
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2023 ∼ Homework 12, due Fri Apr 21st.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly, and clearly identify all problem numbers. Submit scans of your responses via Canvas.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Let V and W be �nite-dimensional real or complex vector spaces and T be linear.

(a) The singular values of T : V → V are the absolute values of the eigenvalues of T .

(b) If T is Hermitian, the singular values of T : V → V are absolute values of the eigenvalues of T .

(c) The singular value decomposition of a matrix is unique.

(d) The pseudoinverse of a matrix is unique.

(e) If T : V →W is linear, the pseudoinverse T † satis�es T †T (w) = w for all w ∈ im(T ).

(f) If T : V →W is linear, the pseudoinverse T † satis�es T †T (w) = w for all w ∈ im(T )⊥.

(g) If T : V → V is an isomorphism, then T † = T−1.

(h) For any inconsistent system Ax = c, the vector x̂ = A†c is the system's unique least-squares solution.

(i) If T : V →W is linear and T ∗T is invertible, then T † = (T ∗T )−1T ∗.

2. For each matrix M , �nd (i) the singular values of M , (ii) a singular value decomposition M = UΣV ∗ where
U and V are unitary and Σ is a rectangular diagonal matrix, and (iii) the pseudoinverse M† of M :

(a)

[
4 2
2 7

]
. (b)

[
1 2
4 8

]
. (c)

[
−2 2 3
2 1 6

]
. (d)

 −2 2
2 1
3 6

. (e)

[
1 i −1 −i
2 2 2 2

]
.

3. Let A =

[
2 −8 2
6 6 −9

]
.

(a) Find singular value decompositions for A and for AT .

(b) Find the pseudoinverses A† and (AT )†.

(c) Find the solution x to the system Ax =

[
2
1

]
of minimal norm.

(d) Find the least-squares solution to the inconsistent system ATx =

 1
−1
4

.
Part II: Solve the following problems. Justify all answers with rigorous, clear explanations.

4. A Hermitian matrix A is said to be positive-de�nite if v∗Av > 0 for every v 6= 0. The goal of this problem is
to prove Sylvester's criterion for positive-de�niteness: if A is an n × n Hermitian matrix, then A is positive
de�nite if and only if detA(k) > 0 for all 1 ≤ k ≤ n, where A(k) is the upper k×k submatrix of A. So suppose
A ∈Mn×n(C) is Hermitian.

(a) If A is positive de�nite, show that A(k) is positive de�nite for each 1 ≤ k ≤ n and deduce that detA(k) > 0
for all 1 ≤ k ≤ n.

(b) Suppose that A has two orthonormal eigenvectors v1,v2 whose eigenvalues λ1, λ2 are negative. Show
that A(k−1) is not positive de�nite. [Hint: Show that there exists a linear combination w = a1v1 + a2v2

whose last coordinate is zero, and then that w∗Aw < 0.]

(c) Deduce that if A(k−1) is positive de�nite and det(A) > 0, then all eigenvalues of A must be positive and
hence A is positive de�nite.

(d) Suppose that detA(k) > 0 for all 1 ≤ k ≤ n. Show that A is positive de�nite.
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5. Let S be an n× n real symmetric matrix.

(a) Show that S is congruent to a matrix whose diagonal entries are all in the set {−1, 0, 1}.

(b) Prove that, up to congruence, there are exactly
1

2
(n+ 1)(n+ 2) di�erent real n× n symmetric matrices.

6. By the singular value decomposition theorem, if T : V → W is a linear transformation of rank r, then there
exist orthonormal bases β = {v1, . . . ,vn} of V and γ = {w1, . . . ,wm} of W along with scalars σ1 ≥ σ2 ≥
· · · ≥ σr > 0 with T (vi) = σiwi for 1 ≤ i ≤ r and T (vi) = 0 for i > r.

(a) Show that T ∗(wi) = σivi for 1 ≤ i ≤ r and T (wi) = 0 for i > r. [Hint: Consider [T ]γβ and [T ∗]βγ .]

(b) Show that {v1, . . . ,vn} is a set of eigenvectors for T ∗T with corresponding eigenvalues σ2
1 , . . . , σ

2
r , 0, . . . , 0,

and that {w1, . . . ,wm} is a set of eigenvectors for TT ∗ with corresponding eigenvalues σ2
1 , . . . , σ

2
r , 0, . . . , 0.

(c) Deduce that the nonzero eigenvalues of T ∗T and TT ∗ are the same, and hence that the nonzero singular
values of T and T ∗ are the same.

(d) Show that if A ∈ Mm×n(C), then the singular values of A and A∗ are the same, and that if A∗ has a
singular value decomposition A = UΣV ∗ then A∗ has a singular value decomposition A∗ = V ΣTU∗.

Remark: The results of this problem are useful in computing the SVD of a non-square matrix, since one may
just �nd the nonzero eigenvalues and eigenvectors of the smaller of A∗A and AA∗to construct {v1, . . . ,vr}
and {w1, . . . ,wr}, and then compute ker(A) to get {vr+1, . . . ,vn} and ker(A∗) to get {wr+1, . . . ,wm}.

7. Suppose A ∈Mm×n(F ) where F = R or C.

(a) Show that (A†)∗ = (A∗)†.

(b) Show that AA† and A†A are positive-semide�nite and Hermitian.

(c) For B =

[
1 0
0 0

]
and C =

[
1 0
1 0

]
, show that (BC)† 6= C†B†.

8. [Challenge] The goal of this problem is to discuss matrix square roots and the matrix analogue of the polar
form z = eiθr of a complex number. Let A ∈Mn×n(C).

(a) Show that there exists a unitary matrix W and a positive semide�nite Hermitian matrix P such that
A = WP ; this is called a (right) polar decomposition of A with W being the analogue of eiθ and P being
the analogue of r. [Hint: Take W = UV ∗ and P = V ΣV ∗.]

(b) Show that if B is a positive-semide�nite Hermitian matrix such that B2 = µIn for some nonnegative
scalar µ, then B =

√
µIn.

(c) Show that if A is a positive-semide�nite Hermitian matrix, then there exists a unique positive-semide�nite
Hermitian matrix B satisfying B2 = A (i.e., a �square root� of A). [Hint: Reduce to the case where A is
diagonal, and then use part (b) along with 7(a) from homework 8 on each eigenspace of A.]

(d) Suppose P and Q are positive-semide�nite Hermitian matrices and P 2 = Q2. Show that P = Q.

(e) Show that the polar decomposition of an invertible matrix A is unique. [Hint: Show �rst that P is
invertible and then that WP = ZQ implies P 2 = Q2.]

Remark: The usual procedure for �nding the polar form of a complex number z = eiθr is to note that

r =

√
|z|2 =

√
zz and then eiθ = z/r. For the polar decomposition A = WP we have an analogous

formula: P =
√
A∗A, where the square root here denotes the positive-semide�nite matrix square root of

(c), and when P is positive-de�nite we obtain the unitary part W via W = AP−1.
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