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5 Squares and Quadratic Reciprocity

In this chapter, we discuss a number of results relating to the squares modulo m. We begin with some general tools
for solving polynomial congruences modulo prime powers. Then we study the quadratic residues and quadratic
nonresidues modulo a prime p, which leads to the Legendre symbol, a tool that provides a convenient way of
determining when a residue class a modulo p is a square. We establish some basic properties of the Legendre symbol
with an ultimate goal of proving Gauss's celebrated law of quadratic reciprocity, which describes an unexpected
and stunning relation between when p is a square modulo q and when q is a square modulo p for primes p and q.

We provide a detailed motivation of quadratic reciprocity, in order to build up to the statement and proof of the
theorem, and then discuss a number of applications to related number-theoretic questions. We close with a brief
discussion of several di�erent generalizations of quadratic reciprocity: we construct the Jacobi symbol and discuss
squares modulo m for non-prime m, and then examine quadratic reciprocity in Z[i] and Fp[x].
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5.1 Polynomial Congruences and Hensel's Lemma

• In an earlier chapter, we analyzed the problem of solving linear congruences of the form ax ≡ b (mod m). We
now study the solutions of congruences of higher degree.

◦ As a �rst observation, we note that the Chinese Remainder Theorem reduces the problem of solving
any polynomial congruence q(x) ≡ 0 (mod m) to solving the individual congruences q(x) ≡ 0 (mod pd),
where the pd are the prime-power divisors of m.

• Example: Solve the equation x2 ≡ 0 (mod 12).

◦ By the remarks above, it su�ces to solve the two separate equations x2 ≡ 0 (mod 4) and x2 ≡ 0 (mod
3).

◦ The �rst equation visibly has the solutions x ≡ 0, 2 (mod 4) while the second equation has the solution
x ≡ 0 (mod 3).

◦ Solving x ≡ 0 (mod 4), x ≡ 0 (mod 3) yields x ≡ 0 (mod 12) while solving x ≡ 2 (mod 4), x ≡ 0 (mod

3) yields x ≡ 6 (mod 12). Hence the solutions are x ≡ 0, 6 (mod 12).

• It is therefore su�cient to study the solutions to polynomial congruences of the form q(x) ≡ 0 (mod pd).

◦ Observe that any solution modulo pd descends to a solution modulo p (namely, by considering it modulo
p).

◦ For example, any solution to x3 + x+3 ≡ 0 (mod 25), such as x = 6, is also a solution to x3 + x+3 ≡ 0
(mod 5).

◦ Our basic idea is that this procedure can also be applied in reverse, by �rst �nding all the solutions
modulo p and then using them to compute the solutions modulo pd.

◦ More explicitly, if we �rst solve the equation modulo p, we can then try to �lift� each of these solutions
to get all of the solutions modulo p2, then lift these to obtain all solutions modulo p3, and so forth, until
we have obtained a full list of solutions modulo pd.

• Here is an example of this lifting procedure:

• Example: Solve the congruence x3 + x+ 3 ≡ 0 (mod 25).

◦ Since 25 = 52, we �rst solve the congruence modulo 5.

◦ If q(x) = x3 + x+ 3, we can compute q(0) = 3, q(1) = 0, q(2) = 3, q(3) = 3, and q(4) = 1 (mod 5).

◦ Thus, the only solution to q(x) ≡ 0 (mod 5) is x ≡ 1 (mod 5).

◦ Now we lift to �nd the solutions to the original congruence: if x3 + x + 3 ≡ 0 (mod 25) then by our
calculation above, we must have x ≡ 1 (mod 5).

◦ If we write x = 1 + 5a, then plugging in yields (1 + 5a)3 + (1 + 5a) + 3 ≡ 0 (mod 25), which, upon
expanding and reducing, simpli�es to 5 + 20a ≡ 0 (mod 25).

◦ Cancelling the factor of 5 yields 4a ≡ 4 (mod 5), which has the single solution a ≡ 1 (mod 5).

◦ This yields the single solution x ≡ 6 (mod 25) to our original congruence.

• We can use the same procedure when the prime power is larger: we simply lift by one power of p at each step
until we are working with the desired modulus.

• Example: Solve the congruence x3 + 4x ≡ 4 (mod 343).

◦ Since 343 = 73, we �rst solve the congruence modulo 7. By trying all the residue classes, we see that
x3 + 4x ≡ 4 (mod 7) has the single solution x ≡ 3 (mod 7).

◦ Next we lift to �nd the solutions modulo 72: any solution must be of the form x = 3 + 7a for some a.

◦ Plugging in yields (3 + 7a)3 + 4(3 + 7a) ≡ 4 (mod 72), which, upon expanding and reducing, simpli�es
to 21a ≡ 14 (mod 72).
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◦ Cancelling the factor of 7 yields 3a ≡ 2 (mod 7), which has the single solution a ≡ 3 (mod 7).

◦ This tells us that x ≡ 24 (mod 49).

◦ Now we lift to �nd the solutions modulo 73 in the same way: any solution must be of the form x = 24+49b
for some b.

◦ Plugging in yields (24+72b)3+4(24+72b) ≡ 4 (mod 73), which, upon expanding and reducing, simpli�es
to 147b ≡ 147 (mod 73).

◦ Cancelling the factor of 72 yields 3b ≡ 3 (mod 7), which has the single solution b ≡ 1 (mod 7).

◦ Hence we obtain the unique solution x ≡ 24 + 49b ≡ 73 (mod 73) .

• It can also happen that there is more than one possible solution to the congruence modulo p, in which case
we simply apply the lifting procedure to each one:

• Example: Solve the congruence x3 + 4x ≡ 12 (mod 73).

◦ We �rst solve the congruence modulo 7. By trying all the residue classes, we see that x3 + 4x ≡ 5 (mod
7) has two solutions, x ≡ 1 (mod 7) and x ≡ 5 (mod 7).

◦ Next we lift to �nd the solutions modulo 72: any solution must be of the form x = 1+ 7k or x = 5+ 7k
for some k.

◦ If x = 1+ 7k, plugging in yields (1+ 7k)3 +4(1+ 7k) ≡ 12 (mod 72) which simpli�es to 0 ≡ 7 (mod 72),
but this is contradictory. Therefore, there are no solutions in this case.

◦ If x = 5+ 7k, plugging in yields (5 + 7k)3 +4(5+ 7k) ≡ 12 (mod 72), which simpli�es to 14k ≡ 14 (mod
72). Solving this linear congruence produces k ≡ 1 (mod 7), yielding x ≡ 12 (mod 49).

◦ Now we lift to �nd the solutions modulo 73: any solution must be of the form x = 12 + 49k for some k.

◦ In the same way as before, plugging in yields (12 + 72k)3 + 4(12 + 72k) ≡ 4 (mod 73), which after
expanding and reducing, simpli�es to 98k ≡ 294 (mod 73). Solving in the same way as before yields
k ≡ 5 (mod 7), whence x ≡ 12 + 49k ≡ 257 (mod 73).

◦ We conclude that there is a unique solution: x ≡ 257 (mod 73).

• In the examples above, two of the solutions modulo 7 lifted to a single solution modulo 72, which in turn lifted
to a single solution modulo 73. However, one solution modulo 7 failed to yield any solutions modulo 72. We
would like to know what causes the lifting process to fail.

◦ To motivate our proof of the general answer, consider the polynomial q(x) = x3 + 4x and suppose we
have a solution x ≡ a (mod p) to q(x) ≡ c (mod p) that we would like to lift to a solution modulo p2.

◦ Then we substitute x = a+ pk into the equation, and look for solutions to q(a+ pk) ≡ c (mod p2).

◦ Explicitly we have (a+pk)3+4(a+pk) ≡ c (mod p2) which upon expanding yields a3+3a2pk+4a+4pk ≡ c
(mod p2) so that (a3 + 4a) + (3a2 + 4)pk ≡ c (mod p2).

◦ Since by hypothesis, a3 + 4a ≡ c (mod p), we can rearrange and then divide through by p to obtain
a3 + 4a− c

p
+ (3a2 + 4)k ≡ 0 (mod p). This congruence will have a unique solution for k as long as

3a2 + 4 6≡ 0 (mod p).

◦ Notice that 3a2 + 4 is the derivative q′(a). So the above computations suggest that our ability to lift a
solution x ≡ a (mod p) to a solution modulo pd will depend on the value of the derivative q′(a). Indeed,
this is precisely what happens in general:

• Theorem (Hensel's Lemma): Suppose q(x) is a polynomial with integer coe�cients. If q(a) ≡ 0 (mod pd) and
q′(a) 6≡ 0 (mod p), then there is a unique k (modulo p) such that q(a+ kpd) ≡ 0 (mod qd+1). Explicitly, if u

is the inverse of q′(a) modulo p, then k = −u · q(a)
pd

.

◦ The idea of the proof is the same as in the examples we discussed above: to determine when we can lift
to �nd a solution modulo pd+1, we substitute x = a+ pdk into the equation, and look for solutions k to
the congruence q(a+pdk) ≡ 0 (mod pd+1). The only di�culty lies in expanding q(a+pdk) modulo pd+1.

3



◦ Proof: Suppose x ≡ a (mod pd) is a solution to the congruence q(x) ≡ 0 (mod pd), where q(x) has degree
r. (By de�nition, note that this means q(a)/pd is an integer.)

◦ Set q(x) =
∑r
n=0 cnx

n, and observe that q′(x) =
∑r
n=0 cn · nxn−1.

◦ First observe that by the binomial theorem, we have (a+ pdk)n = an+n · pdk ·an−1+ p2d · [other terms].

◦ But since all of the binomial coe�cients are integers, the reduction modulo pd+1 of (a+ pdk)n is simply
an + (n · an−1)pdk.

◦ We may then compute

q(a+ pdk) ≡
r∑

n=0

cn(a+ pdk)n (mod pd+1)

≡
r∑

n=0

cn
[
an + (n · an−1)pdk

]
(mod pd+1)

≡
r∑

n=0

cna
n + pdk

r∑
n=0

cn · nan−1 (mod pd+1)

= q(a) + pdk · q′(a) (mod pd+1).

◦ Hence, solving q(a+ pdk) ≡ 0 (mod pd+1) is equivalent to solving q(a) + pdk · q′(a) ≡ 0 (mod pd+1).

◦ Dividing through by pd yields the equivalent congruence k · q′(a) ≡ −q(a)
pd

(mod p).

◦ This congruence has exactly one solution for k, by the assumption that q′(a) 6≡ 0 (mod p), and its value
is as claimed.

◦ Thus, the solution x ≡ a (mod pd) lifts to a unique solution x ≡ a+ pdk (mod pd+1), also as claimed.

◦ Remark: One may also recast our proof above in terms of Taylor series to explain why the derivative
q′(a) is the factor that determines whether the lifting will succeed1.

• Using the explicit description of the parameter k from Hensel's lemma, we see that as long as q′(a) 6≡ 0 (mod
p), any solution x = a to q(x) ≡ 0 (mod p) will lift to a unique solution x ≡ aj (mod pj) for any j.

◦ This sequence of residues is explicitly given by aj+1 = aj − u · q(aj), where u is the inverse of q′(a)
modulo p.

