
E. Dummit's Math 3527 ∼ Number Theory 1, Spring 2023 ∼ Midterm 2 Review Answers

1. For explicit examples of the Euclidean algorithm, see problem 4 from homework 7. Note that depending on
your calculations, you may end up with an associate of the listed answer, which would also be correct.

(a) GCD is x2 + x, with linear combination 1 · (x4 + x) + x · (x3 + x) = x2 + x.

(b) GCD is 4 + i, with linear combination −1 · (11 + 24i) + (1 + 2i)(13− i) = 4 + i.

(c) GCD is x− 1, with linear combination 1
6 (x

3 − x)− 1
6 (x+ 3)(x2 − 3x+ 2) = x− 1.

(d) GCD is 1, with linear combination (1− 2i)(9− 5i) + (4 + 5i)(3 + 2i) = 1.

2. Note that a is a unit precisely when a, p are relatively prime (and we can compute the inverse x of a using the
Euclidean algorithm to �nd x, y with xa+ya ≡ 1 mod p), while a is a zero divisor when a, p are not relatively
prime (in which case b = p/ gcd(a, p) has ab ≡ 0 mod p).

(a) Zero divisor since gcd is 2− i, have (2− i) · (1 + 3i) = 0 mod p.

(b) Unit since gcd is 1, have 1
7 (−x+ 3)(x+ 3) + 1

7 (x
2 − 2) = 1 so inverse is 1

7 (−x+ 3).

(c) Unit since gcd is 1, have (1 + 4i)(3 + 4i) + 2(7− 8i) = 1 so inverse is 1 + 4i.

(d) Zero divisor since gcd is x+ 1, have (x2 + x) · (x3 + x2 + x+ 1) = 0 mod p.

(e) Unit since gcd is 1, have (2x2 + 2x+ 4)(x2 + x) + (3x+ 1)(x3 + 3x+ 1) = 1 so inverse is 2x2 + 2x+ 4.

3. Most of these problem types were covered on at least one homework (and in most cases, also the notes).

(a) Need a2 + 2b2 = 9 yielding ±3 and ±1± 2
√
−2.

(b) Quotient 5, remainder −1− 2i.

(c) Quotient x2 − 1, remainder x.

(d) Inverse of 1 + i is −4 + 3i so solution is n ≡
3(−4 + 3i) (mod 8 + i).

(e) Solution is z ≡ 2 + 9i (mod 7 + 19i).

(f) Solution is p ≡ x+ 2x2 (mod x3 − 2x2).

(g) The classes are represented by polynomials of de-
gree ≤ 2, so there are 73 residue classes.

(h) Units are 1, 2 x+ 1, 2x+ 2; zero divisors are x,
x+ 2, 2x, 2x+ 1.

(i) Units are ax+ b where b 6= 0 (20 total); zero
divisors are x, 2x, 3x, 4x.

(j) Searching for roots produces factorizations x(x+
1), (x+ 1)2, and (x+ 2)2.

(k) Total is 1
7 (2

7 − 2) = 18.

(l) Total is 1
4 (7

4 − 72) = 588.

(m) Total is 1
10 (2

10 − 25 − 22 + 21) = 99.

(n) There are primitive roots mod 34 and 37 but not
mod 35 or mod 36.

(o) 2 is a primitive root mod 32 hence mod 32023.
Total number is ϕ(ϕ(32023)) = 2 · 32021.

(p) 2 is a prim root mod 32023 so 2 + 32023 is
a prim root mod 2 · 32023. Total number is
ϕ(ϕ(2 · 32023)) = 2 · 32021.

(q) The number of residue classes is N(7 − 5i) =
49 + 25 = 74.

(r) By drawing the fundamental region (square with
vertices 0, β, iβ, (1+ i)β = 0, 2− i, 1+2i, 3+ i),
and picking inequivalent points, we get 0, 1, 2,
1 + i, 2 + i.

(s) 5 + 5i = (1 + i)(2 + i)(2− i), up to associates.

(t) 11 + 12i = i(2− i)(7− 2i), up to associates.

(u) 999 = 33(6− i)(6 + i), up to associates.

(v) By Fermat's theorem, 104 = 102 + 22 and 666 =
212 + 152 can, 224 and 420 cannot.

(w) Since N(1+ i) = 2, N(2± i) = 5, N(3±2i) = 13,
take (1 + i)2(2 + i)(3 + 2i) = −14 + 8i yielding
260 = 82 +142, and also (1+ i)2(2+ i)(3− 2i) =
2 + 16i yielding 260 = 22 + 162.

(x) Since N(1+i) = 2, N(3) = 32, N(2±i) = 5, take
(1+ i)3(2+ i)2 = 21−3i yielding 450 = 212+32,
and also (1+ i)3(2+ i)(2− i) = 15+15i yielding
450 = 152 + 152.

(y) Solving k(s2 + t2) = 65 in cases gives (k, s, t) =
(1, 8, 1), (1, 7, 4), (5, 3, 2), (13, 2, 1) yielding trian-
gles (2kst, k(s2 − t2), k(s2 + t2)) as 16-63-65, 25-
60-65, 33-56-65, 39-52-65.

(z) Solving k(s2 − t2) = 49 in cases gives (k, s, t) =
(1, 50, 49), (7, 4, 3) yielding the triangles 49-1200-
1201, 49-168-175.



4. This problem is similar to problems 1, 2, 3 from homework 8.

(a) The residue classes are 0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1.

(b) x2 + x2 + 1 = 1, x2 · x2 + 1 = x2 + 1, and x2 + 1
2
= 0.

