- 1. For explicit examples of the Euclidean algorithm, see problem 4 from homework 7. Note that depending on your calculations, you may end up with an associate of the listed answer, which would also be correct.
	- (a) GCD is $x^2 + x$, with linear combination $1 \cdot (x^4 + x) + x \cdot (x^3 + x) = x^2 + x$.
	- (b) GCD is $4 + i$, with linear combination $-1 \cdot (11 + 24i) + (1 + 2i)(13 i) = 4 + i$.
	- (c) GCD is $x 1$, with linear combination $\frac{1}{6}(x^3 x) \frac{1}{6}(x + 3)(x^2 3x + 2) = x 1$.
	- (d) GCD is 1, with linear combination $(1 2i)(9 5i) + (4 + 5i)(3 + 2i) = 1$.
- 2. Note that \bar{a} is a unit precisely when a, p are relatively prime (and we can compute the inverse x of a using the Euclidean algorithm to find x, y with $xa+ya \equiv 1 \mod p$, while \overline{a} is a zero divisor when a, p are not relatively prime (in which case $b = p / \text{gcd}(a, p)$ has $ab \equiv 0 \text{ mod } p$).
	- (a) Zero divisor since gcd is $2 i$, have $(2 i) \cdot (1 + 3i) = 0 \text{ mod } p$.
	- (b) Unit since gcd is 1, have $\frac{1}{7}(-x+3)(x+3)+\frac{1}{7}(x^2-2)=1$ so inverse is $\frac{1}{7}(-x+3)$.
	- (c) Unit since gcd is 1, have $(1 + 4i)(3 + 4i) + 2(7 8i) = 1$ so inverse is $1 + 4i$.
	- (d) Zero divisor since gcd is $x + 1$, have $(x^2 + x) \cdot (x^3 + x^2 + x + 1) = 0$ mod p.
	- (e) Unit since gcd is 1, have $(2x^2 + 2x + 4)(x^2 + x) + (3x + 1)(x^3 + 3x + 1) = 1$ so inverse is $2x^2 + 2x + 4$.
- 3. Most of these problem types were covered on at least one homework (and in most cases, also the notes).
	- (a) Need $a^2 + 2b^2 = 9$ yielding ± 3 and $\pm 1 \pm 2\sqrt{-2}$.
	- (b) Quotient 5, remainder $-1-2i$.
	- (c) Quotient $x^2 1$, remainder x.
	- (d) Inverse of $1 + i$ is $-4 + 3i$ so solution is $n \equiv$ $3(-4+3i) \pmod{8+i}$.
	- (e) Solution is $z \equiv 2 + 9i \pmod{7 + 19i}$.
	- (f) Solution is $p \equiv x + 2x^2 \pmod{x^3 2x^2}$.
	- (g) The classes are represented by polynomials of degree ≤ 2 , so there are $7³$ residue classes.
	- (h) Units are $\overline{1}$, $\overline{2}$ $\overline{x+1}$, $\overline{2x+2}$; zero divisors are \overline{x} . $\overline{x+2}, \overline{2x}, \overline{2x+1}.$
	- (i) Units are $\overline{ax + b}$ where $b \neq 0$ (20 total); zero divisors are $\overline{x}, \overline{2x}, \overline{3x}, \overline{4x}$.
	- (i) Searching for roots produces factorizations $x(x+)$ 1), $(x+1)^2$, and $(x+2)^2$.
	- (k) Total is $\frac{1}{7}(2^7-2) = 18$.
	- (1) Total is $\frac{1}{4}(7^4 7^2) = 588$.
	- (m) Total is $\frac{1}{10}(2^{10} 2^5 2^2 + 2^1) = 99$.
	- (n) There are primitive roots mod 34 and 37 but not mod 35 or mod 36.
	- (o) 2 is a primitive root mod 3^2 hence mod 3^{2023} . Total number is $\varphi(\varphi(3^{2023})) = 2 \cdot 3^{2021}$.
	- (p) 2 is a prim root mod 3^{2023} so $2 + 3^{2023}$ is a prim root mod $2 \cdot 3^{2023}$. Total number is $\varphi(\varphi(2\cdot 3^{2023})) = 2\cdot 3^{2021}.$
- (q) The number of residue classes is $N(7-5i)$ = $49 + 25 = 74.$
- (r) By drawing the fundamental region (square with vertices 0, β , $i\beta$, $(1+i)\beta = 0$, $2-i$, $1+2i$, $3+i$), and picking inequivalent points, we get 0, 1, 2, $1 + i$, $2 + i$.
- (s) $5 + 5i = (1 + i)(2 + i)(2 i)$, up to associates.
- (t) $11 + 12i = i(2 i)(7 2i)$, up to associates.