◦ We will remark, as an interesting aside2, that this recurrence is precisely the same as that given by
Newton's method for numerically approximating a root of a di�erentiable function f(x).

• Example: Lift the solution x ≡ 1 (mod 3) to a solution of x3 + x ≡ 5 (mod 243).

◦ We use Hensel's lemma with q(x) = x3 + x− 5: note q′(x) = 3x2 + 1 so q′(1) ≡ 1 6≡ 0 (mod 3), meaning
Hensel's lemma applies. Now we tabulate the results of applying Hensel's lemma. Note that in all cases
we have q′(ad) ≡ q′(a1) ≡ 1 (mod 3) so q′(ad)

−1 ≡ 1 (mod 3) also.
d ad q(ad)/p

d mod p k ≡ −q′(ad)−1 · q(ad)/pd mod p ad+1 = ad + kpd

1 1 −1 ≡ −1 −1 · (−1) ≡ 1 (mod 3) 1 + 1 · 3 = 4
2 4 7 ≡ 1 −1 · 1 ≡ −1 (mod 3) 4 + (−1) · 9 = −5
3 −5 −5 ≡ 1 −1 · 1 ≡ −1 (mod 3) −5 + (−1) · 27 = −32
4 −5 −405 ≡ 0 −1 · 0 ≡ 0 (mod 3) −32 + 0 · 81 = −32

1Explicitly, instead of using the binomial theorem, we could have instead written out the Taylor expansion of q(x+ b):

q(x+ b) = q(x) + b q′(x) + b2
q′′(x)

2!
+ b3

q′′′(x)

3!
+ · · ·+ br

q(r)(x)

r!
+ · · · .

Since the higher derivatives of q(x) are all zero, this is actually a �nite sum. If we then set b = pdk, reducing modulo pd+1 eliminates
everything except the �rst two terms. (This is not completely obvious because there are factorials in the denominators, but it can be
shown that q(r)(a)/r! is always an integer.)

2It would take us far a�eld of our goals to give precise details, but in a very concrete sense, this lifting procedure is computing better
and better approximations of a root of q(x) in a ring known as the p-adic integers, denoted Zp, which is constructed by taking the
so-called �inverse limit� of the rings Z/pnZ as n grows to ∞. The reason that Hensel's lemma works, roughly speaking, is because the
ring structure of Zp is similar enough to that of the real numbers R that procedures like Newton's method can be used to approximate
the zeroes of su�ciently nice di�erentiable functions.
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◦ From the last row we see that the desired lifted solution is x ≡ −32 (mod 243). To check, we indeed
have q(−32) = −32805 = −135 · 243 ≡ 0 (mod 243); in fact, x = −32 is actually a solution to q(x) ≡ 0
(mod 38).

5.2 Quadratic Residues and the Legendre Symbol

• We now specialize to discuss solutions to quadratic equations modulo m. As noted in the previous section,
the Chinese remainder theorem and Hensel's lemma allow us to reduce to the much simpler case of solving
quadratic equations modulo p where p is a prime.

◦ So let f(x) = ax2 + bx+ c, and consider the general quadratic congruence f(x) ≡ 0 (mod p).

◦ If p = 2 then this congruence is easy to solve (just test x ≡ 0, 1), so we can also assume p is odd.

◦ If a ≡ 0 (mod p), then the congruence f(x) ≡ 0 (mod p) reduces to a linear congruence, which we can
easily solve.

◦ So assume a 6≡ 0 (mod p): then a is invertible modulo p.

◦ We may then complete the square to write 4af(x) = (2ax+ b)2 + (4ac− b2).
◦ Since 4a is invertible modulo p, the congruence f(x) ≡ 0 (mod p) is equivalent to (2ax+ b)2 ≡ (b2− 4ac)
(mod p).

◦ Solving for x then amounts to �nding all solutions to y2 ≡ D (mod p), where y = 2ax+b andD = b2−4ac.

• To summarize the observations above: aside from some minor issues with the coe�cients and when p = 2,
solving a general quadratic equation is equivalent to computing arbitrary square roots modulo p.

5.2.1 Quadratic Residues and Nonresidues

• We start by discussing the (seemingly) simpler question of determining whether the congruence y2 ≡ D (mod
p) has a solution at all, when p is a prime.

• De�nition: If a is a unit modulo m, we say a is a quadratic residue modulo m if there is some b such that
b2 ≡ a (mod m). If there is no such b, then we say a is a quadratic nonresidue modulo m.

◦ Remark: It is a matter of taste whether to include nonunits in the de�nition of quadratic residues/nonresidues.
For the moment, we will only consider units.

◦ It is immediate from the de�nition that y2 ≡ D (mod p) has a solution for y precisely when D is a
quadratic residue modulo p (or when D = 0).

• It is straightforward to list the quadratic residues modulo m by squaring all of the invertible residue classes.

◦ Example: Modulo 5, the quadratic residues are 1 and 4, while the quadratic nonresidues are 2 and 3.

◦ Example: Modulo 13, the quadratic residues are 1, 4, 9, 3, 12, and 10, while the quadratic nonresidues
are 2, 5, 6, 7, 8, and 11.

◦ Example: Modulo 21, the quadratic residues are 1, 4, and 16, while the quadratic nonresidues are 2, 5,
8, 10, 11, 13, 17, 19, and 20.

◦ Example: Modulo 25, the quadratic residues are 1, 6, 11, 16, 21, 4, 9, 14, 19, and 24, while the quadratic
nonresidues are 2, 7, 12, 17, 22, 3, 8, 13, 18, and 23.

• Here are some of the basic properties of quadratic residues:

• Proposition (Properties of Quadratic Residues): Let p be an odd prime. Then the following hold:

1. If p is an odd prime, then a unit a is a quadratic residue modulo pd for d ≥ 1 if and only if a is a quadratic
residue modulo p.

◦ Proof: Clearly, if there exists a b such that a ≡ b2 (mod pd) then a ≡ b2 (mod p), so the forward
direction is trivial.
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◦ For the other direction, suppose a is a unit and there exists some b with a ≡ b2 (mod p).

◦ For q(x) = x2 − a, we then want to apply Hensel's lemma to lift the solution x ≡ b (mod p) of the
congruence q(x) ≡ 0 (mod p) to a solution modulo pd.

◦ We can do this as long as q′(b) 6= 0 (mod p): but q′(b) = 2b, and this is nonzero because b 6≡ 0 (mod
p) and because p is odd.

2. If m is any odd positive integer, then a unit a is a quadratic residue modulo m if and only if a is a
quadratic residue modulo p for each prime p dividing m.

◦ Proof: By the Chinese Remainder Theorem, there is a solution to x2 ≡ a (mod m) if and only if
there is a solution to x2 ≡ a (mod pd) for each prime power pd appearing in the prime factorization
of m.

◦ But by (1), there is a solution to x2 ≡ a (mod pd) if and only if there is a solution to x2 ≡ a (mod
p).

◦ In other words, a is a quadratic residue modulo m if and only if a is a quadratic residue modulo p
for each prime p dividing m, as claimed.

3. If p is an odd prime, the quadratic residues modulo p are 12, 22, ... , (p−12 )2. Hence, half of the invertible
residue classes modulo p are quadratic residues, and the other half are quadratic nonresidues.

◦ Example: The quadratic residues modulo 11 are 12, 22, 32, 42, 52 (i.e., 1, 4, 9, 5, 3).

◦ Proof: If p is prime, then p|(a2−b2) implies p|(a−b) or p|(a+b): thus, a2 ≡ b2 (mod p) is equivalent
to a ≡ ±b (mod p).

◦ We conclude that 12, 22, ... , (p−12 )2 are distinct modulo p.

◦ Furthermore, the other squares (p+1
2 )2, ... , (p − 1)2 are equivalent to these in reverse order, since

k2 ≡ (p− k)2 (mod p).

4. If p is an odd prime and u is a primitive root modulo p, then a is a quadratic residue modulo p if and
only if a ≡ u2k (mod p) for some integer k.

◦ In other words, the quadratic residues are the even powers of the primitive root, while the quadratic
nonresidues are the odd powers of the primitive root.

◦ Example: 2 is a primitive root mod 11, and the quadratic residues mod 11 are 22 ≡ 4, 24 ≡ 5, 26 ≡ 9,
28 ≡ 3, and 210 ≡ 1.

◦ Proof: Clearly, if a ≡ u2k (mod p) then a ≡ (uk)2 is a quadratic residue.

◦ Conversely, suppose a is a quadratic residue, with a ≡ b2 (mod p). Then because u is a primitive
root, we can write b ≡ uk (mod p) for some k: then a ≡ b2 ≡ u2k (mod p), as required.

5.2.2 Legendre Symbols

• From items (1) and (2) in the proposition above, we are essentially reduced to wanting to study the quadratic
residues modulo p. We now introduce notation that will help us distinguish between quadratic residues and
quadratic nonresidues:

• De�nition: If p is an odd prime, the Legendre symbol

(
a

p

)
is de�ned to be 1 if a is a quadratic residue, −1

if a is a quadratic nonresidue, and 0 if p|a.

◦ The notation for the Legendre symbol is somewhat unfortunate, since it is the same as that for a standard

fraction. When appropriate, we may write

(
a

p

)
L

to emphasize that we are referring to a Legendre symbol

rather than a fraction.

◦ Example: We have

(
2

7

)
= +1,

(
3

7

)
= −1, and

(
0

7

)
= 0, since 2 is a quadratic residue and 3 is a

quadratic nonresidue modulo 7.

◦ Example: We have

(
3

13

)
=

(
−3
13

)
= +1, and

(
2

13

)
= 1, since 3 and −3 are quadratic residues modulo

13, while 2 is not.
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◦ Note that the quadratic equation x2 ≡ a (mod p) has exactly 1 +

(
a

p

)
solutions modulo p.

• We would like to give an easy way to calculate the Legendre symbol.

• Theorem (Euler's Criterion): If p is an odd prime, then for any residue class a, it is true that

(
a

p

)
≡ a(p−1)/2

(mod p).

◦ Proof: If p|a then the result is trivial (since both sides are 0 mod p), so now assume a is a unit modulo
p and let u be a primitive root modulo p.

◦ If a is a quadratic residue, then by item (4) of the proposition above, we know that a = u2k for some
integer k.

◦ Then a(p−1)/2 ≡ (u2k)(p−1)/2 = (up−1)k ≡ 1k = 1 =

(
a

p

)
(mod p), as required.

◦ If a is a quadratic nonresidue, then again by item (4) of the proposition above, we know a = u2k+1 for
some integer k.

◦ We �rst observe that u(p−1)/2 ≡ −1 (mod p): to see this, observe that x = u(p−1)/2 has the property
that x2 ≡ 1 (mod p).

◦ The two solutions to this quadratic equation are x ≡ ±1 (mod p), but x 6≡ 1 (mod p) since otherwise u
would not be a primitive root (its order would be at most (p− 1)/2), so we have x ≡ −1 (mod p).

◦ Now we can compute a(p−1)/2 ≡ (u2k+1)(p−1)/2 = (up−1)k · u(p−1)/2 ≡ u(p−1)/2 ≡ −1 =

(
a

p

)
(mod p),

again as required.