(c) Units are 1, x, x2, x2 + x+ 1, zero divisors are x+ 1, x2 + 1, x2 + x.

(d) There are 4 units and indeed x2 + x+ 1
4
= x2

2
= 1 as required.

(e) Multiply by the inverse of x2, which is x2 again, to see q(x) ≡ x2(x+ 1) ≡ x+ 1.

5. Problems like these appear on homework 10. Note
(

−1
p

)
= 1 for p ≡ 1 mod 4,

(
2
p

)
= 1 for p ≡ 1, 7 mod 8.

(a) 12, 22, 32, 42, 52, 62, 72, 82, 92 ≡ 1, 4, 9, 16, 6, 17, 11, 7, 5 mod 19.

(b) Mod 43 there are (43− 1)/2 = 21 quadratic residues since 43 is prime.

(c) We have
(

7
43

)
= −

(
43
7

)
= −

(
1
7

)
= −1,

(
11
43

)
= −

(
43
11

)
= −

(−1
11

)
= 1, and

(
14
43

)
=

(
2
43

) (
7
43

)
=

(−1)(−1) = 1. So 11 and 14 are QRs mod 43 but 7 is not.

(d) We have
(

13
2027

)
=

(
2027
13

)
=

(−1
13

)
= 1 and

(
26

2027

)
=

(
2

2027

) (
13

2027

)
= (−1)(1) = −1 so 13 is a QR but 26

is not.

(e) Get
(
28
71

)
=

(
2
71

)2 ( 7
71

)
= −

(
71
7

)
= −

(
1
7

)
= −1 and

(
15
71

)
=

(
3
71

) (
5
71

)
= −

(
71
3

) (
71
5

)
= −

(
2
3

) (
1
5

)
= 1.

So 15 is a QR but 28 is not.

(f) We get
(
103
307

)
= −

(
307
103

)
= −

( −2
131

)
= 1 and

(
141
307

)
=

(
307
141

)
=

(
25
141

)
= 1.

6. Many problems of similar types were covered on at least one homework.

(a) Note N(7 + 4
√
3) = 1 so it is a unit since the norm is ±1. The inverse is the conjugate 7− 4

√
3.

(b) Note N [(1 +
√
5)2023] = N(1 +

√
5)2023 = (−4)2023 so it is not a unit. But N [(2 +

√
5)2023] = N(2 +√

5)2023 = (−1)2023 = −1 so it is a unit.

(c) Note N(4 + 5i) = 42 + 52 = 41 is a prime integer so as Z[i] is Euclidean, 4 + 5i is irreducible and prime.

(d) Note N(2 +
√
−7) = 11 is a prime integer, so 2 +

√
−7 is irreducible.

(e) Note N(1 +
√
−7) = 8 so if we had a nontrivial factorization, it would have to be the product of an

element of norm 2 with an element of norm 4. But since N(a+ b
√
−7) = a2 + 7b2 there are no elements

of norm 2 or 4, so there is no possible factorization.

(f) Note that (1 +
√
−7)(1−

√
−7) = 8 = 2 · 4 so 1 +

√
−7 divides 2 · 4 but it divides neither 2 nor 4, since

2/(1 +
√
−7) = (1−

√
−7)/4 and 4/(1 +

√
−7) = (1−

√
−7)/2. This means 1 +

√
−7 is not prime.

(g) x2 +x+1 has no roots in F2 by a direct check, so since it has degree 2, it is irreducible hence also prime
since F [x] is Euclidean.

(h) It is not hard to list all the units to see that there are 4 of them (they are the polynomials with constant

term 1). We then calculate x2 + 1
4
= x4 + 2x2 + 1

2
= 1

2
= 1 so Euler's theorem holds.

(i) There are N(3 + 2i) = 13 residue classes and i13 ≡ i (mod 3 + 2i) as required (indeed, i13 just equals i).

(j) For p(x) = x3+x+1 we have p(0) = p(2) = p(3) = 1, p(1) = 3, p(4) = 4 mod 5, so p has no roots. Since
it has degree 3 it is irreducible, so F5[x] modulo x3 + x+ 1 is a �eld.

(k) Searching yields a root x = 3, so the polynomial is reducible so F5[x] modulo x4 + x+ 1 is not a �eld.

(l) Note that x2 + 2x+ 8 has no real roots (its roots are −1± i
√
7). Since it has degree 2 it is irreducible,

so R[x] modulo x2 + 2x+ 8 is a �eld.

(m) Since 125 = 53 we can use F5[x] modulo an irreducible polynomial of degree 3. We actually just identi�ed
such a polynomial, namely x3 + x+ 1, in part (j).

(n) There are N(4 + i) = 17 residue classes hence 16 units since 4 + i is irreducible. Then (1 + i)2 ≡ 2i, so
(1 + i)4 ≡ (2i)2 ≡ −4 ≡ i, (1 + i)8 ≡ i2 ≡ −1, and �nally (1 + i)16 ≡ (−1)2 ≡ 1 as required.

(o) We compute
(
11
97

)
=

(
97
11

)
=

(
9
11

)
= +1, so the Legendre symbol is +1. This means 11 is a quadratic

residue mod 97 so x2 ≡ 11 (mod 97) has a solution.

(p) Completing the square gives (x + 3)2 ≡ 5 (mod 101) so we must determine whether 5 is a quadratic
residue modulo 101. We compute

(
5

101

)
=

(
101
5

)
=

(
1
5

)
= 1, so 5 is a QR and thus there are solutions.