- (u) $999 = 3^3(6 i)(6 + i)$, up to associates.
- (v) By Fermat's theorem, $104 = 10^2 + 2^2$ and $666 =$ $21^2 + 15^2$ can, 224 and 420 cannot.
- (w) Since $N(1+i) = 2$, $N(2 \pm i) = 5$, $N(3 \pm 2i) = 13$, take $(1 + i)^2 (2 + i)(3 + 2i) = -14 + 8i$ yielding $260 = 8^2 + 14^2$, and also $(1+i)^2(2+i)(3-2i) =$ $2 + 16i$ yielding $260 = 2^2 + 16^2$.
- (x) Since $N(1+i) = 2, N(3) = 3^2, N(2\pm i) = 5$, take $(1+i)3(2+i)^2 = 21-3i$ yielding $450 = 21^2+3^2$, and also $(1+i)3(2+i)(2-i) = 15 + 15i$ yielding $450 = 15^2 + 15^2$.
- (y) Solving $k(s^2 + t^2) = 65$ in cases gives $(k, s, t) =$ $(1, 8, 1), (1, 7, 4), (5, 3, 2), (13, 2, 1)$ yielding triangles $(2kst, k(s^2 - t^2), k(s^2 + t^2))$ as 16-63-65, 25-60-65, 33-56-65, 39-52-65.
- (z) Solving $k(s^2 t^2) = 49$ in cases gives $(k, s, t) =$ $(1, 50, 49), (7, 4, 3)$ yielding the triangles 49-1200-1201, 49-168-175.
- 4. This problem is similar to problems 1, 2, 3 from homework 8.
	- (a) The residue classes are $\bar{0}, \bar{1}, \bar{x}, \bar{x+1}, x^2, x^2 + 1, x^2 + x, x^2 + x + 1.$
	- (b) $\overline{x^2} + \overline{x^2 + 1} = \overline{1}, \overline{x^2} \cdot \overline{x^2 + 1} = \overline{x^2 + 1}, \text{ and } \overline{x^2 + 1}^2 = \overline{0}.$
	- (c) Units are $\overline{1}, \overline{x}, x^2, x^2 + x + 1$, zero divisors are $\overline{x+1}, x^2 + 1, x^2 + x$.
	- (d) There are 4 units and indeed $\overline{x^2 + x + 1}^4 = \overline{x^2}^2 = \overline{1}$ as required.
	- (e) Multiply by the inverse of $\overline{x^2}$, which is $\overline{x^2}$ again, to see $q(x) \equiv x^2(x+1) \equiv x+1$.

5. Problems like these appear on homework 10. Note $\left(\frac{-1}{p}\right) = 1$ for $p \equiv 1 \mod 4$, $\left(\frac{2}{p}\right) = 1$ for $p \equiv 1, 7 \mod 8$.

- (a) 1^2 , 2^2 , 3^2 , 4^2 , 5^2 , 6^2 , 7^2 , 8^2 , $9^2 \equiv 1, 4, 9, 16, 6, 17, 11, 7, 5 \mod 19$.
- (b) Mod 43 there are $(43 1)/2 = 21$ quadratic residues since 43 is prime.
- (c) We have $\left(\frac{7}{43}\right) = -\left(\frac{43}{7}\right) = -\left(\frac{1}{7}\right) = -1$, $\left(\frac{11}{43}\right) = -\left(\frac{43}{11}\right) = -\left(\frac{-1}{11}\right) = 1$, and $\left(\frac{14}{43}\right) = \left(\frac{2}{43}\right)\left(\frac{7}{43}\right) =$ $(-1)(-1) = 1$. So 11 and 14 are QRs mod 43 but 7 is not.
- (d) We have $\left(\frac{13}{2027}\right) = \left(\frac{2027}{13}\right) = \left(\frac{-1}{13}\right) = 1$ and $\left(\frac{26}{2027}\right) = \left(\frac{2}{2027}\right)\left(\frac{13}{2027}\right) = (-1)(1) = -1$ so 13 is a QR but 26 is not.
- (e) Get $\left(\frac{28}{71}\right) = \left(\frac{2}{71}\right)^2 \left(\frac{7}{71}\right) = -\left(\frac{71}{7}\right) = -1$ and $\left(\frac{15}{71}\right) = \left(\frac{3}{71}\right) \left(\frac{5}{71}\right) = -\left(\frac{71}{3}\right) \left(\frac{71}{5}\right) = -\left(\frac{2}{3}\right) \left(\frac{1}{5}\right) = 1$. So 15 is a QR but 28 is not.
- (f) We get $\left(\frac{103}{307}\right) = -\left(\frac{307}{103}\right) = -\left(\frac{-2}{131}\right) = 1$ and $\left(\frac{141}{307}\right) = \left(\frac{307}{141}\right) = \left(\frac{25}{141}\right) = 1$.