◦ We conclude that

(
a

p

)
≡ a(p−1)/2 (mod p) in all cases, so we are done.

• Euler's criterion provides us with an e�cient way to calculate Legendre symbols, since it is easy to �nd a(p−1)/2

mod p using successive squaring.

• Example: Determine whether 5 is a quadratic residue or nonresidue modulo 29.

◦ By Euler's criterion,

(
5

29

)
≡ 514 (mod 29).

◦ With successive squaring, we see that 52 ≡ −4, 54 ≡ −13, 58 ≡ −5, so 514 ≡ (−4) · (−13) · (−5) ≡ 1
(mod 29).

◦ Thus, since the Legendre symbol is +1, we see that 5 is a quadratic residue modulo 29.

• Example: Determine whether 11 is a quadratic residue or nonresidue modulo 41.

◦ By Euler's criterion,

(
11

41

)
≡ 1120 ≡ −1 (mod 41) via successive squaring.

◦ Thus, since the Legendre symbol is −1, we see that 11 is a quadratic nonresidue modulo 41.

• We can extend these calculations to determine the quadratic residues and nonresidues for other moduli:

• Example: Determine whether 2 is a quadratic residue or nonresidue modulo 73.

◦ Note that 73 is not prime, so we cannot use Euler's criterion directly. But because 73 is a prime power,
we know that the quadratic residues modulo 7 are the same as the quadratic residues modulo 73.

◦ By Euler's criterion,

(
2

7

)
≡ 23 ≡ 1 (mod 7), so 2 is a quadratic residue modulo 7 hence also a

quadratic residue modulo 73.

• Example: Determine whether 112 is a quadratic residue or nonresidue modulo 675.
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◦ Note that 675 = 3352, so by our results, 112 is a quadratic residue modulo 675 if and only if it is a
quadratic residue modulo 3 and modulo 5.

◦ We have

(
112

3

)
=

(
1

3

)
≡ 1 (mod 3), so 112 is a quadratic residue modulo 3.

◦ However,

(
112

5

)
=

(
2

5

)
≡ 22 ≡ −1 (mod 5), so 112 is a quadratic nonresidue modulo 5, hence also a

quadratic nonresidue modulo 675.

• Euler's criterion also yields an extremely useful corollary about the product of Legendre symbols:

• Corollary (Multiplicativity of Legendre Symbols): If p is a prime, then for any a and b,

(
ab

p

)
=

(
a

p

)
·
(
b

p

)
.

◦ In particular: the product of two quadratic residues is a quadratic residue, the product of a quadratic
residue and nonresidue is a nonresidue, and (much more unexpectedly) the product of two quadratic
nonresidues is a quadratic residue.

◦ Proof: Simply use Euler's criterion to write

(
ab

p

)
= (ab)

(p−1)/2
= a(p−1)/2b(p−1)/2 =

(
a

p

)
·
(
b

p

)
.

◦ Remark (for those who like group theory): This corollary is saying that the Legendre symbol is a group
homomorphism from the group (Z/pZ)× of units modulo p to the group {±1}. The preimage of +1
under this map is the coset of quadratic residues, while the preimage of −1 under this map is the coset
of quadratic nonresidues.

5.3 The Law of Quadratic Reciprocity

• In this section we motivate and then prove Gauss's celebrated law of quadratic reciprocity, which describes an
unexpected and stunning relation between when p is a quadratic residue modulo q and when q is a quadratic
residue modulo p for primes p and q.

◦ In other words, the law describes the relationship between the Legendre symbols

(
p

q

)
and

(
q

p

)
.

◦ Before starting our discussion, we will point out that, based on what we have established so far, there is
no obvious reason why there should be any relationship between these Legendre symbols at all:

◦ Intuitively, it would seem like whether p is a square modulo q would have nothing at all to do with
whether q is a square modulo p: these two questions are asking about di�erent elements and di�erent
moduli, so why should there be any relationship between the answers?

5.3.1 Motivation for Quadratic Reciprocity

• Euler's criterion provides us with a way to compute whether a residue class a modulo p is a quadratic residue
or nonresidue.

• We will now examine the reverse question: given a particular value of a, for which primes p is a a quadratic
residue? For a = 1 the answer is trivial, but for one other (less trivial) value of a, we can also answer this
question immediately:

• Proposition (−1 and Quadratic Residues): If p is a prime, then −1 is a quadratic residue modulo p if and
only if p = 2 or p ≡ 1 (mod 4).

◦ Proof: Clearly −1 is a quadratic residue mod 2 (since it is equal to 1), so assume p is odd.

◦ By Euler's criterion, we have

(
−1
p

)
= (−1)(p−1)/2. But the term on the right is +1 when (p − 1)/2 is

even and −1 when (p− 1)/2 is odd.

◦ Hence we deduce immediately that −1 is a quadratic residue precisely when p ≡ 1 (mod 4).
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• We also mention one interesting corollary of this result:

• Corollary (1 Mod 4 Primes): There are in�nitely many primes congruent to 1 modulo 4.

◦ Proof: By the proposition above, the congruence n2 + 1 ≡ 0 (mod p) has a solution if and only if p = 2
or p ≡ 1 (mod 4).

◦ We construct primes congruent to 1 modulo 4 using this polynomial q(x) = x2 +1 as follows: let p0 = 5,
and take p1, ... , pk to be arbitrary primes congruent to 1 modulo 4.

◦ Now consider q(p0p1 · · · pk), which is clearly an integer greater than 1: it is relatively prime to each of
the pi for 0 ≤ i ≤ k, because none of the pi divides the constant term 1.

◦ Hence, by the above result, any prime divisor of q(p0p1 · · · pk) must be a prime congruent to 1 modulo 4
that was not on our list. We conclude that there are in�nitely many primes congruent to 1 modulo 4.

• For other a 6= ±1, however, the answer to our original question is far from obvious. Let us examine a few
particular values of a, modulo primes less than 50, to see whether there are any patterns. (We can do the
computations with Euler's criterion, or by making a list of all the squares modulo p.)

◦ Consider a = 2. Some short calculations show that a is a quadratic residue modulo 7, 17, 23, 31, 41, and
47, while a is a nonresidue modulo 3, 5, 11, 13, 19, 29, 37, and 43.

◦ Consider a = 3. Some short calculations show that a is a quadratic residue modulo 11, 13, 23, 37, and
47, while a is a nonresidue modulo 5, 7, 17, 19, 29, 31, 41, and 43.

◦ Consider a = 5. Some short calculations show that a is a quadratic residue modulo 11, 19, 29, 31, and
41, while a is a nonresidue modulo 3, 7, 13, 17, 23, 37, 43, and 47.

◦ Consider a = 7. Some short calculations show that a is a quadratic residue modulo 3, 23, 31, 37, and
47, while a is a nonresidue modulo 5, 11, 13, 17, 23, and 41.

◦ Consider a = 13. Some short calculations show that a is a quadratic residue modulo 3, 17, 23, and 29,
while a is a nonresidue modulo 5, 7, 11, 19, 31, 37, 41, and 47.

• We can see a few patterns in these results.

◦ For a = 5 there is an obvious pattern: the primes where 5 is a quadratic residue all have units digits 1
or 9, while the primes where 5 is a nonresidue all have units digits 3 or 7.

◦ We see that the primes where 5 is a quadratic residue are 1 or 4 modulo 5, while the primes where 5 is a
nonresidue are 2 or 3 modulo 5. We also notice the rather suspicious fact that 1 and 4 are the quadratic
residues modulo 5, while 2 and 3 are the nonresidues.

◦ This suggests searching for a similar pattern with a small modulus in the other examples. Doing this
eventually uncovers the fact that all of the primes where 2 is a quadratic residue are either 1 or 7 modulo
8, while the primes where 2 is a nonresidue are all 3 or 5 modulo 8.

◦ Similarly, we can see that all of the primes where 3 is a quadratic residue are either 1 or 11 modulo 12,
while the primes where 3 is a nonresidue are all 5 or 7 modulo 12. However, there is nothing obvious
about how these residues are related, unlike in the case a = 5.

◦ A similar pattern does not seem to be as forthcoming for when 7 is a quadratic residue.

◦ We can see that the primes where 13 is a quadratic residue are 3, 4, or 10 modulo 13, and the primes
where 13 is a nonresidue are 2, 5, 6, 7, 8, or 11 modulo 13. Notice that 3, 4, and 10 are all quadratic
residues modulo 13, while 2, 5, 6, 7, 8, and 11 are nonresidues.

◦ It seems that we have found natural patterns for a = 5 and a = 13: for these two primes, it appears that(
5

p

)
= 1 if and only if

(p
5

)
= 1, and similarly for 13.

◦ However, we have not found such a �reciprocity� relation for a = 3 and a = 7.

• Let us try looking at negative integers, to see if results are more obvious there:

◦ For a = −3, some short calculations show that a is a quadratic residue modulo 7, 13, 19, 31, and 37,
while a is a nonresidue modulo 5, 11, 17, 23, 29, 41, and 47. This shows a much more natural pattern:

the primes with

(
a

p

)
= 1 are all 1 modulo 3, while the values where

(
a

p

)
= −1 are all 2 modulo 3.
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◦ Notice that 1 is a quadratic residue modulo 3, and 2 is a nonresidue.

◦ For a = −7, some short calculations show that a is a quadratic residue modulo 11, 23, 29, and 37, while
a is a nonresidue modulo 3, 5, 13, 17, 19, 31, 41, and 47. Again, we see a pattern: the primes where(
a

p

)
= 1 are all 1, 2, or 4 modulo 7, while the values where

(
a

p

)
= −1 are all 3, 5, or 6 modulo 7.

◦ Notice that the quadratic residues modulo 7 are 1, 2, and 4, while the nonresidues are 3, 5, and 6.

◦ Based on this evidence, it seems that

(
−3
p

)
= 1 if and only if

(p
3

)
= 1, and similarly

(
−7
p

)
= 1 if and

only if
(p
7

)
= 1.

• We notice that the �reciprocity� relation appears to be di�erent for the primes 5 and 13 versus the primes 3
and 7.

◦ Based on our previous ideas of looking for simple congruence relations, we observe that 3 and 7 are both
3 modulo 4, while 5 and 13 are both 1 modulo 4.

◦ If p ≡ 1 (mod 4), it appears that

(
p

q

)
·
(
q

p

)
= 1, if q 6= p is any odd prime. Note that this is symmetric

in p and q, so this should actually hold if p or q is 1 modulo 4.

◦ If p, q ≡ 3 (mod 4), it appears that

(
−p
q

)
·
(
q

p

)
= 1, if q 6= p is any odd prime. Since

(
−p
q

)
=

(
−1
q

)
·(

p

q

)
, and we know that

(
−1
q

)
= −1 from earlier, we can rewrite this relation as

(
p

q

)
·
(
q

p

)
= −1.

◦ Thus, it appears that

(
p

q

)
·
(
q

p

)
= 1 if p or q is 1 mod 4, and is −1 if both p and q are 3 mod 4.

• Theorem (Quadratic Reciprocity): If p and q are distinct odd primes, then

(
p

q

)
·
(
q

p

)
= (−1)(p−1)(q−1)/4.

