗ =

1

4


3 1 −1 −1
1 3 1 1
−1 1 1 1
−1 1 1 1

 .

◦ To verify that this really is the correct matrix, we can check that the column space of M is equal to W
(which it is), and that M sends each vector in W to itself (which it does).

• In addition to showing up in least-squares methods (which are extremely important in statistics and the
experimental sciences), orthogonal projections also have many applications in computer graphics, coding
theory, and machine learning.

◦ To illustrate the idea very generally, if we have a set of data that is high-dimensional (i.e., lies inside Rn
where n is very large) that has a lot of underlying structure, it is often the case that projecting onto a
much smaller-dimensional subspace will not lose very much information. Storing the projection of the
data then requires much less information, which is the central idea of data compression.

◦ To minimize the loss of information when compressing data, one may use tools such as principal-
component analysis, which provide ways to calculate subspaces that carry as much of the information
from the original data set as possible.

21



3.4.2 Fourier Series

• Another extremely useful application of the general theory of orthonormal bases is that of Fourier series.

◦ Fourier analysis, broadly speaking, studies the problem of approximating a function on an interval by
trigonometric functions. This problem is very similar to the question, studied in calculus, of approximat-
ing a function by a polynomial (the typical method is to use Taylor polynomials, although as we have
already discussed, least-squares estimates provide another potential avenue).

◦ Fourier series have a tremendously wide variety of applications, ranging from to solving partial di�erential
equations (in particular, the famous wave equation and heat equation), studying acoustics and optics
(decomposing an acoustic or optical waveform into simpler waves of particular frequencies), electical
engineering, and quantum mechanics.

• Although a full discussion of Fourier series belongs more properly to analysis, we can still provide an overview.

◦ A typical scenario in Fourier analysis is to approximate a continuous function on [0, 2π] using a trigono-
metric polynomial: a function that is a polynomial in sin(x) and cos(x).

◦ Using trigonometric identities, this question is equivalent to approximating a function f(x) by a (�nite)
Fourier series of the form s(x) = a0 + b1 cos(x) + b2 cos(2x) + · · · + bk cos(kx) + c1 sin(x) + c2 sin(2x) +
· · ·+ ck sin(kx).

◦ Notice that, in the expression above, s(0) = s(2π) since each function in the sum has period 2π. Thus,
we can only realistically hope to get close approximations to functions satisfying f(0) = f(2π).

• Let V be the vector space of continuous, real-valued functions on the interval [0, 2π] having equal values at 0

and 2π, and de�ne an inner product on V via 〈f, g〉 =
´ 2π
0
f(x)g(x) dx.

• Proposition: The functions {ϕ0, ϕ1, ϕ2, . . . } are an orthonormal set on V , where ϕ0(x) =
1√
2π

, and ϕ2k−1(x) =

1√
π

cos(kx) and ϕ2k(x) =
1√
π

sin(kx) for each k ≥ 1.

◦ Proof: Using the product-to-sum identities, such as sin(ax) sin(bx) =
1

2
[cos(a− b)x− cos(a+ b)x], it is

a straightforward exercise in integration to verify that 〈ϕi, ϕj〉 = 0 for each i 6= j.

◦ Furthermore, we have 〈ϕ0, ϕ0〉 =
1

2π

´ 2π
0

1dx = 1, 〈ϕ2k−1, ϕ2k−1〉 =
1

π

´ 2π
0

cos2(kx) dx = 1, and

〈ϕ2k, ϕ2k〉 =
1

π

´ 2π
0

sin2(kx) dx = 1. Thus, the set is orthonormal.

• If it were the case that S = {ϕ0, ϕ1, ϕ2, . . . } were an orthonormal basis for V , then, given any other function
f(x) in V , we could write f as a linear combination of functions in {ϕ0, ϕ1, ϕ2, . . . }, where we can compute
the appropriate coe�cients using the inner product on V .

◦ Unfortunately, S does not span V : we cannot, for example, write the function g(x) =

∞∑
n=1

1

2n
sin(nx) as

a �nite linear combination of {ϕ0, ϕ1, ϕ2, . . . }, since doing so would require each of the in�nitely many
terms in the sum.

◦ Ultimately, the problem, as exempli�ed by the function g(x) above, is that the de�nition of �basis� only
allows us to write down �nite linear combinations.

◦ On the other hand, the �nite sums

k∑
j=0

ajϕj(x) for k ≥ 0, where aj = 〈f, ϕj〉, will represent the best

approximation to f(x) inside the subspace of V spanned by {ϕ0, ϕ1, . . . , ϕk}. Furthermore, as we increase
k, we are taking approximations to f that lie inside larger and larger subspaces of V , so as we take k →∞,
these partial sums will yield better and better approximations to f .

◦ Provided that f is a su�ciently nice function, it can be proven that in the limit, our formulas for the
coe�cients do give a formula for f(x) as an in�nite sum:
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• Theorem (Fourier Series): Let f(x) be a twice-di�erentiable function on [0, 2π] satisfying f(0) = f(2π), and

de�ne the Fourier coe�cients of f as aj = 〈f, ϕj〉 =
´ 2π
0
f(x)ϕj(x) dx, for the trigonometric functions ϕj(x)

de�ned above. Then f(x) is equal to its Fourier series

∞∑
j=0

ajϕj(x) for every x in [0, 2π].

◦ This result can be interpreted as a �limiting version� of the theorem we stated earlier giving the coe�cients
for the linear combination of a vector in terms of an orthonormal basis: it gives an explicit way to write
the function f(x) as an �in�nite linear combination� of the orthonormal basis elements {ϕ0, ϕ1, ϕ2, . . . }.

• Example: Compute the Fourier coe�cients and Fourier series for f(x) = (x− π)2 on the interval [0, 2π], and
compare the partial sums of the Fourier series to the original function.

◦ First, we have a0 =
´ 2π
0
f(x)

1√
2π

dx =
1√
18
π5/2.

◦ For k odd, after integrating by parts twice, we have a2k−1 =
´ 2π
0
f(x)

1√
π

cos(kx) dx =
4
√
π

k2
.

◦ For k even, in a similar manner we see a2k =
´ 2π
0
f(x)

1√
π

sin(kx) dx = 0.

◦ Therefore, the Fourier series for f(x) is
1

6
π2 +

∞∑
k=1

4

k2
cos(kx) .

◦ Here are some plots of the partial sums (up to the term involving cos(nx)) of the Fourier series along
with f . As is clearly visible from the graphs, the partial sums give increasingly close approximations to
the original function f(x) as we sum more terms:

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2023. You may not reproduce or distribute this
material without my express permission.

23