- 6. Many problems of similar types were covered on at least one homework.
	- (a) Note $N(7+4\sqrt{3})=1$ so it is a unit since the norm is ± 1 . The inverse is the conjugate $7-4$ √ 3.
	- (b) Note $N(1 + \sqrt{5})^{2023} = N(1 + \sqrt{5})^{2023} = (-4)^{2023}$ so it is not a unit. But $N[(2 + \sqrt{5})^{2023}] = N(2 + \sqrt{5})^{2023} = N(2 + \sqrt{5})^{2023}$ $(5)^{2023} = (-1)^{2023} = -1$ so it is a unit.
	- (c) Note $N(4+5i) = 4^2 + 5^2 = 41$ is a prime integer so as $\mathbb{Z}[i]$ is Euclidean, $4+5i$ is irreducible and prime.
	- (d) Note $N(2 + \sqrt{-7}) = 11$ is a prime integer, so $2 + \sqrt{-7}$ is irreducible.
	- (e) Note $N(1 + \sqrt{-7}) = 8$ so if we had a nontrivial factorization, it would have to be the product of an element of norm 2 with an element of norm 4. But since $N(a + b\sqrt{-7}) = a^2 + 7b^2$ there are no elements of norm 2 or 4, so there is no possible factorization.
	- (f) Note that $(1 + \sqrt{-7})(1 \sqrt{-7}) = 8 = 2 \cdot 4$ so $1 + \sqrt{-7}$ divides 2 · 4 but it divides neither 2 nor 4, since Note that $(1 + \sqrt{-7})(1 - \sqrt{-7}) = 8 = 2 \cdot 4$ so $1 + \sqrt{-7}$ divides $2 \cdot 4$ but it divides heather 2 flor 4,
 $2/(1 + \sqrt{-7}) = (1 - \sqrt{-7})/4$ and $4/(1 + \sqrt{-7}) = (1 - \sqrt{-7})/2$. This means $1 + \sqrt{-7}$ is not prime.
	- (g) $x^2 + x + 1$ has no roots in \mathbb{F}_2 by a direct check, so since it has degree 2, it is irreducible hence also prime since $F[x]$ is Euclidean.
	- (h) It is not hard to list all the units to see that there are 4 of them (they are the polynomials with constant term 1). We then calculate $\overline{x^2+1}^4 = \overline{x^4+2x^2+1}^2 = \overline{1}^2 = \overline{1}$ so Euler's theorem holds.
	- (i) There are $N(3+2i) = 13$ residue classes and $i^{13} \equiv i \pmod{3+2i}$ as required (indeed, i^{13} just equals i).
	- (j) For $p(x) = x^3 + x + 1$ we have $p(0) = p(2) = p(3) = 1$, $p(1) = 3$, $p(4) = 4$ mod 5, so p has no roots. Since it has degree 3 it is irreducible, so $\mathbb{F}_5[x]$ modulo $x^3 + x + 1$ is a field.
	- (k) Searching yields a root $x = 3$, so the polynomial is reducible so $\mathbb{F}_5[x]$ modulo $x^4 + x + 1$ is not a field.
	- (l) Note that $x^2 + 2x + 8$ has no real roots (its roots are $-1 \pm i\sqrt{}$ 7). Since it has degree 2 it is irreducible, so $\mathbb{R}[x]$ modulo $x^2 + 2x + 8$ is a field.
	- (m) Since $125 = 5^3$ we can use $\mathbb{F}_5[x]$ modulo an irreducible polynomial of degree 3. We actually just identified such a polynomial, namely $x^3 + x + 1$, in part (j).
	- (n) There are $N(4+i) = 17$ residue classes hence 16 units since $4+i$ is irreducible. Then $(1+i)^2 \equiv 2i$, so $(1+i)^4 \equiv (2i)^2 \equiv -4 \equiv i$, $(1+i)^8 \equiv i^2 \equiv -1$, and finally $(1+i)^{16} \equiv (-1)^2 \equiv 1$ as required.
	- (o) We compute $\left(\frac{11}{97}\right) = \left(\frac{97}{11}\right) = +1$, so the Legendre symbol is $+1$. This means 11 is a quadratic residue mod 97 so $x^2 \equiv 11 \pmod{97}$ has a solution.
	- (p) Completing the square gives $(x + 3)^2 \equiv 5 \pmod{101}$ so we must determine whether 5 is a quadratic residue modulo 101. We compute $\left(\frac{5}{101}\right) = \left(\frac{101}{5}\right) = \left(\frac{1}{5}\right) = 1$, so 5 is a QR and thus there are solutions.