Equivalently,

(
p

q

)
·
(
q

p

)
= 1 if p or q is 1 (mod 4), and

(
p

q

)
·
(
q

p

)
= −1 if p and q are both 3 (mod 4).

◦ This statement is often referred to as the law of quadratic reciprocity.

◦ It was stated (without proof) by Euler in 1783, and the �rst correct proof was given by Gauss in 1796.

◦ This theorem was one of Gauss's favorites3; given Gauss's prodigious mathematical output, this is a very
strong statement!

5.3.2 Proof of Quadratic Reciprocity

• The proof of quadratic reciprocity we will give is due to Eisenstein, and is a simpli�cation of one of Gauss's
original proofs. The �rst ingredient is the following lemma:

• Lemma (Gauss's Lemma): If p is an odd prime and p - a, then
(
a

p

)
= (−1)k, where k is equal to the number

of integers among a, 2a, ... ,
p− 1

2
a whose least positive residue modulo p is bigger than

p

2
.

◦ Proof: Let r1, ... , rk be the residues bigger than
p

2
and s1, ... , sl be the other residues, where

k + l =
p− 1

2
.

◦ Observe that 0 < p − ri < p/2, and that each of these is distinct. Furthermore, we claim that these
values p− ri are all distinct from the sj .

3Gauss actually published six di�erent proofs of quadratic reciprocity during his lifetime, and two more were found among his notes.
There are now over 200 di�erent proofs that have been collected.
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◦ To see this, suppose that p − ri = sj : then if ri ≡ c1a (mod p) and sj ≡ c2a (mod p), we would have
a(c1 + c2) ≡ 0 (mod p). So since a is a unit, this implies c1 + c2 ≡ 0 (mod p). But this cannot happen,

because c1 and c2 are both between 1 and
p− 1

2
.

◦ Therefore, the
p− 1

2
values among the p− ri and sj are all distinct and between 1 and p/2. Thus, they

must simply be 1, 2, ... ,
p− 1

2
in some order.

◦ Thus, we may write

1 · 2 · · · · · p− 1

2
≡

k∏
i=1

(p− ri) ·
l∏

j=1

sj (mod p)

≡ (−1)k
k∏
i=1

ri ·
l∏

j=1

sj (mod p)

≡ (−1)k
(p−1)/2∏
n=1

(na) (mod p)

≡ (−1)ka(p−1)/2 · 1 · 2 · · · · · p− 1

2
(mod p)

and then cancelling the common

(
p− 1

2

)
! from both sides yields

(
a

p

)
≡ a(p−1)/2 ≡ (−1)k (mod p), as

claimed.

• We can use Gauss's lemma to compute the Legendre symbol

(
a

p

)
for small values of a.

• Corollary: If p is an odd prime,

(
2

p

)
= (−1)(p2−1)/8. Equivalently,

(
2

p

)
= 1 if p ≡ 1, 7 (mod 8), and(

2

p

)
= −1 if p ≡ 3, 5 (mod 8).

◦ Proof: By Gauss's lemma, we need only compute whether the number of residues among 2, 4, ... , p− 3,
p− 1 that lie between p/2 and p is even or odd. (Conveniently, they already all lie between 0 and p.)

◦ If p ≡ 1 (mod 4), the smallest such residue is (p+3)/2 and the largest is p−1, so the number is (p−5)/4.
This is odd if p ≡ 5 (mod 8) and even if p ≡ 1 (mod 8).

◦ If p ≡ 3 (mod 4), the smallest such residue is (p+1)/2 and the largest is p−1, so the number is (p−3)/4.
This is odd if p ≡ 3 (mod 8) and even if p ≡ 7 (mod 8).

• We could make a similar analysis to compute

(
3

p

)
,

(
5

p

)
, and so forth. The only obstacle is the roundo�

analysis required to make an accurate accounting of how many residue classes reduce to lie in the interval
[p/2, p]. Here is the formula for the general result:

• Lemma (Eisenstein): If p is an odd prime and a is odd with p - a, then
(
a

p

)
= (−1)s where s =

∑(p−1)/2
j=1

⌊
ja

p

⌋
.

◦ Remark: The notation bxc denotes the greatest integer function, de�ned as the greatest integer n with
n ≤ x, so for example bπc = 3 and b−1.5c = −2. (In fact, this function was �rst introduced by Gauss in
the course of one of his proofs of quadratic reciprocity!)

◦ Proof: By Gauss's lemma,

(
a

p

)
= (−1)k where k is equal to the number of the residues a, 2a, ... ,

p− 1

2
a whose least positive residue modulo p is bigger than

p

2
.

◦ Thus, all we need to do is show that
∑(p−1)/2
j=1

⌊
ja

p

⌋
is equivalent to k mod 2.
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◦ As earlier, let r1, ... , rk be the residues bigger than
p

2
and s1, ... , sl be the other residues, where

k + l =
p− 1

2
, and note that the elements p− ri and sj are a rearrangement of 1, 2, ... ,

p− 1

2
.

◦ Thus, we have kp−
∑k
i=1 rj +

∑l
j=1 sj =

∑k
i=1(p− rj) +

∑l
j=1 sj =

∑(p−1)/2
j=1 j =

p2 − 1

8
.

◦ Also, observe that the ri and sj are the remainders obtained when we divide ja by p, for 1 ≤ j ≤ p− 1

2
.

The quotient when we do the division is clearly bja/pc.

◦ Thus, we also have p
∑(p−1)/2
j=1

⌊
ja

p

⌋
+
∑k
i=1 rj +

∑l
j=1 sj =

∑(p−1)/2
j=1 ja = a

p2 − 1

8
.

◦ Subtracting the �rst sum from the second sum yields p

(∑(p−1)/2
j=1

⌊
ja

p

⌋
− k
)
+2
∑k
i=1 rj = (a−1)p

2 − 1

8
.

◦ Since we only care about k modulo 2, we can reduce everything mod 2: since
p2 − 1

8
is an integer and

a− 1 and 2
∑k
i=1 rj are even, while p is odd, we obtain

∑(p−1)/2
j=1

⌊
ja

p

⌋
≡ k (mod 2), as desired.

• The above computation gives a seemingly useless expression for the Legendre symbol in terms of a sum involv-
ing the �oor function, but it turns out that we can use it to prove quadratic reciprocity almost immediately:

• Theorem (Quadratic Reciprocity): If p and q are distinct odd primes, then

(
p

q

)
·
(
q

p

)
= (−1)(p−1)(q−1)/4.

Equivalently,

(
p

q

)
·
(
q

p

)
= 1 if p or q is 1 (mod 4), and

(
p

q

)
·
(
q

p

)
= −1 if p and q are both 3 (mod 4).

◦ Proof: By Eisenstein's lemma,

(
p

q

)
·
(
q

p

)
= (−1)n, where n =

∑(p−1)/2
j=1

⌊
jq

p

⌋
+
∑(q−1)/2
k=1

⌊
kp

q

⌋
.

◦ The �rst sum is the number of lattice points (x, y) lying below the line y =
q

p
x , with 1 ≤ x ≤ p− 1

2
.

The following �gure illustrates this in the case p = 13, q = 11:

Figure 1: The lattice points underneath y =
q

p
x with 1 ≤ x ≤ p− 1

2
.

◦ The second sum can be interpreted in a similar way as the number of lattice points below the line y =
p

q
x.

More fruitfully, we can view it as the number of lattice points (x, y) lying to the left of the line y =
q

p
x ,

with 1 ≤ y ≤ q − 1

2
. The following �gure illustrates this in the case p = 13, q = 11:
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Figure 2: The lattice points to the left of y =
q

p
x with 1 ≤ y ≤ q − 1

2
.

◦ As suggested by the picture, the union of these two sets of points yields all of the lattice points in the

rectangle bounded by 1 ≤ x ≤ p− 1

2
, 1 ≤ y ≤ q − 1

2
. Clearly, there are

p− 1

2
· q − 1

2
such lattice points.

◦ There are no lattice points lying on the line y =
q

p
x inside this rectangle: since p and q are prime, any

lattice point (x, y) lying on py = qx must have q|y and p|x, and this is not possible if 1 ≤ x ≤ p− 1

2
.

◦ Hence, we conclude that
∑(p−1)/2
j=1

⌊
jq

p

⌋
+
∑(q−1)/2
k=1

⌊
kp

q

⌋
=
p− 1

2
· q − 1

2
, yielding the result.

• We now give a few examples of quadratic reciprocity for some particular primes p and q:

• Example: Verify quadratic reciprocity for the primes p = 17 and q = 19.

◦ Using Euler's criterion, we evaluate

(
17

19

)
≡ 17(19−1)/2 ≡ 179 ≡ 1 (mod 19). Indeed, 17 is a square

modulo 19, since 17 ≡ 62 (mod 19).

◦ We also evaluate

(
19

17

)
≡ 19(17−1)/2 ≡ 198 ≡ 1 (mod 17). Indeed, 19 is a square modulo 17, since

19 ≡ 62 (mod 17).

◦ This agrees with quadratic reciprocity, since 17 is congruent to 1 modulo 4, and

(
17

19

)
·
(
19

17

)
= 1 as

claimed.

• Example: Verify quadratic reciprocity for the primes p = 23 and q = 43.

◦ Using Euler's criterion, we evaluate

(
23

43

)
≡ 23(43−1)/2 ≡ 2321 ≡ 1 (mod 43). Indeed, 23 is a square

modulo 43, since 23 ≡ 182 (mod 43).

◦ We also evaluate

(
43

23

)
≡ 43(23−1)/2 ≡ (−3)11 ≡ −1 (mod 23). One can verify by writing down all of

the quadratic residues modulo 23 that 43 ≡ 20 is not among them.

◦ This agrees with quadratic reciprocity, since both 23 and 43 are congruent to 3 modulo 4, and

(
23

43

)
·(

43

23

)
= −1 as claimed.
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5.4 The Jacobi Symbol

• We can use quadratic reciprocity to give another method for computing Legendre symbols.

◦ Explicitly, suppose we want

(
p

q

)
where p < q. then since

(
p

q

)
·
(
q

p

)
= (−1)(p−1)(q−1)/4, it su�ces to

�nd

(
q

p

)
. But now because q > p,

(
q

p

)
=

(
r

p

)
where r is the remainder upon dividing q by p.

◦ We have therefore reduced the problem to one of calculating a Legendre symbol with smaller terms.

◦ By repeating this ��ip and reduce� procedure, we can eventually winnow the terms down to values we
can evaluate by inspection.

• Example: Determine whether 31 is a quadratic residue modulo 47.

◦ We want to �nd

(
31

47

)
. Notice that 31 and 47 are both prime, so we can apply quadratic reciprocity.

◦ By quadratic reciprocity, since both 47 and 31 are primes congruent to 3 (mod 4), we have

(
31

47

)
=

−
(
47

31

)
= −

(
16

31

)
= −1, since 16 is clearly a quadratic residue.

◦ Thus, 31 is not a quadratic residue modulo 47.

• Example: Determine whether 357 is a quadratic residue modulo 661.

◦ We want

(
357

661

)
. Although 661 is prime, 357 is not, so we cannot apply quadratic reciprocity directly.

◦ Instead, we must �rst factor the top number: since 357 = 3·7·17, we have
(
357

661

)
=

(
3

661

)(
7

661

)(
17

661

)
.

