
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2023 ∼ Homework 8, due Fri Mar 24th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Submit scans of your responses via Canvas.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Let V be a vector space with scalar �eld F and T : V → V be linear. Identify each of the following statements
as true or false:

(a) If Ax = c is an inconsistent system of linear equations, then the best approximation of a solution is given
by the solutions x̂ of A∗x̂ = A∗Ac.

(b) If T (v) = λv, then v is an eigenvector of T .

(c) Every linear transformation on V has at least one eigenvector.

(d) If V is �nite-dimensional, every linear transformation on V has at least one eigenvector.

(e) Any two eigenvectors of T are linearly independent.

(f) The sum of two eigenvectors of T is also an eigenvector of T .

(g) The sum of two eigenvalues of T is also an eigenvalue of T .

(h) If two matrices are similar, then they have the same eigenvectors.

(i) If two matrices have the same eigenvalues, then they are similar.

(j) If two matrices are similar, then they have the same eigenvalues.

(k) If dim(V ) = n, then T has at most n distinct eigenvalues in F .

(l) If dim(V ) = n, then T has exactly n distinct eigenvalues in F .

(m) If the characteristic polynomial of A is p(t) = t(t− 1)2, then the 1-eigenspace of A has dimension 2.

(n) If the characteristic polynomial of A is p(t) = t(t− 1)2, then the only vector v with Av = 3v is v = 0.

2. Calculate the following quantities using least-squares (give coe�cients to three decimal places):

(a) The least-squares solution to the inconsistent system x+ 3y = 9, 3x+ y = 5, x+ y = 2.

(b) The least-squares line y = mx+ b approximating the points {(4, 7), (11, 21), (15, 29), (19, 35), (30, 49)}.
(c) The least-squares quadratic y = ax2+bx+c approximating the points {(−2, 22), (−1, 11), (0, 4), (1, 3), (2, 13)}.

3. For each matrix A over each �eld F , (i) �nd all eigenvalues of A over F , (ii) �nd a basis for each eigenspace
of A, and (iii) determine whether or not A is diagonalizable over F and if so �nd an invertible matrix Q and
diagonal matrix D such that D = Q−1AQ.

(a)

[
3 1
−2 5

]
over R.

(b)

 1 1 −1
−2 3 −2
−1 0 1

 over Q.

(c)

[
3 1
−2 5

]
over C.

(d)

 0 −1 1
0 2 0
−2 −1 3

 over C.

(e)

[
−5 9
−4 7

]
over R.

(f)

 1 2 3
2 3 1
3 1 2

 over C.

4. For each operator T : V → V on each vector space V , (i) �nd all its eigenvalues and a basis for each eigenspace,

and (ii) determine whether the operator is diagonalizable and if so, �nd a basis for which [T ]ββ is diagonal:

(a) The map T : Q2 → Q2 given by T (x, y) = (x+ 4y, 3x+ 5y).

(b) The derivative operator D : P2(R)→ P2(R) given by D(p) = p′.

(c) The transpose map T :M2×2(R)→M2×2(R) given by T (M) =MT .
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5. Let F be a �eld and let L and R be the left shift and right shift operators on in�nite sequences of elements
of F , de�ned by L(a1, a2, a3, a4, . . . ) = (a2, a3, a4, . . . ) and R(a1, a2, a3, a4, . . . ) = (0, a1, a2, a3, . . . ).

(a) Find all of the eigenvalues and a basis for each eigenspace of L.

(b) Find all of the eigenvalues and a basis for each eigenspace of R.

Part II: Solve the following problems. Justify all answers with rigorous, clear explanations.

6. Let V = C[0, 2π] with inner product 〈f, g〉 =
´ 2π
0
f(x)g(x) dx. Also de�ne ϕ0(x) =

1√
2π

, and for positive

integers k set ϕ2k−1(x) =
1√
π
cos(kx) and ϕ2k(x) =

1√
π
sin(kx).

(a) Show that {ϕ0, ϕ1, ϕ2, . . . } is an orthonormal set in V . [Hint: Use the product-to-sum identities.]

(b) Let f(x) = x. Find ||f || and 〈f, ϕn〉 for each n ≥ 0. (You don't need to give details of the integral
evaluations, just the resulting values.)

(c) With f(x) = x, assuming that f(x) =
∑∞
k=0 〈f, ϕk〉ϕk(x), derive Leibniz's formula

π

4
= 1−1

3
+
1

5
−1

7
+· · · .

[Hint: Set x = π/2.]

(d) With f(x) = x, assuming that ||f ||2 =
∑∞
k=0 〈f, ϕk〉

2
(see problem 10 of the midterm for why this is a

reasonable statement), �nd the exact value of
∑∞
k=1

1

k2
.

Remarks: The identity ||f ||2 =
∑∞
k=0 〈f, ϕk〉

2
is known as Parseval's identity. The problem of computing

the value of the in�nite sum
∑∞
k=1

1

k2
is known as the Basel problem. The correct value was (famously)

�rst found by Euler, who evaluated the sum by decomposing the function
sin(πx)

πx
as the in�nite product∏∞

n=1(1−
x2

n2
) and then comparing the power series coe�cients of both sides.

7. Suppose V is a vector space and S, T : V → V are linear operators on V .

(a) If S and T commute (i.e., ST = TS), show that S maps each eigenspace of T into itself.

(b) If v is an eigenvector of T , show that it is also an eigenvector of Tn for any positive integer n.

8. [Challenge] The goal of this problem is to give some counterexamples for results about orthogonal complements,
projections, best approximations, and adjoints in in�nite-dimensional spaces. Let V be the vector space of
in�nite real sequences {ai}i≥1 = (a1, a2, . . . ) with only �nitely many nonzero terms, with inner product given
by 〈{ai}, {bi}〉 =

∑∞
i=1 aibi. (Note that this sum converges since only �nitely many terms are nonzero.) Let

ei be the ith unit coordinate vector and observe that {ei}i≥1 is an orthonormal basis for V . Now for each
n ≥ 2, let vn = e1 − en and de�ne W = span(v2,v3,v4, . . . ).

(a) Show that e1 6∈W so that W is a proper subspace of V , but that W⊥ = {0}.
(b) Show that W⊥ +W 6= V and that (W⊥)⊥ 6=W .

(c) For any v 6∈W , show that there does not exist any choice ofw ∈W andw⊥ ∈W⊥ such that v = w+w⊥.
Conclude that there is not a well-de�ned orthogonal projection map of V onto W .

(d) Show that there exists a vector wn ∈W such that ||wn − e1|| = 1/n for any positive integer n. Deduce
that there is no possible best approximation vectorw to e1 insideW (namely with ||w − e1|| ≤ ||w′ − e1||
for all w′ ∈W ).

(e) Let T : V → V be the linear transformation de�ned by setting T (en) =
∑n
i=1 ei for each i ≥ 1. If T had

an adjoint T ∗ : V → V , show that in�nitely many components of T ∗(e1) would be nonzero. Deduce that
T ∗ cannot exist.
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