◦ By quadratic reciprocity, since 661 ≡ 1 (mod 4) is prime, and 3, 7, 17 are also prime, we have(
3

661

)
=

(
661

3

)
=

(
1

3

)
= +1(

7

661

)
=

(
661

7

)
=

(
3

7

)
= −

(
7

3

)
= −

(
1

3

)
= −1(

17

661

)
=

(
661

17

)
=

(
−2
17

)
=

(
−1
17

)
·
(

2

17

)
= (+1) · (+1) = +1

◦ Thus,

(
357

661

)
=

(
3

661

)
·
(

7

661

)
·
(

17

661

)
= −1, so 357 is not a quadratic residue modulo 661.

• One drawback of using quadratic reciprocity in this way is that we need to factor the top number every time
we ��ip and reduce�, since quadratic reciprocity only makes sense when both terms are primes.

◦ We also need to remove factors of 2 and −1, although this is much more trivial.)

• We will now generalize the de�nition of the Legendre symbol to composite moduli, so as to provide a way
around this problem.

5.4.1 De�nition and Examples

• De�nition: Let b be a positive odd integer with prime factorization b = p1p2 · · · pk for some (not necessarily

distinct) primes pk. The Jacobi symbol
(a
b

)
is de�ned as

(a
b

)
=

(
a

p1

)
L

(
a

p2

)
L

· · ·
(
a

pk

)
L

, where

(
a

pk

)
L

denotes the Legendre symbol.
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◦ If b is itself prime, then the Jacobi symbol is simply the Legendre symbol. We will therefore just write(a
b

)
since we may now always assume it is referring to the Jacobi symbol.

◦ Example: We have

(
2

15

)
=

(
2

3

)
·
(
2

5

)
= (−1) · (−1) = +1.

◦ Example: We have

(
11

45

)
=

(
11

3

)2

·
(
11

5

)
= (−1)2 · (+1) = −1.

◦ Example: We have

(
77

33

)
=

(
77

3

)
·
(
77

11

)
= (−1) · 0 = 0.

◦ Observe that, by properties of the Legendre symbol, that
(a
b

)
will always be +1, −1, or 0, and it will

be 0 if and only if gcd(a, b) > 1.

• Proposition (Properties of Jacobi Symbols): Suppose b and b′ are positive odd integers and a, a′ are integers.
Then the following hold:

1. The Jacobi symbol is multiplicative on top and bottom:

(
aa′

b

)
=
(a
b

)
·
(
a′

b

)
and

( a

bb′

)
=
(a
b

)
·
( a
b′

)
.

◦ Proof: For the �rst statement, suppose b = p1 · · · pk. Then

(
aa′

b

)
=

(
aa′

p1

)
L

· · ·
(
aa′

pk

)
L

=(
a

p1

)
L

(
a′

p1

)
L

· · ·
(
a

pk

)
L

(
a′

pk

)
L

=

(
a

p1

)
L

· · ·
(
a

pk

)
L

(
a′

p1

)
L

· · ·
(
a′

pk

)
L

=
(a
b

)(a′
b

)
, where we

used the multiplicativity of the Legendre symbol in the middle.

◦ For the second statement, suppose b = p1 · · · pk and b′ = q1 · · · qk.

◦ Then
( a

bb′

)
=

(
a

p1

)
L

· · ·
(
a

pk

)
L

(
a

q1

)
L

· · ·
(
a

qk

)
L

=
(a
b

)
·
( a
b′

)
by de�nition of the Jacobi symbol.

2. If a is a quadratic residue modulo b and is relatively prime to b, then
(a
b

)
= +1.

◦ Proof: If a ≡ r2 (mod b), then
(a
b

)
=

(
r2

b

)
=
(r
b

)2
= +1, since

(r
b

)
is either +1 or −1 by the

assumption that a (hence r) is relatively prime to b.

• Item (2) in the proposition above tells us that the Jacobi symbol, like the Legendre symbol, evaluates to +1 on
quadratic residues. However, unlike the Legendre symbol, which only evaluates to +1 on quadratic residues,
the Jacobi symbol can also evaluate to +1 on quadratic nonresidues.

◦ In other words, the converse to item (2) is not longer true: it is not (!) the case that
(a
b

)
= +1 implies

that a is a quadratic residue modulo b.

◦ For example,

(
2

15

)
= +1 as computed above, but 2 is not a quadratic residue modulo 15 because the

only quadratic residues modulo 15 are 1 and 4.

◦ Indeed, as we showed earlier, if b = p1p2 · · · pk, then a is a quadratic residue modulo b if and only if a is
a quadratic residue modulo each pi.

◦ We will note, though, that if b is an odd prime, then the Jacobi symbol and Legendre symbol are the

same, and have the same value, and so in this case,
(a
b

)
= +1 is equivalent to saying that a is a quadratic

residue modulo b.

• We might ask: why not instead de�ne the Jacobi symbol
(a
b

)
to be +1 if a is a quadratic residue and −1 if

a is a quadratic nonresidue?

◦ The reason we do not take this as the de�nition is that this new symbol is not multiplicative: with a
composite modulus, the product of two quadratic nonresidues can still be a quadratic nonresidue.

◦ For example, the quadratic residues modulo 15 are 1 and 4, while the quadratic nonresidues are 2, 7, 8,
11, 13, 14. Now observe that 2 · 7 = 14 (mod 15), but all three of 2, 7, and 14 are quadratic nonresidues.
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◦ Ultimately, the problem is that a composite modulus has di�erent types of quadratic nonresidues.

◦ To illustrate, an element a can be a quadratic nonresidue modulo 15 in three ways: (i) it could be a
quadratic nonresidue mod 3 and a quadratic residue mod 5 [namely, a = 11, 14], (ii) a quadratic residue
mod 3 and a quadratic nonresidue mod 5 [namely, a = 7, 13], or (iii) a quadratic nonresidue mod 3 and
a quadratic nonresidue mod 5 [namely, a = 2, 8].

◦ The product of two quadratic nonresidues each in the same class above will be a quadratic residue modulo
15 (since it will be a quadratic residue mod 3 and mod 5), but the product of quadratic nonresidues
from di�erent classes will still be a quadratic nonresidue mod 15 (since it will be a quadratic nonresidue
modulo 3 or modulo 5).

5.4.2 Quadratic Reciprocity for Jacobi Symbols

• Our main goal now is to establish that the Jacobi symbol also obeys the law of quadratic reciprocity. We �rst
collect a few basic evaluations:

• Proposition (Basic Evaluations): If b = p1p2 · · · pk is a product of odd primes, then we have the following:

1.

(
−1
b

)
= (−1)(b−1)/2. Equivalently,

(
−1
b

)
is +1 if b ≡ 1 (mod 4) and is −1 if b ≡ 3 (mod 4).

◦ Proof: From our results on Legendre symbols, we know that

(
−1
pk

)
= (−1)(pk−1)/2.

◦ Then, by de�nition,

(
−1
b

)
=
∏k
j=1

(
−1
pk

)
=
∏k
j=1(−1)(pk−1)/2 = (−1)

∑
(pk−1)/2.

◦ It remains to verify that
∑k
j=1

pk − 1

2
≡
∏k
j=1

pk − 1

2
(mod 2).

◦ To see this observe that if m,n are odd then
mn− 1

2
− m− 1

2
− n− 1

2
=

(m− 1)(n− 1)

2
is even,

and so
mn− 1

2
≡ m− 1

2
+
n− 1

2
(mod 2).

◦ Then by an easy induction, we get
∑k
j=1

pk − 1

2
≡
∏k
j=1

pk − 1

2
(mod 2), as required.

2.

(
2

b

)
= (−1)(b

2−1)/8
. Equivalently,

(
2

b

)
is +1 if b ≡ 1, 7 (mod 8) and is −1 if b ≡ 3, 5 (mod 8).

◦ Proof: From our results on Legendre symbols, we know that

(
2

pk

)
= (−1)(p2k−1)/8.

◦ Like above,

(
2

b

)
=
∏k
j=1

(
2

pk

)
=
∏k
j=1(−1)(p

2
k−1)/8 = (−1)

∑
(p2k−1)/8.

◦ It remains to verify that
∑k
j=1

p2k − 1

8
≡
∏k
j=1

p2k − 1

8
(mod 2).

◦ To see this observe that if m,n are odd then
m2n2 − 1

8
− m2 − 1

8
− n2 − 1

8
=

(m2 − 1)(n2 − 1)

8
, so

m2n2 − 1

8
≡ m2 − 1

8
+
n2 − 1

8
(mod 2).

◦ Then by an easy induction, we get
∑k
j=1

p2k − 1

8
≡
∏k
j=1

p2k − 1

8
(mod 2), as required.

• Now we can prove quadratic reciprocity for the Jacobi symbol.

• Theorem (Quadratic Reciprocity for Jacobi Symbols): If a and b are odd, relatively prime positive integers,

then
(a
b

)
·
(
b

a

)
= (−1)(a−1)(b−1)/4.

◦ The proof is essentially bookkeeping: we simply factor a and b and then use quadratic reciprocity on all
of the prime factors. All of the actual work has already been done in proving quadratic reciprocity for
the Legendre symbol.
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◦ Proof: Write a = q1 · · · ql and b = p1 · · · pk as products of primes. Then, by de�nition, we have

(a
b

)
= =

k∏
j=1

(
a

pj

)
=

k∏
j=1

l∏
i=1

(
qi
pj

)
=

k∏
j=1

l∏
i=1

(
pj
qi

)
· (−1)(pj−1)(qi−1)/4

=

l∏
i=1

k∏
j=1

(
pj
qi

)
· (−1)

∑
i,j(pj−1)(qi−1)/4 =

(
b

a

)
· (−1)

∑
i,j(pj−1)(qi−1)/4 .

◦ But then
∑l
i=1

∑k
j=1

(pi−1)(qj−1)
4 ≡

(∑l
i=1

pi−1
2

)
·
(∑k

j=1
qj−1
2

)
≡ a− 1

2
· b− 1

2
(mod 2) using the same

argument as in the previous proposition.

◦ Therefore,
(a
b

)
=

(
b

a

)
· (−1)(a−1)(b−1)/4, which is equivalent to the desired result.

5.4.3 Calculating Legendre Symbols Using Jacobi Symbols

• We can use the Jacobi symbol to compute Legendre symbols using the ��ip and reduce� technique discussed
earlier. The advantage of the Jacobi symbol is that we no longer need to factor the top number: we only need
to remove factors of −1 and 2.

• Example: Determine whether 247 is a quadratic residue modulo the prime 1009.

◦ We have

(
247

1009

)
=

(
1009

247

)
=

(
21

247

)
= −

(
247

21

)
= −

(
16

21

)
= −1, where at each stage we either

used quadratic reciprocity (to ��ip�) or reduced the top number modulo the bottom.

◦ Since the result is −1, this says the Jacobi symbol
(

247

1009

)
is −1.

◦ But since 1009 is prime, the Jacobi symbol is the same as the Legendre symbol, so this means 247 is a

quadratic nonresidue modulo 1009.

• Example: Determine whether 1593 is a quadratic residue modulo the prime 2017.

◦ By repeatedly using the ��ip and reduce� procedure, we compute(
1593

2017

)
=

(
2017

1593

)
=

(
424

1593

)
=

(
2

1593

)3(
53

1593

)
=

(
1593

53

)
=

(
3

53

)
= −

(
53

3

)
= −

(
2

3

)
= +1.

◦ Since 2017 is prime, the Jacobi symbol is the same as the Legendre symbol, so this means 1593 is a

quadratic residue modulo 2017.

5.5 Applications of Quadratic Reciprocity

• In this section, we discuss several applications of quadratic reciprocity to various classical and modern questions
in number theory.

5.5.1 For Which p is a a Quadratic Residue Modulo p?

• Our �rst application of quadratic reciprocity is determining (given a particular value of a) for which primes
p is a a quadratic residue.

◦ To outline the procedure, if we want to compute

(
a

p

)
for a �xed a, then after we �nd the prime

factorization of a, we can convert the question to that of analyzing the Legendre symbols

(
qi
p

)
for the

prime factors qi of a.
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◦ By using quadratic reciprocity, this is equivalent to analyzing the Legendre symbols

(
p

qi

)
, which we can

then do simply by listing all of the quadratic residues and nonresidues modulo qi for each of the �xed
values qi.

• Example: Characterize the primes p for which 3 is a quadratic residue modulo p.

◦ We want to compute

(
3

p

)
, for p 6= 3.

◦ By quadratic reciprocity, we know that if p ≡ 1 (mod 4), then

(
3

p

)
=
(p
3

)
. Note that

(p
3

)
is +1 if

p ≡ 1 (mod 3), and −1 if p ≡ 2 (mod 3).

◦ Therefore, in this case, we see that

(
3

p

)
= +1 only when p ≡ 1 (mod 4) and p ≡ 1 (mod 3) � i.e., when

p ≡ 1 (mod 12).

◦ Also, if p ≡ 3 (mod 4), then

(
3

p

)
= −

(p
3

)
. As above,

(p
3

)
is +1 if p ≡ 1 (mod 3), and −1 if p ≡ 2

(mod 3).

◦ Therefore, in this case, we see that

(
3

p

)
= +1 only when p ≡ 3 (mod 4) and p ≡ 2 (mod 3) � i.e., when

p ≡ 11 (mod 12).

◦ We conclude that 3 is a quadratic residue modulo p precisely when p ≡ 1 or 11 (mod 12).

• Example: Characterize the primes p for which 6 is a quadratic residue modulo p.

◦ We want to compute

(
6

p

)
=

(
2

p

)
·
(
3

p

)
, for p 6= 2, 3.

◦ From the above computations, we know that

(
3

p

)
= +1 when p ≡ 1 or 11 (mod 12), and

(
3

p

)
= −1

when p ≡ 5 or 7 (mod 12).

◦ We also know that

(
2

p

)
= +1 when p ≡ 1 or 7 (mod 8), and

(
2

p

)
= −1 when p ≡ 3 or 5 (mod 8).

◦ Thus,

(
6

p

)
= +1 in the following cases:

◦ Case 1:

(
3

p

)
=

(
2

p

)
= +1. This requires p ≡ 1, 11 (mod 12) and p ≡ 1, 7 (mod 8). Solving these

simultaneous congruences yields p ≡ 1, 23 (mod 24).

◦ Case 2:

(
3

p

)
=

(
2

p

)
= −1. This requires p ≡ 5, 7 (mod 12) and p ≡ 3, 5 (mod 8). Solving these

simultaneous congruences yields p ≡ 5, 19 (mod 24).

◦ Therefore, 6 is a quadratic residue modulo p precisely when p ≡ 1, 5, 19, 23 (mod 24).

5.5.2 Primes Dividing Values of a Quadratic Polynomial

• Another more surprising consequence of quadratic reciprocity is that we can characterize the primes dividing
the values taken by a quadratic polynomial.

◦ This should be unexpected, because polynomials can combine addition and multiplication in arbitrary
ways.

◦ There is no especially compelling reason, a priori, to think that the primes dividing the values of, say,
the polynomial q(x) = x2 + x+ 7, should have any identi�able structure at all: for all we know, the set
of primes dividing an integer of the form n2 + n+ 7 could be totally arbitrary.

• Example: Characterize the primes dividing an integer of the form n2 + n+ 7, for n an integer.
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◦ It is not hard to see that n2 + n+ 7 is always odd, so 2 is never a divisor.

◦ Now suppose that p is an odd prime and that n2 + n+ 7 ≡ 0 (mod p).

◦ We multiply by 4 and complete the square to obtain (2n+ 1)2 ≡ −27 (mod p).

◦ Since p is odd, there will be a solution for n if and only if −27 is a square modulo p. If p = 3, this clearly
holds, so now assume p ≥ 5.

◦ We compute

(
−27
p

)
=

(
−1
p

)
·
(
3

p

)3

=

(
−1
p

)
·
(
3

p

)
.

◦ From earlier, we know that

(
−1
p

)
is +1 if p ≡ 1 (mod 4) and is −1 if p ≡ 3 (mod 4).

◦ We also showed that

(
3

p

)
= +1 when p ≡ 1 or 11 (mod 12), and

(
3

p

)
= −1 when p ≡ 5 or 7 (mod 12).

◦ Hence,

(
−3
p

)
= +1 precisely when p ≡ 1 (mod 6).

◦ Thus, by the above, we conclude that a prime p divides an integer of the form n2 + n + 7 either when
p = 3 or when p ≡ 1 (mod 6).

• Using the characterization of the prime divisors of n2 + n+ 7, we can deduce the following interesting result:

• Proposition (1 Mod 6 Primes): There are in�nitely many primes congruent to 1 modulo 6.

◦ Proof: By the argument above, any prime divisor (other than 3) of an integer of the form n2 + n + 7
must be congruent to 1 modulo 6. Let q(x) = x2 + x+ 7.

◦ We construct primes congruent to 1 modulo 6 using this polynomial: let p0 = 3, and take p1, ... , pk to
be arbitrary primes congruent to 1 modulo 6, none of which is equal to 7.

◦ Now consider q(p0p1 · · · pk), which is clearly an integer greater than 1: it is relatively prime to each of
the pi for 0 ≤ i ≤ k, because none of the pi divides the constant term 7.

◦ Hence, by the above result, any prime divisor of q(p0p1 · · · pk) must be a prime congruent to 1 modulo 6
that was not on our list.

◦ Thus, there are in�nitely many primes congruent to 1 modulo 6.

◦ Remark: It is a (not easy) theorem of Dirichlet, known as Dirichlet's theorem on primes in arithmetic progressions,
that if a and m are relatively prime, there exist in�nitely many primes congruent to a modulo m. This
result is the special case with a = 1 and m = 6.

• Example: Characterize the primes dividing an integer of the form n2 + 2n+ 6, for n an integer.

◦ Observe that 2 is a divisor when n = 0, so we may now restrict our attention to odd primes p.

◦ Completing the square yields (n + 1)2 ≡ −5 (mod p), which is equivalent to saying −5 is a quadratic
residue modulo p. Clearly this has a solution when p = 5, so also assume p 6= 5.

◦ Then, to characterize these values we want to determine when

(
−5
p

)
=

(
−1
p

)
·
(
5

p

)
is equal to +1.

◦ From earlier, we know that

(
−1
p

)
is +1 if p ≡ 1 (mod 4) and is −1 if p ≡ 3 (mod 4).

◦ By quadratic reciprocity, since 5 is congruent to 1 mod 4, we see

(
5

p

)
=
(p
5

)
, so

(
5

p

)
= +1 for p ≡ 1, 4

(mod 5) and

(
5

p

)
≡ −1 for p ≡ 2, 3 (mod 5).

◦ Combining the appropriate cases using the Chinese remainder theorem shows that

(
−5
p

)
= +1 precisely

when p ≡ 1, 3, 7, 9 (mod 20).

◦ Thus, by the above, we conclude that a prime p divides an integer of the form n2 + 2n+ 6 either when
p = 2 or p = 5 or when p ≡ 1, 3, 7, 9 (mod 20).
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5.5.3 Berlekamp's Root-Finding Algorithm

• We can also use some of the ideas of quadratic reciprocity to establish a fast root-�nding algorithm for
polynomials modulo p.

• Let q(x) = xn+an−1x
n−1+ · · ·+a0 be an element of Fp[x]. We would like to describe a method for calculating

a root of q(x) in Fp, if there is one.

◦ As a starting point, consider the case where q(x) = (x− r1)(x− r2) · · · (x− rn) factors into a product of
linear terms in Fp[x].
◦ We can detect if one of the ri is equal to zero (since then q will have constant term 0), and also detect
if any of the ri are equal (since then q will have a common factor with its derivative q′), so assume that
all of the ri are distinct and nonzero.

◦ Now, from Euler's criterion in Fp, we know that r(p−1)/2 ≡
(
r

p

)
mod p.

◦ Therefore, the roots of the polynomial x(p−1)/2 − 1 in Fp are precisely the quadratic residues, while the
roots of the polynomial x(p−1)/2 + 1 in Fp are precisely the quadratic nonresidues.

◦ Thus, the greatest common divisor of x(p−1)/2− 1 with q(x) will be equal to the product of all the terms
x − ri where ri is a quadratic residue, while the greatest common divisor of x(p−1)/2 + 1 with q(x) will
be equal to the product of all the terms x− ri where ri is a quadratic nonresidue.

◦ This means that at least one root is a quadratic residue, and another is a quadratic nonresidue, then we
will obtain a partial factorization of q(x).

◦ Our next insight is that we can repeat this procedure by performing the same calculation with q(x− a)
for an arbitrary a ∈ Fp: the roots of this polynomial are simply the values a+ r1, ... , a+ rn. Since a can
be arbitrary, and half of the residue classes modulo p are quadratic residues, we would expect to obtain
at least one quadratic residue and one nonresidue with probability roughly 1− 2/2n, which is always at
least 1/2 when n ≥ 2.

◦ Thus, if there are at least two roots of this polynomial, we expect to �nd a partial factorization with
probability at least 1/2 for each attempt. By iteratively applying this method for each factor, we can
quickly calculate the polynomial's full list of roots.

• Here is a more formal description of this method:

• Algorithm (Berlekamp's Root-Finding): Let q(x) ∈ Fp[x] and suppose that q(x) = (x − r1) · · · (x − rn) for
some distinct ri ∈ Fp. Choose a random a ∈ Fp and compute the greatest common divisor of q(x − a) with
the two polynomials x(p−1)/2 − 1 and x(p−1)/2 + 1. If one of these gcds is a constant, choose a di�erent value
of a and start over. Otherwise, if both gcds have positive degree, then each gcd gives a nontrivial factor of
q(x). Repeat the factorization procedure on each gcd, until the full factorization of q(x) is found.

◦ We note that the �rst step in the Euclidean algorithm's gcd calculation can be performed e�ciently using
successive squaring modulo q(x−a): explicitly, to �nd the remainder upon dividing x(p−1)/2 by q(x−a),
we use successive squaring (of powers of x) modulo q(x− a).
◦ As we noted above, the probability of failure on any given attempt should be (heuristically) roughly
2−(n−1), which means that even in the worst case for a polynomial of degree 2, we have a 50% chance of
success on each attempt.

◦ Overall, this algorithm can be implemented in O(n2 log p) time4. For large n, then, it is still fairly slow,
but if n is small and p is large, it is much more e�cient than a brute-force search for the roots.

• As a speci�c application, this method is quite e�cient for computing square roots modulo p for arbitrary
primes p.

4The components are as follows: (i) computing the coe�cients of q(x − a) in Fp[x] using the binomial theorem, (ii) applying the
Euclidean algorithm to compute the gcd of two polynomials of degree n in Fp[x], (iii) summing over the expected number of applications
until the complete factorization is found. Both the binomial theorem and Euclidean algorithm calculations can be done in O(n2 log p)
time, and the expected number of applications is essentially constant because of the exponential success probability.
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◦ During our analysis of the Rabin cryptosystem, we showed that if p ≡ 3 (mod 4), then a(p+1)/4 is a
square root of a modulo p, so in this case there is a simple formula for computing square roots.

◦ However, if p ≡ 1 (mod 4) there is not such a nice formula. We will mention in particular that using
a = 0 will never work for computing square roots modulo p if p ≡ 1 (mod 4), since the two square roots
will always be both quadratic residues or both quadratic nonresidues because −1 is a quadratic residue
modulo p.

• Example: Find the roots of x2 ≡ 3 (mod 13).

◦ First, we can compute

(
3

13

)
= +1 (either via Euler's criterion or by using quadratic reciprocity), so 3

does have square roots modulo 13.

◦ To compute them we let q(x) = x2 − 3 modulo p = 13.

◦ As noted above, a = 0 will not work, so we try a = 1, so that q(x− a) = x2 − 2x− 2.

◦ Using successive squaring, we can calculate x(p−1)/2 = x6 ≡ 3x+ 10 (mod 13).

◦ This means x(p−1)/2 − 1 ≡ 3x + 9 (mod 13), and so the �rst step of the Euclidean algorithm reads
x(p−1)/2 ≡ [quotient] · q(x− a) + (3x+ 9).

◦ Performing the next step shows that 3x + 9 does indeed divide x2 − 2x − 2 modulo 13 (the quotient is
9x+ 7).

◦ Solving for the �rst root (i.e., solving 3n+ 9 ≡ 0 (mod 13)) yields n ≡ −3 ≡ 10 (mod 13).

◦ This means n = 10 is a root of q(x− 1), and therefore n− 1 = 9 is a root of the original polynomial q(x).

◦ Indeed, we can check that 92 ≡ 3 (mod 13). Therefore, the two roots are r ≡ ±9 (mod 13).

• Example: Find the roots of x2 ≡ 11 (mod 2017).

◦ First, we can compute

(
11

2017

)
= +1 (either via Euler's criterion or by using quadratic reciprocity), so

11 does have square roots modulo the prime 2017.

◦ To compute them we let q(x) = x2 − 11 modulo p = 2017.

◦ As noted above, a = 0 will not work, so we try a = 1, so that q(x− a) = x2 − 2x− 10.

◦ Using successive squaring, we can calculate x(p−1)/2 = x1008 ≡ 307x+ 1710 (mod 2017).

◦ This means x(p−1)/2 − 1 ≡ 307x + 1709 (mod 2017), and so the �rst step of the Euclidean algorithm
reads x(p−1)/2 ≡ [quotient] · q(x− a) + (307x+ 1709).

◦ Performing the next step shows that 307x + 1709 does indeed divide x2 − 2x − 10 modulo 2017 (the
quotient is 1360x+ 668).

◦ Solving for the �rst root (i.e., solving 307n+ 1709 ≡ 0 (mod 2017)) yields n ≡ 1361 (mod 2017).

◦ This means n = 1361 is a root of q(x−1), and therefore n−1 = 1360 is a root of the original polynomial
q(x).

◦ Indeed, we can check that 13602 ≡ 11 (mod 2017). Therefore, the two roots are r ≡ ±1360 (mod 2017).

• Although we have quoted this result for polynomials q(x) that factor as a product of linear terms, we can in
fact reduce the general problem of �nding roots for arbitrary polynomials in Fp[x] to this case.

◦ Explicitly, �rst we remove any repeated irreducible factors from q using its derivative, and then we apply
the factorization algorithm above to the greatest common divisor of q(x) and xp − x.
◦ Since xp − x is the polynomial whose roots are all the elements of Fp, the greatest common divisor of
q(x) and xp−x will be the product of all the linear terms in the factorization of q(x), which is the factor
of q(x) that contains all its roots.

◦ Thus, to �nd roots of q(x), we need only �nd the roots of the greatest common divisor of q(x) and xp−x,
and we can do this using the algorithm described above.
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5.5.4 The Solovay-Strassen Compositeness Test

• Another application of quadratic reciprocity is to give a compositeness test of similar �avor to the Miller-Rabin
test.

◦ From Euler's criterion, we know that if p is prime, then a(p−1)/2 ≡
(
a

p

)
modulo p.

◦ Initially, we used this test to give a method for computing the Legendre symbol

(
a

p

)
. But we also have

another way to compute this symbol, namely, by evaluating the Jacobi symbol

(
a

p

)
using the ��ip and

reduce� procedure provided by quadratic reciprocity.

◦ We therefore obtain a compositeness test by comparing the results of these two di�erent methods: if

a(p−1)/2 6≡
(
a

p

)
modulo p, then p is not prime.

• Test (Solovay-Strassen): If m is an odd integer such that a(m−1)/2 6≡
( a
m

)
modulo m, then m is composite.

◦ We remark that in order for the test to be useful, we need to calculate the Jacobi symbol
( a
m

)
using

quadratic reciprocity. Thus, we will want to select a to be an odd residue class that is greater than 1.

◦ This compositeness test was developed by Solovay and Strassen in 1978, and (as it slightly predated the
unconditional version of the Miller-Rabin test) was one of the �rst primality tests demonstrating the
feasibility of generating large primes for implementing cryptosystems like RSA.

◦ Like with the Fermat and Miller-Rabin tests, this is a compositeness test only: each individual application
for a single value of a can only produce the results �m is composite� or �no result�.

◦ In practice, the Solovay-Strassen test is used probabilistically, like with the Miller-Rabin test: we apply
the test many times to the integer m, and if it passes su�ciently many times, we say m is probably
prime.

◦ It can be shown that any given residue has at least a 1/2 probability of showing that m is composite, so
the probability that a composite integer m can pass the test k times with randomly-chosen residues a is
at most 1/2k.

• Example: Use the Solovay-Strassen test to decide whether 561 is prime.

◦ We try a = 5: we have 5(m−1)/2 ≡ 5280 ≡ 67 (mod 561), whereas

(
5

561

)
=

(
561

5

)
=

(
1

5

)
= 1. Since

these are unequal, we conclude that 561 is composite .

◦ Remark: Note that 561 is a Carmichael number, and passes the Fermat test for every residue class.

• Example: Use the Solovay-Strassen test with a = 137 to decide whether 35113 is prime.

◦ With m = 35113, we have 137(m−1)/2 ≡ 13717556 ≡ 1 (mod 2701).

◦ Also, we have

(
137

35113

)
=

(
35113

137

)
=

(
41

137

)
=

(
137

41

)
=

(
14

41

)
=

(
2

41

)
·
(

7

41

)
= +1 ·

(
41

7

)
=(

−1
7

)
= −1. Since these are unequal, we conclude that 35113 is composite .

5.6 Generalizations of Quadratic Reciprocity

• A natural question is whether there is a way to generalize quadratic reciprocity to other Euclidean domains,
such as Z[i] and Fp[x]. It turns out that the answer is yes!

◦ One natural avenue for generalization is to seek a version of the Legendre symbol that detects when a
given element is a square modulo a prime, in more general rings.
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◦ Another avenue is to try to generalize to higher degree: to seek a version of the Legendre symbol that
detects when a given element is equal to a cube, fourth power, etc., modulo a prime.

◦ There are generalizations in each of these directions, and although we do not have the tools to discuss
many of them, the program of �nding and classifying these various �reciprocity laws� was a central idea
that motivated much of the development of algebraic number theory in the early 20th century.

• Our goal is primarily to give a broad survey, so we will only sketch the basic ideas of the results.

◦ A proper development that ties together all of these generalized reciprocity laws is properly left for a
course in algebraic number theory, since the modern language of number theory (using ideals) is necessary
to understand the broader picture.

5.6.1 Quadratic Residue Symbols in Euclidean Domains

• We will �rst describe how the notion of quadratic residue extends to a general Euclidean domain.

• De�nition: Let R be an arbitrary Euclidean domain, and π be a prime (equivalently, irreducible) element of
R. We say that an element a ∈ R is a quadratic residue modulo π if π - a and there is some b ∈ R such that
b2 ≡ a (mod π). If there is no such b, we say a is a quadratic nonresidue.

◦ Example: With R = Z[i] and π = 2 + i, the nonzero residue classes are represented by i, 2i, 1 + i, and
1 + 2i. The quadratic residues are 2i ≡ (1 + i)2 and 1 + i ≡ i2, and the nonresidues are 1 + i and 1 + 2i.

◦ Example: With R = F3[x] and π = x2 + 1, the nonzero residue classes are represented by 1, 2, x, x+ 1,
x + 2, 2x, 2x + 1, and 2x + 2. The quadratic residues are 1, 2 ≡ x2, x ≡ (x + 2)2, and 2x ≡ (x + 1)2,
while the nonresidues are x+ 1, x+ 2, 2x+ 1, and 2x+ 2.

• If R/πR is a �nite �eld, we can formulate a generalized quadratic residue symbol:

• De�nition: Let π be a prime element in the Euclidean domain R such that R/πR is a �nite �eld. Then the

quadratic residue symbol
[ a
π

]
2
is de�ned to be 0 if π|a, +1 if a is a quadratic residue modulo π, and −1 if a

is a quadratic nonresidue modulo π.

◦ Since R/πR is a �nite �eld, it has a primitive root u. An element a is then a quadratic residue if and
only if it is an even power of the primitive root.

◦ If R/πR has even size, then there are an odd number of units. Then the order of a primitive root u is
odd, so (it is easy to see) every unit is congruent to an even power of u.

◦ Thus, the only interesting case occurs when R/πR has odd size N .

◦ In this case, by Euler's theorem in R/πR, we see that aN−1 ≡ 1 (mod π) for every unit a.

◦ We can factor this as (a(N−1)/2 − 1)(a(N−1)/2 + 1) ≡ 0 (mod π), so since R/πR is a �eld, we see that
a(N−1)/2 ≡ ±1 (mod π).

• The calculations above suggest a natural generalization of Euler's criterion:

• Proposition (Generalized Euler's Criterion): Let π be a prime element in the Euclidean domain R such that

R/πR is a �nite �eld with N elements, where N is odd. Then
[ a
π

]
2
≡ a(N−1)/2 (mod π) for any a.

◦ The proof is almost identical to the one over Z.
◦ Proof: Let u be a primitive root in R/πR. As remarked above, an element a is a quadratic residue if
and only if it is an even power of the primitive root.

◦ It is straightforward to see that u(N−1)/2 ≡ −1 (mod π), since by Euler's theorem this element has square
1 but does not equal 1.

◦ Then if a ≡ u2k (mod π), we see that a(N−1)/2 ≡ (uN−1)k ≡ 1 (mod π).

◦ Furthermore, if u ≡ u2k+1 (mod π), we have a(N−1)/2 ≡ (uN−1)ku(N−1)/2 ≡ u(N−1)/2 ≡ −1 (mod π).

• As an immediate corollary, we see that the quadratic residue symbol is multiplicative on top:
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• Corollary: Let π be a prime element in the Euclidean domain R such that R/πR is a �nite �eld with N

elements, where N is odd. Then for any a and b, we have

[
ab

π

]
2

=
[ a
π

]
2
·
[
b

π

]
2

.

◦ Proof: We have

[
ab

π

]
2

= (ab)(N−1)/2 ≡ a(N−1)/2b(N−1)/2 =
[ a
π

]
2
·
[
b

π

]
2

(mod π).

◦ Since both sides are ±1 and π does not divide 2, we must then have

[
ab

π

]
2

=
[ a
π

]
2
·
[
b

π

]
2

.

• In general, quadratic reciprocity will proscribe a relation between the value of
[π
λ

]
2
and

[
λ

π

]
2

if λ and π are

primes in R. The precise statement will depend on the ring R.

• Remark: We can also extend the de�nition of the quadratic residue symbol to cover cases where the bottom
element is not a prime, in much the same way as we de�ned the Jacobi symbol as a product of Legendre
symbols. (We will not concern ourselves with the details here.)

5.6.2 Quadratic Reciprocity in Z[i]

• We now examine quadratic reciprocity in Z[i]. Like in Z we restrict attention to odd primes, meaning primes
of odd norm (i.e., not associate to 1 + i).

• As we might hope, the quadratic residue symbol in Z[i] is closely related to the Legendre symbol in Z.

• Proposition (Residue Symbols in Z[i]): If p is a prime congruent to 1 mod 4 in Z factoring as ππ in Z[i], and

a ∈ Z is any integer, then
[ a
π

]
2
=

(
a

p

)
, where the second symbol is the Legendre symbol in Z. Furthermore,

if l is any odd prime integer, then
[π
l

]
2
=
(p
l

)
.

◦ Proof: If π|a or π|l then the results are obvious.

◦ By Euler's criterion in Z[i], we have
[ a
π

]
2
≡ a(p−1)/2 (mod π).

◦ By Euler's criterion in Z, we also have

(
a

p

)
≡ a(p−1)/2 (mod p).

◦ Since π|p, this implies

(
a

p

)
≡ a(p−1)/2 (mod π), so by the above, we see

(
a

p

)
≡
[ a
π

]
2
(mod π).

◦ Since each of these is either 1 or −1, the only way they could be unequal is if −1 ≡ 1 (mod π): but this
would mean that π|2, which is clearly not the case.

◦ The second statement follows in exactly the same way.

• Theorem (Quadratic Reciprocity in Z[i]): If π and λ are distinct odd prime elements congruent to 1 modulo

2 in Z[i], then
[π
λ

]
2
=

[
λ

π

]
2

.

◦ The statement that π and λ are congruent to 1 modulo 2 merely says that π = a + bi and λ = c + di,
where a and c are positive odd integers. (Any odd prime can be put into this form, so the statement is
not much of a restriction.)

◦ Proof: If both λ and π are integers in Z, then the result is immediate from quadratic reciprocity in Z.
◦ If λ is an integer l (i.e., an integer prime congruent to 3 modulo 4), and π is not, then by the above propo-

sitions we have
[π
l

]
2
=

(
N(π)

l

)
and

[
l

π

]
2

=

(
l

N(π)

)
, and these are equal by quadratic reciprocity in

Z. By symmetry, the result also holds if π is an integer, and λ is not.

◦ Now assume that both π = a+ bi and λ = c+ di are nonintegers, with ππ = p and λλ = l two integral
primes congruent to 1 modulo 4.
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◦ By quadratic reciprocity in Z, �rst observe that
(c
l

)
=

(
l

c

)
=

(
c2 + d2

c

)
=

(
d

c

)2

= +1.

◦ Also notice that pl = (a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2 ≡ (ad− bc)2 (mod ac+ bd).

◦ Thus, pl is a square modulo ac+ bd, so

(
l

ac+ bd

)
=

(
p

ac+ bd

)
. Equivalently, this says

(
ac+ bd

l

)
=(

ac+ bd

p

)
by quadratic reciprocity.

◦ Then

[
λ

π

]
2

=
[ a
π

]2
2

[
c+ di

π

]
2

=
[ a
π

]
2

[
ac+ adi

π

]
2

=

(
a

p

)[
ac+ adi− diπ

π

]
2

=

[
ac+ bd

π

]
2

=

(
ac+ bd

p

)
.

◦ By the same argument, we have
[π
λ

]
2
=

(
ac+ bd

l

)
, so, since this is equal to

(
ac+ bd

p

)
as noted above,

we conclude

[
λ

π

]
2

=
[π
λ

]
2
.

• For completeness, we also remark that the argument above can be used to give simple formulas for the other
remaining values of the quadratic residue symbol:

◦ If π = a+bi where a is odd and b is even, by Euler's criterion, we have

[
i

π

]
2

= (−1)(N(π)−1)/4 = (−1)b/2.

◦ Furthermore, by the argument above and quadratic reciprocity, we have

[
1 + i

λ

]
2

=

(
a+ b

p

)
=

(
p

a+ b

)
.

◦ Then 2p = (a+ b)2 + (a− b)2, so
(

2p

a+ b

)
= 1. Hence

(
p

a+ b

)
=

(
2

a+ b

)
, so

[
1 + i

λ

]
2

=

(
2

a+ b

)
.

5.6.3 Quartic Reciprocity in Z[i]

• We can also write down a degree-4 variant of the quadratic residue symbol in Z[i].

◦ If π is a prime element of odd norm in Z[i] and π - α, we factored the expression αN(π)−1 − 1 ≡ 0 in
Z[i]/π as (α(N(π)−1)/2 − 1) · (α(N(π)−1)/2 + 1) ≡ 0 (mod π).

◦ But now notice that N(π)− 1 is actually divisible by 4: so we can factor the expression even further, as
(α(N(π)−1)/4 − 1) · (α(N(π)−1)/4 + 1) · (α(N(π)−1)/4 + i) · (α(N(π)−1)/4 − i) ≡ 0.

◦ By unique factorization, this means α(N(π)−1)/4 is equivalent to one of 1, −1, i, −i modulo π.

• De�nition: If π is a prime element of odd norm, we de�ne the quartic residue symbol
[α
π

]
4
∈ {0,±1,±i} to

be 0 if π|α, and otherwise to be the unique value among {±1,±i} satisfying
[α
π

]
4
≡ α(N(π)−1)/4 (mod π).

◦ This residue symbol detects fourth powers, similarly to how the quadratic residue symbol detects squares.

◦ If u is a primitive root modulo π, then
[α
π

]
4
= +1 precisely when α is a power of u4, which is clearly

equivalent to α being a fourth power modulo π.

• Example: Find the quartic residues modulo 2 + 3i.

◦ The nonzero residue classes modulo π = 2 + 3i are represented by the elements 1, 2, 3, ... , 12. The
quartic residues are 1, 3 ≡ (2 + i)4, and 9 ≡ (1 + i)4. The other 9 classes are quartic nonresidues.

◦ We can compute, for example,

[
2

2 + 3i

]
4

≡ 23 ≡ i (mod π), and

[
7

2 + 3i

]
4

≡ 73 ≡ −i (mod π).

• This quartic residue symbol turns out to satisfy a reciprocity law much like the Legendre symbol in Z:

• Theorem (Quartic Reciprocity in Z[i]): If π and λ are both primes in Z[i] congruent to 1 modulo 2+ 2i, then[π
λ

]
4
=

[
λ

π

]
4

· (−1)
N(π)−1

4 ·N(λ)−1
4 .

◦ The proof, which we will not give here, involves more advanced machinery. (The result was known to
Gauss, and a proof essentially appears in some of his unpublished papers.)
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5.6.4 Reciprocity Laws in Fp[x]

• We close with some brief remarks about reciprocity in Fp[x].

• As remarked earlier, all polynomials are quadratic residues modulo an irreducible polynomial f of positive
degree in F2[x], since F2[x]/f has an even number of elements for any such f .

• So we will restrict to the case of Fp[x], where p is an odd prime.

• Theorem (Quadratic Reciprocity in Fp[x]): Let p be an odd prime and f, g be monic irreducible polynomials

of positive degree in Fp[x]. Then
[
f

g

]
2

·
[
g

f

]
2

= (−1)
p−1
2 (deg f)(deg g).

◦ This result was originally stated by Dedekind in 1857, but a proof was not published until 1924. Most
known proofs of this result (while fairly short) require more advanced results from �eld theory and
algebraic number theory.

• We can also generalize the quadratic residue symbol to discuss general dth powers.

◦ As we have shown, if f is irreducible in Fp[x], then the collection of residue classes modulo f forms a
�nite �eld with pdeg(f) elements.

◦ By Euler's theorem, every element has order dividing pdeg(f) − 1, and so (since this �eld has a primitive
root) the possible powers of interest are dth powers where d divides pdeg(f) − 1.

• De�nition: If f is a monic irreducible polynomial in Fp[x] and d is a divisor of n = pdeg(f) − 1, we de�ne the

dth-power residue symbol

[
a

f

]
d

to be 0 if f divides a, and otherwise it is the unique element of Fp such that

a(n−1)/d ≡
[
a

f

]
d

(mod f).

◦ The dth-power residue symbol shares most of the same properties as the other residue symbols we have

de�ned: for example, it is multiplicative in the top element, and

[
a

f

]
d

= 1 if and only if a is a nonzero

dth power modulo f .

◦ We emphasize that the value of the dth-power residue symbol is an element in Fp, rather than a complex
number. In general, the possible values of this residue symbol are the elements of order dividing d in Fp.

• Here is the corresponding reciprocity law for the dth-power residue symbol:

• Theorem (dth-Power Reciprocity in Fp[x]): Let p be an odd prime and f, g be monic irreducible polynomials

of positive degrees in Fp[x]. Then
[
f

g

]
d

=

[
g

f

]
d

(−1)
p−1
d (deg f)(deg g).

◦ As with quadratic reciprocity, the proof of the dth-power reciprocity law requires a few more advanced
tools from �eld theory, so we will not give it here.

• As a closing remark for this chapter, we will say that there are many other generalizations of quadratic
reciprocity, and one of the major motivating problems of algebraic number theory in the early 20th century
was to �nd a way to unify all of these disparate statements.

◦ For example, in addition to the quartic reciprocity law in Z[i] known to Gauss, there is also a cubic

reciprocity law in Z[ω] = Z[ 1+
√
−3

2 ] that was �rst proven by Eisenstein in 1844 (although it was likely
known to Gauss).

◦ These various reciprocity laws were generalized and extended by other mathematicians, such as Kummer
(with Kummer reciprocity), Hilbert (using his de�nition of the Hilbert symbol), and Artin (with the
general formulation of Artin reciprocity).

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2023. You may not reproduce or distribute this
material without my express permission.
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